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In the second part of the paper, the incremental constitutive model, de-
scribed in details in Part I, was verified against the experimental data
obtained from the stress paths different that those used for model ca-
libration. The differential equations defining the model were integrated
for various stress paths such as anisotropic consolidation including oedo-
metric conditions, standard triaxial compression, spherical unloading of
fully drained soil as well and shearing of water saturated sand in un-
drained conditions. The behaviour of both initially contractive and di-
lative soil was considered. Theoretical predictions were compared with
the respective experimental data. In all cases examined, the agreement
between predictions and experimental data seems to be quite good.
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1. Introduction

In the second part of this paper, some applications of the incremental consti-
tutive model presented in Part I are shown in order to predict the pre-failure
behaviour of sand for loading paths different from those used for calibration.
Recall that the model has been calibrated for the strains that develop for the
stress paths OA and ABC, in the case of loading, and AO and CBA in the
case of unloading. The behaviour predicted for the other loading paths, com-
pared with the experimental data, serves as a kind of validation of the model
proposed. The predictions shown in this part of the present paper are based
on integration of Eqs. (4.1) in Part I, along those other loading paths.
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2. Anisotropic consolidation

The anisotropic consolidation takes place along the stress path OD, see Fig. 1
in Part I. Note that along this path, both p′ and q change, but the ratio
η = q/p′ remains constant. In the case considered, there is

η =
3(1−K)
1 + 2K

(2.1)

where K = σ3/σ1 = const .
Consider two different cases of anisotropic consolidation, namely η < η′

and η > η′, where η′ corresponds to the instability line. Recall that the
region in the stress space below the instability line is considered as a region
of stable behaviour, whilst the region above this line corresponds to unstable
behaviour of the soil. Figure 1 shows the experimental results, representing the
development of volumetric and deviatoric strains in the soil, for the previously
mentioned cases, see Świdziński (2006). These strains were developed along
the stress paths η = 0.375 (K = 0.7) and η = 1.179 (K = 0.34). The results
presented in Fig. 1 can be approximated by the following formulae

εv = 7.1
√
p′ εq ≈ 0 for η = 0.375

εv = 2.52
√
p′ εq = 13.61

√
p′ for η = 1.179

(2.2)

Fig. 1. Strains developed along two paths of anisotropic consolidation
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2.1. The case η = 0.375

This case corresponds to the region below the instability line, and the
respective incremental equations take the following form

dεv =
(Av
2
+ 4c1η4

) 1√
p′
dp′ = Cv

1√
p′
dp′

(2.3)
dεq =

(Aq
2
+ ηb1b2 exp(b2η)

) 1
√
p′
dp′ = Cq

1
√
p′
dp′

Note that in the case considered, one of the independent stress variables was
replaced by the other, i.e. dq = ηdp′. Integration of the above equations with
zero initial conditions leads to the following expressions

εv = 2Cv
√

p′ εq = 2Cq
√

p′ (2.4)

which are of the same shape as the analytical approximations of experimental
data (2.2), so the qualitative agreement between the empirical results and
theoretical predictions is good. Substitution of average material parameters,
already presented in Part I of this paper leads to quantitative results. For
the average coefficients: Av = 6.01; Aq = −0.95; c1 = 2.97; b1 = 0.023;
b2 = 6.245 (remember about respective stress and strain units!) one obtains:
εv = 6.48

√
p′ and εq = 0.17

√
p′, which differ a little from those obtained

from the experiments, cf. Eq. (2.2). However, if we slightly change just two
of these parameters, namely substitute Av = 6.5 and b2 = 6, we obtain
respectively: εv = 6.97

√
p′ and εq = 0.032

√
p′ which are indeed very close to

the experimental values.

2.2. The case η = 1.179

The stress path corresponding to this case is located in the region of poten-
tial instability, so assume that the incremental equations for the dilative soil
are valid. The strains are given by Eqs. (2.4), but with different coefficients,
namely

Cv =
Av
2
+ 2a1η2 + a2η Cq =

Aq
2
+ ηb1b2 exp(b2η) (2.5)

Substitution of the following parameters: Av = 3.47; Aq = −0.53; a1 = −1.0;
a2 = 2.0; b1 = 0.00035; b2 = 6.648 leads to the following relations:
εv = 2.63

√
p′ and εq = 13.38

√
p′, which are very close to empirical relations

(2.2).



