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Based on the derived transition period and reliability drop, this paper
proposes a method of piecewise combination of the reliability-dependent
hazard rate function named (eocp) model to describe the dynamical re-
liability in a two-stage fatigue loading process. First, the parameters eo,
c, p are fitted through simulated failure data under various constant-
amplitude cyclic stresses. The reliability of the high-low loading process
is described piecewise with the corresponding values of (eo, c, p) for each
respective stress level, and maintains Ra in the transition period while
Ra denotes the reliability at which the stress level changes. The reliabi-
lity of the low-high process is determined by subtracting the portion of
reliability drop at Ra from the piecewise fitted curves. The proposed re-
liability behavior is verified successfully. The linear damage sum is found
to be larger than unity for the high-low loading, and on the contrary for
the low-high cases. A larger difference between the stress level changed
results in larger deviation of damage sum from unity, especially when
Ra near 0.9.

Key words: fatigue loading adjustment, hazard rate function, dynamical
reliability, Monte Carlo simulation, linear damage sum

1. Introduction

The dynamical reliability of composite laminates when subjected to fatigue
loading adjustment is a fundamental issue in evaluating these materials for
practical applications. Several researchers (Broutman and Sahu, 1972; Yang
and Jones, 1980, 1981, 1983; Gamstedt and Sjögren, 2002; Found and Quare-
simin, 2003) have reported that when composites are no longer able to sustain
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the fatigue load, Miner’s damage sum will be larger than unity in the high-low
sequence and smaller than unity in the low-high sequence. In contrast, others
(Han and Hamdi, 1983; Hwang and Han, 1986) have reached the opposite
conclusion for other types of constituent materials. Regardless, little attention
has been focused on an explanation of the load sequence effect based on the
dynamical reliability of composites under varied stress-level fatigue situations.

As for the dynamical reliability of materials subjected to two-stage cyclic
stresses, only limited research has been done successfully in this area. This is
mainly because the sample size of most two-stage fatigue tests is too small to
verify statistical analysis accurately. Tanaka et al. (1984) used the B-model to
analyze the probability distribution of fatigue life of a large size of nickel-silver
samples. However, it is difficult to apply this model to predict the behavior
in a two-stage loading process when only results of a single-stage fatigue test
are available. After the development of several hazard rate models as reviewed
by Wang (2011), a two-parameter reliability-dependent hazard rate function
h(R) = eo+c(1−R) is used to deal with the dynamical reliability of a material
concerning fatigue loading adjustment (Wang et al., 1997). When the stress
level of fatigue loading is adjusted, the hazard rate right before the adjust-
ment becomes the intrinsic weakness at the beginning of the following stage
loading. This relation has been verified by the data given by Tanaka et al.
(1984). Later, Ni and Zhang (2000) presented a two-stage fatigue reliability
method based on two-dimensional probabilistic Miner’s rule. The results are
also verified by the data of Tanaka et al. (1984), but the application of this
method is restricted by some assumptions. The composites are inhomogene-
ous and anisotropic materials, and more complicated in the fatigue behavior
and failure mechanisms than those of homogeneous and isotropic metallic ma-
terials. The above methods have not proven to be valid for composites yet.
Wang et al. (2002) modified the above two-parameter hazard rate relation to
a three-parameter form of h(R) = eo + c(1−R)

p, the so-called (eocp) model,
to depict the dynamical reliability of several types of engineering components
and devices. This model has been verified to describe the dynamical reliability
of composite laminates under simulated single-stage fatigue loading with good
results (Chen et al., 2009). In the region of high cycle fatigue of composites,
it is found that eo and p can be considered as a fixed value; c can be a power
function of the stress level.

