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This paper presents a study of damping of non-linear vibrations in a
one-degree-of freedom model of a mechanical system containing a fric-
tion damper. The vibrations of the system due to harmonic excitation
is considered on the assumption of uniformly varying frequency and a
constant amplitude of the exciting force. The simultaneous phenome-
non of structural friction (passive damping) has been considered as well.
The problem is considered on the assumption of a uniform unit pressure
distribution between contacting surfaces of the friction conic inner and
outer rings. The aim of the analysis is to asses the influence of angu-
lar acceleration, amplitude of the exciting force and the reduced mass
on resonance curves during the start-off. The equations of motion of
the examined system were solved by means of the Krylov-Bogolubov-
Mitropolski method and digital simulation.
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1. Introduction

The starting-off and braking phases are important moments in operation of
every machine. During these processes, transition through the dangerous re-
sonance zone can occur. The fundamental criterion in the design of friction
dampers (Figs. 1, 2) or their combinations, such as frictional-elastomer ones,
is to make them suitable for mechanical systems operating in dynamic con-
ditions. Therefore, the appropriate selection of geometric parameters and lo-
adings can serve as protection against going into dangerous resonances or it
can considerably reduce the resonance amplitude by making use of the na-
tural capacity of vibration damping in a given material. To determine such
dependencies, a mathematical model has to be created to approximate the
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real system. Traditional professional literature treats frictional torsion dam-
pers, frictional clutches and brakes as joints of rigid bodies. The microsliding
effect in the elastic range of the material of cooperating elements is called
the structural friction. This phenomenon is well known and referred to as the
structural hysteresis loop, see Gałkowski (1999), Giergiel (1990), Kaczmarek
(2003), Kosior (2005), Mostowicz-Szulewski and Nizioł (1992), Osiński (1998),
Sanitruk et al. (1997), Sextro (2002), Wang and Chen (1993). More advanced
models are developed based mainly on finite elements, see Grudziński and
Kostek (2005), Ostachowicz (1989), Zboiński and Ostachowicz (2001).

Fig. 1. Simplified model of a friction damper

The model of the friction damper adopted for analytical consideration
(Fig. 1) is composed of cooperating conical surfaces of friction pairs consisting
of inner and outer rings (Fig. 2). This type of friction dampers has been applied
in ring buffers and friction dampers used to dissipate energy. Contact defor-
mation, friction and damping of vibrations occurring in temporary fastenings
and permanent joints have essential influence on dynamical properties of ma-
chines and devices. Mathematical description of the phenomenon of structural
friction is not easy due to the complexity of the friction process and difficulties
in describing the state of stresses and deformations occurring in the joints of
elements. Therefore, the description is based on simplified assumptions and
fundamental mechanical laws that apply to the patterns of stress and defor-
mations arising in the process of bending, tension, compression, torsion, and
shearing, see Gałkowski (1999), Giergiel (1990), Grudziński and Kostek (2005),
Kosior (2005), Osiński (1998), Skup (1998), Zboiński and Ostachowicz (2001).
The following assumptions were made in order to analyse the friction dam-

per: the distribution of unit pressure between cooperating surfaces in the rings
contact joint is uniform and the friction coefficient of the contacting elements is
constant for any value of unit pressure. Friction forces on the contact surfaces
of cooperating elements are subject to the Coulomb law, and, consequently,
the frictional resistance is proportional to pressure. The material properties
are described by Hooke’s law; the friction (kinetic or static) that occurs is
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identical in the whole zone and depends on the state of load. Furthemore,
flat sections were assumed (cross-sections remain flat after deformation of the
elements). Apart from theoretical examination of the model shown in Fig. 2,
experimental tests were conducted on the real system (Fig. 1).

Fig. 2. Simplified model of the contact joint of the friction pair in a friction damper

The denotations used in Fig. 2 are: r – average radius of the conical surface
of the rings, rz, rw – external and internal radii of the conical surface of the
ring, β – angle of tilt of the conical surface, u – displacement, α – non-
dimensional parameter ranging from 0 to 1, P – axial load, p – unit pressure
per unit length, µ – friction coefficient.
Laboratory experiments on the test stand have shown that the rotational

speed can be described quite precisely by the relation: n(t) = γt2 (parameter
determined experimentally). Since the rotational speed is the square function
of time, the amplitude of the resisting force is constant. It is assumed that
the friction damper has been burdened with a load of constant value Ps as
well as a variable component P (t) in form of harmonic excitation by a force
having a constant amplitude P0 with uniformly varying angular velocity of
the excitation ω(t). Therefore, the overall load Pc takes the following form