332 A. Sawicki, W. Świdziński

2.3. Strain paths

The experimental results and theoretical predictions previously presented
can also be interpreted in terms of the principal strains, given by the following
relation obtained from Eqs. (2.1)3,4 in Part I

ε1 =
1
3
εv + εq ε3 =

1
3
εv −
1
2
εq (2.6)

For analytical approximations of experimental data (2.2), one obtains the
following values of the ratio of principal strains ε1/ε3 = 1 for η = 0.375 and
ε1/ε3 = −2.42 for η = 1.179. Respective predictions presented in Sections 2.1
and 2.2 give ε1/ε3 = 1.12 for η = 0.375 and ε1/ε3 = −2.45 for η = 1.179. In
this case, the agreement is remarkable, cf. Fig. 2.

Fig. 2. Experimentally determined principal strain paths during anisotropic
consolidation against theoretical predictions

3. Oedometric behaviour

3.1. Oedometric conditions

In the oedometric conditions, the lateral strains are equal to zero, which
means that in the triaxial compression tests there should be ε3 = 0, cf. one
of the strain paths shown in Fig. 2 (after Świdziński, 2006). This path was
obtained for the anisotropic consolidation defined by η = 0.92 (K = 0.43).
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It should be noted that such experiments are difficult to perform in the tria-
xial apparatus as the lateral strain should be controlled. Such conditions are
automatically realised in a standard oedometer, where the rigid wall imposes
constrains on the horizontal deformations.
As the subsequent prediction of the incremental model proposed, the stress

path corresponding to oedometric conditions will be determined, and the re-
sults of calculations will be compared with the experimental data. The value
of η, corresponding to oedometric conditions, will be calculated from Eq.
(2.6)2, assuming ε3 = 0, which in this case reduces to

εv
εq
=
3
2

or
dεv
dεq
=
3
2

(3.1)

3.2. Initially loose soil

In the case of initially loose soil, Eq. (3.1) leads to the following relation
for η

Av
2
+ 4c1η4 −

3
4
Aq −

3
2
ηb1b2 exp(b2η) = 0 (3.2)

Substitution of the following parameters: Av = 6; Aq = −0.95; c1 = 2.97;
b1 = 0.000335; b2 = 8.32 leads to the following equation

887.99 + 2841.56η4 − η exp(8.32η) = 0

The solution has been found numerically: η = 0.985 which corresponds to
K = 0.405. Recall that the respective experimental values are η = 0.92 and
K = 0.43, see Fig. 2. Note that the difference between theoretical predictions
and experimental results is less than 6% in this case.

3.3. Initially dense soil

A similar technique has been applied to predict the oedometric behaviour
of initially dense soil. Equation (3.1) takes the following form in this case

Av
2
+ 2a1η2 + a2η −

3
4
Aq −

3
2
ηb1b2 exp(b2η) = 0 (3.3)

Substitution of the following parameters: Av = 3.47; Aq = −0.53; a1 = −1;
a2 = 2; b1 = 0.00035; b2 = 6.648 leads to the following equation

611 − 573.03η2 + 573.03η − η exp(6.648η) = 0



334 A. Sawicki, W. Świdziński

with the solution η = 0.973 corresponding to K = 0.41. Recall that the expe-
rimental value of K = 0.43, see Fig. 2. Such a remarkable agreement can obvio-
usly be accidental. Note that, on one hand, we substitute into the respective
equations the average values of sand parameters, determined experimentally.
On the other hand, the prediction is compared with the independent result
of just a single experiment. Anyway, in spite of such doubts, the agreement
between predictions and empirical results seems to be quite good.