Recently, Chen and Wang (2011) defined two parameters, the transition
period n2a and reliability drop |∆R| (see Appendix), respectively, to describe
the effect of high-low and low-high fatigue loading adjustment on the reliability
degradation of composite materials. Figure 1 shows a typical expression of the
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reliability degradation of composite laminates under two-stage fatigue loading
processes. Denote the reliability at the instant of loading adjustment by Ra.
In the high stress section of both the high-low and low-high loading processes,
the strength of composite laminates degrades at a relatively higher speed than
that under a low level stress. Consequently, the higher rate of fatigue failure
causes the reliability to degrade relatively steeply. At the instant the stress is
adjusted from high to low level, the residual strength of the survivals becomes
larger than the low-level maximum cyclic stress. During a period of n2a, named
the transition period, no failure occurs until the minimum residual strength
degrades to the low-level maximum cyclic stress. Thus, the reliability remains
unchanged in n2a. Analogously, at the instant of low-high adjustment, those
specimens with a residual strength with magnitude between the two levels fail
right away and the reliability drops sharply by |∆R|.

Fig. 1. Typical expression of reliability degradation of composites under two-stage
loading

The purpose of this paper is to extend the application of the (eocp) model
for single-stage fatigue loading to two-stage cases, using a piecewise combina-
tion with n2a or |∆R| to describe the whole picture of dynamical reliability.
The reliability in the high-low loading process can be divided into three sec-
tions: a high stress section, a transition period, and a low stress section. A
modification equation of the parameter c for the low stress section of the
high-low loading is proposed to get better fitting of the model with the fatigue
failure data. In the low-high case, it initially follows the behavior of low-level
stress situation until the stress adjusting, then with a simultaneous drop |∆R|,
it degrades as the case at high-level stress afterwards. Miner’s rule provides
a simple way to predict the fatigue life of materials under a staged fatigue
loading; nevertheless, it does not address the effect of the load sequence on
the fatigue life of the composite. Here, based on the dynamical reliability, we
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present a way to estimate the linear damage sum in large populations of com-
posites under various two-stage fatigue loading processes. The present study is
the first to describe accurately the dynamical reliability of composites under a
two-stage fatigue loading and explains the effect of stress level, instant of ad-
justment and load sequence on the linear damage sum of composite materials.

2. Piecewise hazard rate function and linear damage sum

2.1. (eocp) Model

By definition, the hazard rate h(t) is related to the reliability R(t) as
follows

h(t) = −
1

R(t)

dR

dt
(2.1)

In a deteriorating system, the reliability R(t) degrades monotonically with
time t, thus R corresponds to t in a one-to-one relationship. This leads the
time-dependent hazard rate function h(t) to be expressed in terms of reliability
R as h(R). Wang et al. (2002) proposed a reliability-dependent hazard rate
function, named the (eocp) model, in the form of

h(R) = eo + c(1−R)
p eo > 0, c > 0, p > 0 (2.2)

where eo is defined as the imbedded decay factor which takes account of the
intrinsic defects during the manufacturing of the mechanical elements. The pa-
rameter c represents the process-dependent decay factor which is concerned
with the rate of damage accumulation of materials under loading. A larger va-
lue of c represents a larger hazard rate resulting from the higher fatigue stress
level or other types of heavier mechanical loading. The parameter p denotes
the beginning of noticeable degradation in reliability, referring to the memory
characteristic of the damage. Assume the static strength of composite mate-
rials to have a two-parameter Weibull distribution, as in the widely accepted
cases. When the composites are subjected to a constant-amplitude maximum
cyclic stress S at a certain stress ratio and a certain frequency, the correspon-
ding values of (eo, c, p) can be obtained by fitting Eq. (2.2) with the fatigue
failure data. It is found that in the region of high cycle fatigue of composites
that eo and p can be taken to have a fixed value while c is correlated as a
power relation for the ratio S/β as follows (Chen et al., 2009)

c = ε
(S

β

)λ

(2.3)
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where β is the scale parameter of the Wiebull static strength distribution;
ε and λ are related to the initial material characteristics.