Pc = Ps + P (t) P (t) = P0 sin θ

θ =
εt2

2
+ ξ ω(t) =

dθ

dt
= εt

(1.1)

where θ is the phase angle of excitation, ε – angular acceleration at the start-
off, ξ – phase shift angle, t – time.
The application of the Krylov-Bogolubov-Mitropolski asymptotic method,

as presented, for instance, in Mitropolskij (1964), Osiński (1979, 1998) and
Skup (1998) made it possible to eliminate the function sgn u̇, which is tro-
ublesome in numerical simulations.
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2. Equation of motion of the examined system

The model adopted for analytical considerations is a one-degree-of-freedom
mechanical system with a nonlinear hysteresis loop of a duplex triangle shape,
see the friction damper shown in Fig. 1.
The differential equation of motion of the examined system can be written

as follows

mü+ P (u, sgn u̇) = Pc (2.1)

where m is the reduced mass of the examined system, u – coordinate of displa-
cement of the reduced mass, P (u, sgn u̇) – force in a cycle represented by the
structural hysteresis loop (Fig. 3) dependent on the relative displacement u,
amplitude and sign of the velocity u̇.
In order to apply the asymptotic Krylov-Bogolubov-Mitropolski method,

it is necessary to transform the function P (u, sgn u̇). Thus, after some mani-
pulations, the function P (u, sgn u̇) takes the form

P (u, sgn u̇) = ku− νF
(

u,
du

dt

)

(2.2)

Therefore, differential equation of motion (2.1) assumes a form

mü+ ku = νF
(

u,
du

dt

)

+ Pc (2.3)

where k = P0/u is the stiffness of compression, ν – small non-dimensional
parameter.
The solution to non-linear differential equation (2.3), which describes mo-

tion of the examined system, is assumed in the first approximation as

u = A cos(θ + ξ) (2.4)

By incorporating the asymptotic method (see Mitropolski, 1964; Osiński,
1979), we can obtain a system of differential equations describing the ampli-
tude of the angular displacement A and the phase shift ξ as given below

dA

dt
= νA1(t, A, ξ)

dξ

dt
= ω0 − ω(t) + νB1(t, A, ξ) (2.5)

Therefore, the natural frequency ω0 of the system can described by the formula

ω0 =

√

k

m
(2.6)
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The first and second derivative of (2.4) takes the form

du

dt
= νA1 cos(θ + ξ)− ω0 sin(θ + ξ)−AνB1 sin(θ + ξ)

(2.7)
d2u

dt2
= ν
[

(ω0 − ω)
∂A1
∂ξ
− 2Aω0B1

]

cos(θ + ξ)−Aω20 cos(θ + ξ) +

−ν
[

(ω0 − ω)A
∂B1
∂ξ
+ 2A1ω0

]

sin(θ + ξ) +

+ν2 cos(θ + ξ)
[

A1
∂A1
∂A
+B1

∂A1
∂ξ
−AB21

]

+

−ν2 sin(θ + ξ)
[

2A1B1 +AA1
∂B1
∂A
+AB1

∂B1
∂ξ

]

+

+ν
[∂A1
∂t
cos(θ + ξ)−A

∂B1
∂t
sin(θ + ξ)

]

The displacements and deformations of the examined model are small and
therefore the solution to differential equation (2.3) is adopted for considera-
tions as the first approximation. Taking that into account, the expressions in
which the parameter ν appears in the second or a higher power can be neglec-
ted. It is necessary to add that, due to the state of equilibrium of the considered
system, the expressions at the secular terms cos(θ + ξ) and sin(θ + ξ) sho-
uld amount to zero (the mechanical system is stable then). In this case, the
value of the parameter ν is very small, thus it is neglected in final conside-
rations.