3.4. Oedometric stress-strain curve

In classical oedometric investigations, the vertical stress-vertical strain cu-
rve is determined, i.e. ε1 = ε1(σ′1). Such a curve can also be obtained from
Eqs. (2.3). Note that in the case considered

dεv = dε1 dεq =
2
3
dε1 (3.4)

as ε3 and dε3 are zero. There is also σ′3 = Kσ
′

1.
First, Eqs. (2.3) should be solved in order to determine the value of η,

as shown in Sections 3.2 and 3.3. Then, the respective stress-strain curve can
be determined either from Eq. (2.3)1 or (2.3)2. Integration of these equations
leads to relations (2.4), which together with Eq. (3.4), gives the same results.
For example, it follows from Eqs. (2.4)1 and (3.4) that

ε1 = 2Cv

√

1 + 2K
3

√

σ′1 = 2D
√

σ′1 (3.5)

where Cv is defined in Eq. (2.3)1.

Substitution of the data from Section 3.2 gives: ε1 = 28.37
√

σ′1. The same
result is obtained from Eqs. (2.3)2, (2.4)2 and (3.4), which can be easily checked
by substitution. The investigations performed on other sands give the following
values of the coefficient appearing in Eq. (3.5): 2D = 30 for ”Sobieszewo” sand
or 2D = 25 for ”Lubiatowo” sand, see Sawicki and Świdziński (1998).

For the data from Section 2.2, one obtains ε1 = 2.73
√

σ′1. Figure 3 shows
the oedometric stress-strain curve for ”Skarpa” sand of the initial relative
density ID = 0.86. This curve can be approximated by the following formula:
ε1 = 3.27

√

σ′1 which is indeed very close to the analytical prediction.
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Fig. 3. Experimental oedometric stress-strain curve for ”Skarpa” sand against the
theoretical prediction

4. Standard triaxial compression test

The standard compression test is much easier to perform in a conventional
triaxial apparatus than the pure shearing at a constant mean stress, because
it is not necessary in it to change the cell pressure. In such a standard test,
the cell pressure is kept constant (σ3 = const ) and only the vertical stress σ1
increases, which corresponds to the stress path AE in Fig. 1 in Part I, as both
p and q increase according to Eqs. (2.1)1,2 in Part I. In this special case, the
stress increments are the following

dp′ =
1
3
dσ′1 dq = dσ′1 = 3dp

′ (4.1)

Consider the case of initially contractive soil. The incremental equations
are the following

dεv =
(Av
2
+ 12c1η3

) 1
√
p′
dp′ dεq =

(Aq
2
+ 3b1b2 exp(b2η)

) 1
√
p′
dp′

(4.2)
where relation (4.1) was taken into account.
There are two variables, namely p′ and η, which are inter-related. In order

to eliminate η from Eqs. (4.2), let us consider Fig. 4 from which it follows

η = 3
(

1−
p′A
p′

)

(4.3)

where p′A denotes the initial mean effective stress prior to the test.
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Fig. 4. Stress paths in standard triaxial tests. Geometrical relation between p′ and η

Substitution of Eq. (4.3) into Eqs. (4.2) leads to the following relations
which describe the development of pre-failure strains corresponding to the
stress path AE from Fig. 1 in Part I

dεv =
[Av
2
+ 324c1

(

1−
p′A
p′

)3] 1√
p′
dp′

(4.4)

dεq =
{Aq
2
+ 3b1b2 exp

[

3b2
(

1−
p′A
p′

)]} 1
√
p′
dp′

The above equations have been integrated numerically for the average va-
lues of material parameters (see Section 3.2 of Part I of this paper), which
correspond to the initially contractive soil state and for the following initial
conditions: εv(p′ = p′A) = 0 and εq(p

′ = p′A) = 0. Figure 5 shows the re-
sults of computation against the experimental data. It can be seen that again
qualitative and quantitative reproduction of the experimental results by the
model proposed for the standard triaxial compression test carried out on the
contractive soil is very good.