To express the reliability of a composite under constant-amplitude cyc-
lic stress as a function of fatigue cycles n, R(n), the mean cycles to failure
(MCTF) of composite specimens can be calculated by integrating R(n)

N =

∞
∫

0

R(n) dn (2.4)

Replacing t with n and substituting Eq. (2.1) into Eq. (2.4) allows N to be

N = −

0
∫

1

1

h
dR = −

0
∫

1

1

eo + c(1−R)p
dR (2.5)

Let 1−R = F , −dR = dF . It leads the above integration to be

N =

1
∫

0

1

eo + cF p
dF =

1

eo

1
∫

0

1

1 + c
eo
F p
dF =

1

eo

1
∫

0

∞
∑

k=0

( c

eo
F p
)k

dF

=
1

eo

∞
∑

k=0

1
∫

0

( c

eo

)k

F pk dF =
1

eo

∞
∑

k=0

( c

eo

)k 1

pk + 1
+ Ci

(2.6)

where Ci is the constant of integration. To save the work of integrating the
above equation, an approximated equation of fatigue life (Shih, 2000) is pro-
posed in terms of c/eo as

cµ = ρ1
( c

eo

)υ1
+ ρ2
( c

eo

)υ2
(2.7)

where µ is the approximated mean fatigue life of the composite under the
maximum cyclic stress S; the other parameters ρ1, ρ2, υ1 and υ2 are given in
tables.

2.2. Modification of parameter c in high-low loading

Consider a two-stage fatigue loading process in composite materials, where
S1 represents the first stage maximum cyclic stress, and S2 the second stage.
Let the reliability at the instant of load adjusting be Ra. Denote eo, c1, p
as the parameters fitted in the (eocp) model for S1, and eo, c2, p for S2.
Thus the variation of the hazard rate under various stress levels can be mainly
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determined by the ratio S/β which appears in the representation of c, as
shown in Eq. (2.3).
In the high stress section of the high-low loading process, the residual

strength of the survivals will degrade at the same rate as in a single-stage
loading process at high-level stress, in other words, the same as the reliability
does. In this section, the process-dependent decay factor c1 is decided by
the high-level stress S1. Right after the high-low adjustment, the reliability
remains at Ra during the transition period n2a. After the transition period,
c2 is basically decided by the low-level stress S2. However, the survivals after
the high-stress section and the transition period should have experienced more
cumulative damage than those specimens under a single-stage loading at low-
level stress. Thus the residual strength will degrade further after the transition
period. As a matter of fact, c2 is replaced by c

′

2 as in

c′2 = η(n2a, S1, S2)c2 (2.8)

where c2 is given for a single-stage loading at low-level stress S2, η is a
function of S1, S2 and n2a for modifying c2 in the low stress section of a high-
-low loading process. The modification for c2 indicates the hidden degradation
which exists in composites under the load S2 in the free-failure period n2a.
Thus, η should be larger than unity; a longer n2a implies a larger η. It can be
seen in Eqs. (A.1)-(A.4), for certain composite laminates with specific values
of α, β, K, b, ω, d and αf , n2a is a function of S1, S2 and Ra. For fixed values
of S1 and S2, n2a increases monotonically with the decreasing Ra, thus c

′

2

can be further reduced to
c′2 = η(Ra)c2 (2.9)

To obtain a better fit for the low stress section of a high-low loading process,
η(Ra) is proposed to modify c2 as in

η(Ra) = 1 + ζ
(1−Ra
Ra

)γ

(2.10)

where ζ and γ are related to the material characteristics of composites.

2.3. Piecewise combination of hazard rate function

For the low-high situation, the reliability in the first section (R ­ Ra) is
described by the hazard rate with (eo, p, c1) under low-level stress conditions.
The moment the stress level is increased from S1 to S2, failure occurs right
away in those survival specimens of which the residual strengths are between
S1 and S2 in magnitude. Thus, the reliability instantly drops by |∆R| (see Eqs.
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(A.5)-(A.7)). The remaining specimens after the reliability drop are considered
to have experienced nearly the cumulative damage as those specimens having
experienced a single-stage process at high-level stress. Thus, the reliability
after the reliability drop follows the hazard rate as described by (eo, p, c2) for
a single-stage under high-level stress. Thus, the hazard rate in the first stage
is