Finally, equation (2.7)2 takes the following form

d2u

dt2
= ν
[

(ω0 − ω)
∂A1
∂ξ
− 2Aω0B1

]

cos(θ + ξ)−Aω20 cos(θ + ξ) +

(2.8)

−ν
[

(ω0 − ω)A
∂B1
∂ξ
+ 2A1ω0

]

sin(θ + ξ)

Substituting formulas (2.4) and (2.8) to the left-hand side of equation (2.3),
we obtain

{

m
d2u

dt2
+ ku

}

u=A cos(θ+ξ)
= mν

[

(ω0 − ω)
∂A1
∂ξ
− 2Aω0B1

]

cos(θ + ξ) +

(2.9)

−mν
[

(ω0 − ω)A
∂B1
∂ξ
+ 2A1ω0

]

sin(θ + ξ)



470 Z. Skup

After averaging during one period of time of the main harmonic angle (θ+ ξ),
the right-hand side of equation (2.3) can be presented as follows

{

νF
(

u,
du

dt

)

+ P0 sin θ + Ps
}

u=A cos(θ+ξ)
=

=
ν cos(θ + ξ)

π

2π
∫

0

F (A cos(θ + ξ),−Aω0 sin(θ + ξ)) cos(θ + ξ) d(θ + ξ) +

(2.10)

+
ν sin(θ + ξ)

π

2π
∫

0

F (A cos(θ + ξ),−Aω0 sin(θ + ξ)) sin(θ + ξ) d(θ + ξ) +

+P0(cos ξ sin(θ + ξ)− sin ξ cos(θ + ξ))

Having compared the coefficients at identical powers ν and, relevantly, at
sines and cosines of the right-hand sides of equations (2.9) and (2.10), after
some transformations of the expressions for A1(t, A, ξ) and B1(t, A, ξ), we
obtain a system of equations from which the functions A1 and B1 can be
determined

A1(t, A, ξ) = −
1

2πmω0

2π
∫

0

F0(A,χ) sinχ dχ−
P0 cos ξ

νm[ω0 + ω(t)]

(2.11)

B1(t, A, ξ) = −
1

2πmω0A

2π
∫

0

F0(A,χ) cos χ dχ+
P0 sin ξ

νmA[ω0 + ω(t)]

where

F0(A,χ) = P (u, u̇) = F (A cos χ,−Aω0 sinχ) χ = θ + ξ (2.12)

Substituting formulae (2.11) into the system of equations (2.5) and rearranging
them, we obtain

dA

dt
= −

ν

2πmω0

2π
∫

0

F0(A,χ) sinχ dχ−
P0

m(ω0 + ω)
cos ξ

(2.13)

dξ

dt
= ω0 − ω(t)−

ν

2πmω0A

2π
∫

0

F0(A,χ) cos χ dχ+
P0

mA(ω0 + ω)
sin ξ

As in works by Mitropolski (1964) – formula 3.53, p. 91 and Osiński (1979) –
formulae 2.150, 2.151, p. 65, the equivalent frequency ω0eq(A) and equivalent
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damping coefficient of vibrations heq(A) were introduced into the system of
equations (2.13). Thus, this system takes the form

dA

dt
= −heq(A)A−

P0
m(ω0 + ω)

cos ξ

(2.14)
dξ

dt
= ω0eq(A)− ω(t) +

P0
mA(ω0 + ω)

sin ξ

where

heq(A) =
ν

2πmω0

2π
∫

0

F0(A,χ) sinχ dχ

(2.15)

ω0eq(A) = ω0 −
ν

2πmω0A

2π
∫

0

F0(A,χ) cos χ dχ

Because of the discontinuity of the function P (u, sgn u̇) at u̇ = 0, we confine
the analysis to one half-period of the vibrating motion (the motion between
four stops). Thus, the integration interval (0, 2π) will be divided into four
sub-intervals.

The influence of the elasticity and frictional parameters k1 and k2, which
equal tan ξ1 and tan ξ2 respectively, on the damping properties of the investi-
gated system is shown in Fig. 3.

Fig. 3. Hysteretic loop for the friction pair of the ring spring

The tests were conducted on the MTS testing machine at the Institute
of Machine Design Fundamentals at Warsaw University of Technology with
the use of the Test Ware SX software. The methodology of the experiment
consisted in loading the system up to the maximum value Pmax so that not
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to exceed the safe limit of the material elasticity. Next, the system was unlo-
aded down to the pre-assumed value Pmin and re-loaded again (Fig. 4). Before
the measurement began, both the extensometer and the control-measurement
system were subject to calibration. The method and the results of the investi-
gations are described in (Skup, 2007)

k1 = tan ξ1 =
P1
umax

k2 = tan ξ2 =
P2
umax

(2.16)

Fig. 4. Experimental hysteretic loop: loading force Pmax = 28kN, number of loading
and unloading cycles 4

Based on the graph in Fig. 3, P1 = P for α = 1, whereas P2 = α2P , the
maximum displacement umax for the final stage of the load α = 1 (see line
OA1 in Fig. 3) and non-dimensional parameter α2 can be determined on the
basis of the formulae derived by the author (Skup, 2007 – formulae 2.7, p. 365,
and 2.11, p. 367), therefore

umax =
2Pr

πEF

(c tan β − µ

tan β + µ

)

α2 =
(cot β − µ)(tanβ − µ)

(tan β + µ)(cot β + µ)
(2.17)

where E is Young’s modulus, F – area of cross-section of the rings.