5. Unstable behaviour during spherical unloading

5.1. Experimental observations

A very interesting behaviour of initially loose sand is shown in Fig. 6, after
Świdziński (2006). First, the soil samples were subjected to isotropic consolida-
tion up to p′ = p′A = 2·10

5 N/m2. Then, each of three samples investigated was
subjected to pure shearing, up to different deviatoric stress levels. Subsequ-
ently, the deviatoric stress was kept constant, and the mean stress p′ reduced
(spherical unloading). During the first part of this process (path BC in Fig. 6)
the dilation takes place, i.e. the volume of soil increases. After reaching the
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Fig. 5. Experimental and predicted stress-strain curves for standard tri-axial
compression

Fig. 6. Volumetric deformations of initially loose ”Skarpa” sand during spherical
unloading

instability line (point C in Fig. 6), the volumetric strains rapidly decrease, i.e.
a sudden compaction takes place. This phenomenon is better visible in Fig. 7,
where the data from Fig. 6 are shown in a different system of co-ordinates.

Similar experiments were carried out by Skopek et al. (1994). The authors
designated the process of sudden decrease in volume as structural collapse of
sand due to progressive destruction of the soil structure caused by isotropic
unloading.
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Fig. 7. Sudden compaction of initially loose ”Skarpa” sand after reaching the
instability line, cf. Fig. 6

5.2. Theoretical prediction

In order to predict the behaviour shown in Figs. 6 and 7, incremental
equation (4.1)1 in Part I will be modified. This modification is necessary as
dq = 0 along the paths BCD, but η increases, which means deviatoric loading.
In this special case, there is also dp′ < 0, which means spherical unloading.
The starting point to the modification is again Eq. (3.5) in Part I which can
be re-written in the following form

εv =
√

p′c1η
4 (5.1)

The increment of the volumetric strain due to deviatoric loading is

dεv =
∂εv
∂p′
dp′ +

∂εv
∂η
dη (5.2)

Recall that dq = 0, therefore

dη = −
q

(p′)2
dp′ (5.3)

Equations (5.1)-(5.3) lead to the following formula

dεv = −3.5q4c1(p′)−4.5dp′ (5.4)

We have to add the component corresponding to spherical unloading to
the RHS of this equation. Therefore, the volumetric strains that develop along
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the paths BCD (see inset in Fig. 6) are given by the following incremental
equation

dεv =
[ Auv
2
√
p′
− 3.5q4c1(p′)−4.5

]

dp′ (5.5)

Integration of this equation, with the initial condition εv(p′ = p′A) = 0,
leads to the following formula

εv = Auv (
√

p′ −
√

p′A) + c1q
4[(p′)−3.5 − (p′A)

−3.5] (5.6)

It should be remembered that volumetric strain (5.6) is imposed on the
volumetric strains that have been developed along the path OAB, but for the
sake of simplicity, the zero initial condition was assumed. Figure 8 illustrates
Eq. (5.6) for the following data: p′A = 2; c1 = 2.7; A

u
v = 4.4. The qualitative

agreement with the experimental data from Figs. 6 and 7 is achieved.

Fig. 8. The volumetric strains that develop during spherical unloading – theoretical
prediction, cf. Figs. 6 and 7

6. Static liquefaction

Previous examples of prediction dealt with the fully drained conditions, when
u = 0 and σ = σ′. The undrained conditions are described in Section 6 of
Part I of this paper. It will be shown that the incremental model, proposed
in the present paper, gives also good predictions for undrained conditions. It
is known, from experimental investigations, that the undrained behaviour of
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initially contractive and dilative soils differ. A characteristic feature of initially
contractive soils is that they liquefy under shearing in undrained conditions,
see e.g. Castro (1975); Konrad (1993); Lade (1992). The volumetric strains that
for the initially contractive soil can be described by similar equations to those
presented in Section 5.2, are zero during undrained shearing. These equations,
combined with condition (6.1) in Part I, lead to the following expression

dεv =
∂εqv
∂p′
dp′ +

∂εqv
∂η
dη +

Auv
2
√
p′
dp′ = 0 (6.1)

where εqv is given by Eq. (5.1). Simple manipulations lead to the following
differential equation describing the changes of the mean effective stress

dp′

p′
= −

6η3

η4 + A
u

v

c1

dη (6.2)