h1 = eo + c1(1−R)
p 1 > R > Ra (2.11)

and in the second stage it is

h2 = eo + c2(1−R)
p R < Ra (2.12)

where the values of c1 and c2 are basically decided by Eq. (2.3). The para-
meter c2 needs modification as expressed in Eqs. (2.9) and (2.10) to obtain
a better fitting in the low stress section of the high-low loading process. Now
express the hazard rate in the whole range with a unit step function as

h(R) = h1u(R −Ra) + h2[u(R)− u(R −Ra)] (2.13)

where u(R) and u(R−Ra) are defined as

u(R) =

{

0 for R < 0

1 for R ­ 0
u(R−Ra) =

{

0 for R < Ra

1 for R ­ Ra
(2.14)

2.4. Mean fatigue cycle and linear damage sum

(a) For the high-low loading process, S1 > S2. As can be seen in Fig. 1,
the mean fatigue cycle for the process includes three parts: for the high stress
section

n1,HL =

n1,HL
∫

0

R(n) dn (2.15)

where n1,HL is the number of applied cycles in the first stage of the high-low
loading process; for the transition period

n2a,HL = Ran2a (2.16)

The mean fatigue cycle of low-level stress loading after the transition period
is

n2b,HL =

∞
∫

n1,HL+n2a

R(n) dn (2.17)
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The total mean fatigue cycles of the complete process becomes n1,HL +
+n2a,HL + n2b,HL.

(b) For the low-high loading process, S1 < S2. As shown in Fig. 1, the
mean fatigue cycle of the process includes two parts. The mean fatigue cycles
of the first part is

n1,LH =

n1,LH
∫

0

R(n) dn (2.18)

where n1,LH is the number of applied cycles in the first stage of the low-
-high loading process. Right after the low-high adjustment, the reliability drops
by |∆R|. In the second part we have

n2,LH =

∞
∫

n1,LH

R′(n) dn (2.19)

where R′(n) is the part of R(n) in the range of (Ra − |∆R|, 0). The total
mean fatigue cycles of the low-high loading process is n1,LH + n2,LH .

(c) For composites in a two-stage fatigue loading process, the linear damage
sum is

Dm =
n1

N1
+
n2

N2
(2.20)

where n1 and n2 are the mean fatigue cycles for the periods under the stress
levels S1 and S2, respectively; N1 and N2 are the corresponding mean cyc-
les to failure. Substituting Eqs. (2.15)-(2.17) into Eq. (2.20) yields the linear
damage sum for the high-low loading process

DHL =
n1,HL

N1
+
n2b,HL

N2
+
n2a,HL

N2
(2.21)

According to Miner’s rule, the sum of the first two terms becomes unity; the
third term yields the total sum that is larger than unity. Similarly, the linear
damage sum for the low-high loading process is

DLH =
n1,LH

N1
+
n2,LH

N2
(2.22)

where n2,LH , Eq. (2.19), is smaller than the integral
∫

∞

n1,LH
R(n) dn due to

the existence of a drop in the reliability. Thus, Miner’s damage sum for this
case is smaller than unity.
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3. Curve fitting with failure data in simulation

Based on the residual strength equations by Yang and Jones (1980, 1981,
1983), this study uses MATLAB package to carry out Monte Carlo simula-
tions of the residual strength degradation and fatigue failure for ISO standard
[±45]S glass/epoxy laminates under single-stage and two-stage loading. There
are 16 loading cases as shown in Table 1.