• 1st stage of motion from 0 to π/2, P (u, sgn u̇) = k2u, u̇ < 0, u > 0

• 2nd stage of motion from π/2 to π, P (u, sgn u̇) = k1u, u̇ < 0, u < 0

• 3rd stage of motion from π to 3π/2, P (u, sgn u̇) = k2u, u̇ > 0, u < 0

• 4th stage of motion from 3π/2 to 2π, P (u, sgn u̇) = k1u, u̇ > 0, u > 0

After finding the integrals in system of equations (2.13) and having used
above conditions, we obtain
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2π
∫

0

F0(A,χ) sinχ dχ =

π/2
∫

0

k2u sinχ dχ+

π
∫

π/2

k1u sinχ dχ+

+

3π/2
∫

π

k2u sinχ dχ+

2π
∫

3π/2

k1u sinχ dχ = A(k2 − k1)

(2.18)
2π
∫

0

F0(A,χ) cos χ dχ =

π/2
∫

0

k2u cos χ dχ+

π
∫

π/2

k1u cosχ dχ+

+

3π/2
∫

π

k2u cosχ dχ+

2π
∫

3π/2

k1u cosχ dχ =
πA(k1 + k2)

2

Substituting (26) into (2.15)1 and (27) into (2.15)2, we obtain

heq(A) =
νA(k2 − k1)

2πmω0
ω0eq(A) = ω0 −

νπA(k1 + k2)

4πmω0A
(2.19)

Finally, the system of differential equations (2.14), if we make use of (2.19),
takes the following form

dA

dt
=
νA

2πmω0
(k1 − k2)−

P0 cos ξ

m(ω0 + ω)
(2.20)

dξ

dt
= ω0 − ω −

ν(k1 + k2)

4mω0
+
P0 sin ξ

mA(ω0 + ω)

Finally, in two basic differential equations (2.20) we have an expression
for the relative displacement amplitude A (vibration amplitude) as function
of the excitation frequency ω (the resonance curves for initial vibrations).
The influence of the angular acceleration, the exciting force amplitude and
reduced mass on the resonance curves during the start-off of the system has
been investigated.

3. Numerical investigations

Differential system of equations (2.20) has been solved by means of the Runge-
Kutta method of the fourth order with Gill’s modification (the program library
of PDP RT 11 company, Subroutine RKGS). In order to compare the numerical
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results, the Mathematica 4.1 software has been used to work out a comparing
program in Borland C++ environment.

The results obtained from computer simulations concerning the non-
stationary (transient) state of forced vibrations in the friction damper are
shown in Figs. 5, 6, 7. Numerical calculations carried out for the above formu-
lae incorporated the basic geometrical parameters and material properties of
the examined friction damper given in Table 1.

Table 1. Data for numerical calculations

No. Parameter [unit] Value

1 Loading force P1 = P [N] 28000

2 Non-dimensional parameter α1 1

3 Non-dimensional parameter α2 for β = 12
◦ 0.0280476

4 Non-dimensional parameter α2 for β = 14
◦ 0.0993034

5 Non-dimensional parameter α2 for β = 16
◦ 0.1588123

6 Non-dimensional parameter α2 for β = 18
◦ 0.208914

7 Young’s modulus E [N/mm2] 2.1 · 105

8 Friction coefficient µ 0.20

9 Angle of tilt of cones β [◦] 12, 14, 16, 18

10 External radius of ring rz [mm] 38.5

11 Internal radius of ring rw [mm] 31.5

12 Average radius of conical surface of ring r [mm] 37.25

13 Cross-sectional area of rings F [mm2] 132.94

14 Reduced mass m [kg] 0.443

The basic values of quantities describing the initial, non-stationary state
of the system are included in Table 2.