Integration of this equation, with the initial condition p′ = p0 for η = 0, where
p0 is the initial confining stress, leads to the following formula

p′ = p0

√

( 1
1 + c1

Au
v

η4

)3

(6.3)

The above equations allow for determination of the effective stress path
during the undrained shearing. For example, Fig. 9 shows such a path for the
data from Section 5.2. The predicted curve does not reproduce the experimen-
tal data too well from the quantitative point of view, although the qualitative
agreement is good (solid line in Fig. 9). Small correction of the values of ma-
terial parameters (Auv = 0.8; c1 = 2.4) leads to the almost perfect agreement
(dashed line in Fig. 9).
Figure 9 shows that the maximum shear stress supported by the saturated

soil coincides with the instability line. After reaching this line, the deviatoric
stress decreases, finally approaching the Coulomb-Mohr failure envelope. This
phenomenon is designated as static liquefaction. The results presented in this
Section show that the incremental model of the pre-failure behaviour of sand
leads to realistic predictions in the case of undrained shearing of the initially
contractive soil.

7. Undrained behaviour of dilative soil

The initially dilative sands behave in a different way than that shown in the
previous Section. In order to make the analysis easy, let us simplify the beha-
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Fig. 9. Static liquefaction of initially contractive sand

viour shown in Fig. 6 inPart I, see Sawicki and Świdziński (2007). The bi-linear
approximation is the following

εqv =







Bvη
√
p′ for 0 ¬ η ¬ η′

√
p′(Cvη +Dv) for η′ ¬ η ¬ η′′

(7.1)

where Bv, Cv and Dv are certain coefficients. In the case considered:
Bv = 1.195; Cv = −77.8; Dv = 79.26.
The already known procedure leads to the following formulae for the mean

effective pressure

p′ =



















p0
(

1 +
Bv
Auvη

)−2

for 0 ¬ η ¬ η′

p ∗
(η′ + ξ
η + ξ

)2

for η′ ¬ η ¬ η′′
(7.2)

where p∗ corresponds to the mean effective stress on the instability line, and
ξ = (Av + Cv)/Dv . Figure 10 shows the effective stress paths for the above
data and Av = 3.47; Auv = 2.91, η

′ = 1; η′′ = 1.4 for different initial confining
stresses. The behaviour shown in Fig. 10 remains in a good agreement with
the experimental results, which supports the thesis that our incremental model
well describes the pre-failure behaviour of sands.
The characteristic feature of the behaviour shown in Fig. 10 is that, before

reaching the instability line, the effective stress path is similar to that of the
initially contractive soil, cf. Fig. 9. After reaching the instability line, the stress
path turns right and both q and p′ increase.
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Fig. 10. Predicted effective stress paths during undrained shearing of sand

8. Conclusions

In Part II of the present paper, it was shown that the incremental model
describing the pre-failure behaviour of saturated sand leads to realistic predic-
tions for various stress paths, different from those used for its calibration. The
predictions of the model were determined for both the fully drained and undra-
ined conditions. In all the cases analysed, the qualitative agreement between
the predictions and experimental data is good. The qualitative agreement, for
the average values of soil parameters, is also acceptable.
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Związki naprężenie-odkształcenie dla piasków suchych i nawodnionych

Część II: Predykcje

Streszczenie

W części II przedstawiono predykcje modelu przyrostowego dla ścieżek naprężenia
innych niż te stosowane przy kalibracji. Równania przyrostowe scałkowano dla ścieżek
naprężenia i odkształcenia odpowiadających następującym warunkom: anizotropowa
konsolidacja, warunki edometryczne, standardowa próba trójosiowa, sferyczne odcią-
żenie przy stałym dewiatorze oraz ścinanie nawodnionego gruntu w warunkach bez
odpływu wody z porów. Rozpatrzono reakcję gruntu w początkowym stanie dylatyw-
nym i kontraktywnym. Predykcje teoretyczne porównano z wynikami doświadczeń.
Wykazano dobrą zgodność tych predykcji z eksperymentem.
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