Table 1. Cases of Monte Carlo fatigue loading simulation for G1/Ep[±45]S
laminate

Case Constant- Case High-to-low Case Low-to-high
No. -amplitude S No. S1 S2 No. S1 S2

1 75.5 7 75.5 56.6 12 56.6 75.5

2 70.8 8 70.8 56.6 13 56.6 70.8

3 66.6 9 66.6 56.6 14 56.6 66.6

4 62.9 10 62.9 56.6 15 56.6 62.9

5 59.6 11 59.6 56.6 16 56.6 59.6

6 56.6

units: MPa

The stress ratio of cyclic loading is set to be 0.1 for various stress levels.
The loading frequency is assumed to be proportional to 1/S2 so that over-
heating of the specimens is avoided. The associated parameters used in the
simulations are α = 59.8, β = 113.26, K = 1.2E-25, b = 11.1806, ω = 4.9633
and r = 12.9238 (Philippidis and Passipoularidis, 2007). The values of para-
meters (eo, c, p) for a single-stage fatigue loading under S = 75.5, 56.6, 45.3
and 37.8MPa (i.e., the ratios β/S = 1.5, 2.0, 2.5 and 3.0), respectively, are ob-
tained in Chen et al. (2009). The specific parameter values are eo = 1E-12 and
p = 0.84. Also, the parameters in Eq. (2.3) are ε = 0.079246 and λ = 11.378.
Since the range of the maximum cyclic stress S = 75.5-56.6MPa considered in
this paper is within the range S = 75.5-37.8 MPa considered in the previous
paper of the authors, thus the values of eo, p, ε and λ are the same as above.
The simulation procedure of strength degradation and reliability decay in each
two-stage fatigue loading case is:

(1) Generate randomly a total of 104 samples with the static strengths ha-
ving a two-parameter Weibull distribution.

(2) Compare each sample strength with the maximum cyclic stress S. The
specimens with strength > S are deemed as survivals, and the others as
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failures. The value of S is fixed in each stage loading process. The value
of S is adjusted at the specified loading cycles (or specified reliability).

(3) Calculate the reliability and hazard rate of composite versus the number
loading cycles according to the associated definition in engineering.

(4) Calculate the residual strength XS(n) of the survivals individually by
Eq. (A.4) after each time of simulation with specified additional loading
cycles. Repeat the steps (2)-(4) until all specimens fail.

4. Results and discussion

It can be seen in Fig. 2 that the fitted curves of the (eocp) model correspond
to the simulated data for stress at 75.5, 70.8, 66.6, 62.9, 59.6 and 56.6MPa,
respectively. The fitted values of (eo, c, p) and MCTF under these stress levels
are summarized in Table 2. e0 and p remain unchanged and c increases with
decreasing β/S.

Fig. 2. Curve fitting of the (eocp) model for simulated fatigue data for G1/Ep[±45]S
laminate under various constant-amplitude maximum cyclic stresses S

Figure 3 shows that the comparison between the predicted mean fatigue
cycles in the transition period n2a,HL and the simulated data under various
high-low loading conditions is satisfactory. As shown in Eq. (A.1), for fixed
values of S2 and Ra, the larger S1 the larger value of n2a. For fixed values
of S1 and S2, n2a increases monotonically with the decrease of Ra to a finite
value. Thus, as shown in Fig. 3, n2a,HL, the product of n2a and Ra, increases
steeply at the beginning, and quickly approaches a peak near Ra = 0.9, then
decreases gradually afterwards.
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Table 2. Fitted eo, p, c and mean cycles to failure for G1/Ep[±45]S laminates
under various stress conditions

S
β/S eo p c

N by (2.4)
[MPa] [cycle]

75.5 1.5 1E-12 0.84 7.90E-4 7742

70.8 1.6 1E-12 0.84 3.78E-4 15984

66.6 1.7 1E-12 0.84 1.88E-4 31896

62.9 1.8 1E-12 0.84 9.83E-5 60797

59.6 1.9 1E-12 0.84 5.33E-5 1.1029E+5

56.6 2.0 1E-12 0.84 2.94E-5 1.9627E+5

Fig. 3. Comparison between the predicted mean fatigue cycle in the transition
period and the simulation data under various high-low fatigue loading adjustments

Figure 4 shows that the typical piecewise fitting of the (eocp) model for
the simulated data for the hazard rate versus reliability in a high-low process,
adjusted from S1 = 66.6MPa to S2 = 56.6MPa at Ra = 0.5 is satisfactory.
It is evident that the hazard rate rises at a relatively higher rate in the high
stress section and drops suddenly to zero at the instant of high-low adjustment,
Ra = 0.5. After the transition period, the reliability degrades from 0.5 and
hazard rate continues to increase from a value lesser than that right before
Ra = 0.5. The slop of the hazard rate appears lesser in the low stress section
than in the high stress section.