Table 2. Results of numerical calculations

Angle Force Force Displacement
β [◦] P1 [N] P2 [N] umax [mm]

12 28000 785.33 0.260

14 28000 2780.50 0.202

16 28000 4446.74 0.161

18 28000 5849.59 0.130

In technical cases of starting-off or braking conditions mechanical systems,
the frequency of the force which excites system vibration permanently chan-
ges. Transition through the resonance zone may appear in such circumstances
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(Fig. 5-7). During the initial stage, resonance curves in the pre-resonance (sub-
resonant) and, especially, post-resonance (super-resonant) period may differ
considerably. The resonance curves show that during the starting-off stage of
the mechanical system, the post-resonance amplitudes are lower than the pre-
resonance ones and they have an oscillating character. The graphs indicate
that when the value of angular acceleration ε and the amplitude of excitation
force P0 increase, the resonance amplitudes move towards greater values of the
excitation frequencies. In Fig. 5, we can see a relation of the vibration ampli-
tude A versus excitation frequency ω for different angular accelerations. The
resonant amplitudes decrease with the increase of the angular acceleration ε.
We can also observe the beating phenomenon before and after the resonance.
Shifting of the resonances towards higher frequencies is brought about by the
retardation effect (as mentioned in the previous section). The observed shift
for increasing values of ε results from the retardation effect of the region of
maximum amplitudes with respect to the natural frequency (see Fig. 5). It is
the known effect of transitory resonance, also observed in linear systems.

Fig. 5. Graphs of resonant curves for different values of the angular acceleration ε

The analysis of graphs presented in Fig. 6 indicates that greater values
of P0 imply higher levels of vibration amplitudes and a slight shift of the
resonant frequencies toward smaller frequencies. In the case of a deterministic
excitation, the existence of resonance curves corresponding to decaying super-
resonant vibration confirms the peculiarity of the resonant transition.

The influence of the reduced mass m on the resonance vibration ampli-
tude A in function of the excitation frequency ω is essential and is shown in
Fig. 7. The increasing value of the reduced mass leads to a smaller value of the
main vibration resonance amplitude as well as dislocation of the amplitude
towards smaller values of the excitation frequency (Fig. 7).
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Fig. 6. Graphs of resonant curves for different excitation amplitudes P0

Fig. 7. Graphs of resonant curves for different values of the reduced mass m

4. Concluding remarks

Structural friction between the contacting surfaces of internal and external
rings of the examined damper increases the damping of vibrations in the exa-
mined system. The damping effect is the greatest for an appropriate value of
the friction force because the zone of the relative slip between the internal and
external rings of the friction damper is the largest. The efficiency of vibration
damping by means of the friction damper is greatly influenced by the following
factors: exciting force, friction force (unit pressure, friction coefficient), angu-
lar acceleration, stiffness of the internal and external rings, reduced mass. The
effects of structural friction can be employed to enrich the design methods of
dynamical systems.

On the basis of the obtained results, it has been found that all resonance
curves always start from a non-zero resonance amplitude and tend asympto-
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tically to zero in the post-resonance range. The simulations also confirmed a
certain peculiarity when the system passes through the resonance. The pe-
culiarity, indicated in works by Mitropolskij (1964), Osiński (1998) and Skup
(1998), has form of a decaying ”beating” phenomenon. It vanishes after some
time, and the amplitude rests on a level that is usually smaller than that in
the sub-resonant zone.
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Analiza tłumienia drgań poprzez tłumik cierny

Streszczenie

W pracy przedstawiono badania tłumienia drgań nieliniowych układu mechanicz-
nego o jednym stopniu swobody zawierającego amortyzator cierny. Rozważany jest
rozruch układu przy wymuszeniu harmonicznym z jednostajnie zmienną częstością
o stałej amplitudzie siły wymuszającej. Uwzględniono tłumienie drgań, wykorzystu-
jąc zjawisko tarcia konstrukcyjnego (tłumienie pasywne). Zagadnienie rozpatrywane
jest przy założeniu równomiernego rozkładu nacisków jednostkowych występujących
pomiędzy współpracującymi stożkowymi powierzchniami ciernymi pierścieni tłumika.
Zbadano wpływ przyspieszenia kątowego, amplitudy siły wymuszającej drgania oraz
masy zredukowanej na krzywe rezonansowe drgań rozruchowych. Równania ruchu
badanego układu mechanicznego rozwiązano wykorzystując asymptotyczną metodę
Kryłowa-Bogolubowa-Mitropolskiego i metodę symulacji cyfrowej.
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