Figure 5 depicts the step-by-step piecewise fitting of the reliability for the
corresponding conditions in Fig. 4. Figure 5a shows the fitted curves under
single-stage S = 66.6MPa, where the shaded area represents the mean fatigue
cycles n1,HL in 1 ­ R > 0.5. Figure 5b shows the fitted result under single-
stage S = 56.6MPa, where the shaded area indicates the mean fatigue cycles



242 C.-L. Chen, K.-S. Wang

Fig. 4. Typical piecewise fitting of the (eocp) hazard rate model for simulated
fatigue data for G1/Ep[±45]S laminate under high-low loading conditions, from

S1 = 66.6MPa to S2 = 56.6MPa at Ra = 0.5

Fig. 5. Typical piecewise fitting of the (eocp) model for high-low simulation data for
G1/Ep[±45]S: (a) under S = 66.6; (b) under S = 56.6; (c) adjusted from
S1 = 66.6MPa to S2 = 56.6MPa at Ra = 0.5, with c2 = 2.94E-5

n2b,HL in 0.5 > R ­ 0. Figure 5c shows the over-all picture for the high-low
loading process including the transition period. The fitted reliability curves
agree with simulation data except for the tail of the low stress section, say
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0.2 > R. Obviously, there is an increase of mean fatigue cycles in the transition
period, i.e. n2a,HL, but a decrease in the low stress section. The fitted curve
of reliability is little higher than data in the tail part, thus it needs an additive
modification in the parameter c2 for better fitting.

Figure 6 presents the degradation of the mean residual strength of survivals
in the high-low loading process, by Eq. (A.4), over the reliability. It can be seen
that the mean residual strength in the high-stress section (R > 0.5) complies
with that in the single-stage process with S = 66.6MPa. The zoom-out view
around the adjustment shows that the mean residual strength is smaller in
the low stress section than that in the single-stage process at low-level stress
S = 56.6MPa. Thus, a modification of cumulative nature is needed as the
loading process is adjusted from high-level to low-level stress.

Fig. 6. Variation in the mean residual strength of survivals over the reliability for
composites under constant-amplitude cyclic stresses and the high-low loading

process shown in Fig. 4

Figure 7 depicts the even better piecewise fitting for the same case as in
Fig. 5. It results from the increasing modification of c2 in Eq. (2.10) with
ζ = 0.167 and γ = 2, which are obtained by fitting the simulated fatigue
failure data for every Ra, 10% apart, in 0.9 ­ Ra ­ 0.1. The increase of mean
fatigue cycles in the transition period appears larger than the decrease in the
low stress section. The damage sum DHL calculated by Eq. (2.18) is 1.031.

Figure 8 shows the typical piecewise fitting of the (eocp) hazard rate func-
tion as given by Eqs. (2.11) and (2.12), for the low-high simulation data,
adjusted from S1 = 56.6MPa to S2 = 66.6MPa at Ra = 0.5. As shown in
this figure, except for the abrupt rise at the instant of low-high adjustment,
the piecewise fittings are satisfied. It is obvious that the hazard rate is higher
in the section of S2 = 66.6MPa than that in the section of S1 = 56.6MPa.
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Fig. 7. Piece-wise fitting of the (eocp) model for high-low simulated data for
G1/Ep[±45]S, from S1 = 66.6MPa to S2 = 56.6MPa at Ra = 0.5, with c

′

2
= 3.5E-5

Fig. 8. Typical piecewise curve fitting the (eocp) hazard rate function for simulated
fatigue data for G1/Ep[±45]S laminate under low-high loading adjustment, from

S1 = 56.6MPa to S2 = 66.6MPa at Ra = 0.5

Figure 9 displays the piecewise representation of the reliability for
the corresponding conditions in Fig. 8. Figure 9a shows the fitting under
S1 = 56.6MPa. The shaded area indicates the mean fatigue cycles n1,LH
for 1 ­ R > 0.5. Figure 9b shows the fitting under S2 = 66.6MPa, where the
shaded area indicates the mean fatigue cycles n2,LH for R < (0.5 − |∆R|).
The area under the fitted curve from R = 0.5 to (0.5 − |∆R|) denotes the
decrease of the mean fatigue cycles at the low-high loading adjustment. As
shown in Fig. 9c, the comparison between the piecewise fitted curves and the
simulation data is satisfactory. The damage sum DLH calculated by Eq. (2.22)
is 0.975.
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Fig. 9. Typical piecewise fitting of the (eocp) model for low-high simulation data for
G1/Ep[±45]S laminate: (a) under S = 56.6MPa; (b) under S = 66.6MPa;

(c) adjusted from S1 = 6.6MPa to S2 = 66.6MPa at Ra = 0.5

Figure 10 depicts the variation in the damage sums when all composite
specimens fail under two-stage fatigue loading with various values of Ra. As
shown in Fig. 10a, the damage sum DHL obtained from Eq. (2.21) is gre-
ater than unity under high-low fatigue loading. This value approaches a peak
when Ra is near 0.9. With S2 = 56.6MPa, the larger S1 the larger DHL. As
commented on Fig. 7, the positive deviation from unity is mainly due to the
term n2a,HL/N2 in Eq. (2.21). Hence, the trend of variation of DHL over Ra
complies with that of n2a,HL, as shown in Fig. 3. It can be seen in Fig. 10b
that DLH is smaller than unity for composites experiencing the low-high fa-
tigue loading process. As commented on Fig. 9b, the negative deviation from
unity results from the decrease in the mean fatigue cycles from R = Ra to
(Ra−|∆R|). This deviation decreases to the lowest level when Ra around 0.9.
With S1 = 56.6MPa, a larger S2 leads to a smaller DLH .

This paper presents an easy method to describe accurately the overall dy-
namical reliability of composites under two-stage fatigue loading processes by
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Fig. 10. Variation in the linear damage sum from the (eocp) model for simulation
data over the reliability at loading adjustment for: (a) high-low cases;

(b) low-high cases

a simple method of piecewise combination of the (eocp) model. The derivation
of the transition period and reliability drop is a pioneer research concerning
the effect of fatigue loading adjustment on the dynamical reliability and linear
damage sum of composites. The transition period can also be applied in the
stress screening of newly developed products of composite materials. The po-
sitive and negative deviation of the linear damage sum from unity in high-low
and low-high loading, respectively, corresponds with the results of most previo-
us researches of the load sequence effect (Broutman and Sahu, 1972; Yang and
Jones, 1980, 1981, 1983; Gamstedt and Sjögren, 2002; Found and Quaresimin,
2003). Furthermore, this paper shows how and how much the stress level and
instant of adjustment affect the linear damage sum of composites. The above
results can be helpful for the designing and maintenance of the structure of
composite materials.

5. Conclusions

Based on the (eocp) model for finding the hazard rate, the fitted reliabilities for
a single-stage loading process are successfully extended to cases of two-stage
loading in combination with the predicted transition period or reliability drop.
A better fit can be obtained for the process-dependent decay factor c2 when
c′2 is replaced with a modification for the second stage, especially for a high-low
fatigue process. Although the failure does not occur during n2a, the imbedded
strength degradation still continues.
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As all specimens fail, the linear damage sum is observed to be larger than
unity in the high-low loading process, and smaller than unity in the low-high
cases. The sums always rise to a peak near Ra = 0.9 for high-low cases, and
fall to a low value for low-high cases. With a fixed low-level maximum cyclic
stress, the deviation of the fatigue damage sum from unity becomes larger as
the high-level stress increases.

Appendix

The transition period at the high-low fatigue loading adjustment is expressed
as

n2a =
(Sω1 − S

ω
2 )
[

Sr2 − β
r(− lnRa)

r
α

]

βrKSb2

[

Sω2 − β
ω(− lnRa)

ω
α

] (A.1)

where α and β are the shape parameter and scale parameter of the Weibull
static strength distribution of composites. K and b are the parameters in the
S-N curve equation, KSbN∗ = 1, where N∗ is the characteristic fatigue life
associated with S. r = α/αf is the ratio of α to the shape parameter αf
of the distribution function of the fatigue life N (Yang and Jones,1980, 1981,
1983)

P [N ¬ n] =











1− exp
{

−
[ n

N∗
+
(S

β

)r]αf}

for n ­ 0

0 for n < 0

(A.2)

ω is the degradation rate parameter in the residual strength equation

XωS (n) = X
ω(0) −

Xω(0) − Sω

Xr(0) − Sr
βrKSbn (A.3)

where X(0) is the random static strength, and XS(n) is the random residual
strength after n cycles under S. For a two-stage fatigue loading process, the
equation of residual strength is

XωS1+S2(n1 + n2) = X
ω(0)−

Xω(0) − Sω1
Xr(0) − Sr1

βrKSb1n1 −
Xω(0)− Sω2
Xr(0)− Sr2

βrKSb2n2

(A.4)
where XS1+S2(n1 + n2) is the random residual strength after n1 cycles un-
der S1 plus n2 cycles under S2.
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The reliability drop at the low-high fatigue loading adjustment is

|∆R| = exp
[

−
(x1
β

)α]

− exp
[

−
(x2
β

)α]

(A.5)

where x1 is the static strength of the specimens the residual strength of which
degrades to S1 at n1,LH cycles under S1; and x2 the static strength of the
specimens the residual strength of which degrades to S2 at n1,LH cycles un-
der S1. The static strength x1 is in the form

x1 = (n1,LHβ
rKSb1 + S

r
1)
1

r (A.6)

and x2 can be obtained by solving the following equation numerically

xr+ω2 − Sω2 x
r
2 − (S

r
1 +Kβ

rSb1n1,LH)x
ω
2 + S

ω
2 S
r
1 +Kβ

rSω+b1 n1,LH = 0 (A.7)
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Konstrukcja funkcji ryzyka uszkodzeń kawałkami zależnej od

niezawodności dla kompozytów poddanych różnym scenariuszom

obciążenia zmęczeniowego

Streszczenie

W oparciu o wyznaczony okres przejściowy i spadek niezawodności, artykuł pre-
zentuje metodę określania funkcji ryzyka uszkodzenia kawałkami zależnej od poziomu
niezawodności, zwanej (eocp) i służącej do modelowania dynamicznej niezawodności
dla dwustanowych procesów obciążania zmęczeniowego. Na poczatku, parametry eo,
c, i p dopasowano do danych otrzymanych w drodze symulacji uszkodzeń pod wpły-
wem działania cyklicznych naprężeń o kilku stałych amplitudach. Niezawodność dla
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obciążeń przechodzących od dużej amplitudy do małej opisano kawałkami zależny-
mi od poziomu przykładanych naprężeń i odpowiadającymi im wartościami eo, c, i p.
Wynosi ona Ra w okresie przejściowym, gdzie Ra jest niezawodnością, przy której po-
ziom naprężeń jest zmieniany. Niezawodność przy obciążeniu rosnącym wyznaczono,
odejmując część jej spadku przy Ra od kawałkami dopasowanych krzywych. Zapro-
ponowany sposób opisu niezawodności sukcesywnie weryfikowano. Zaobserwowano,
że liniowa suma uszkodzeń przekracza jedność dla scenariusza obciążeń stopniowo
malejących i nie osiąga tej wartości w przypadku przeciwnym. Większe różnice w po-
ziomach obciążeń skutkowały w większych odstępstwach liniowej sumy uszkodzeń od
jedności. Szczególnie duże zauważono dla Ra = 0.9
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