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The Lyapunov exponent and moment Lyapunov exponents of two
degrees-of-freedom linear systems subjected to white noise parametric
excitation are investigated. The method of regular perturbation is used
to determine the explicit asymptotic expressions for these exponents in
the presence of small intensity noises. The Lyapunov exponent and mo-
ment Lyapunov exponents are important characteristics for determining
the almost-sure and moment stability of a stochastic dynamic system.
As an example, we study the almost-sure and moment stability of a thin-
walled beam subjected to an eccentric stochastic axial load. The validity
of the approximate results for moment Lyapunov exponents is checked by
the numerical Monte Carlo simulation method for this stochastic system.
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1. Introduction

In the recent years, there has been considerable interest in the study of the
dynamic stability of non-gyroscopic conservative elastic systems whose para-
meters fluctuate in a stochastic manner. To have a complete picture of the
dynamic stability of a dynamic system, it is important to study both the
almost-sure and the moment stability, and to determine both the maximal
Lyapunov exponent and the pth moment Lyapunov exponent. The maximal
Lyapunov exponent, defined by

o1
A = Jim g [l(t; o) | (L1)



62 G. JANEVSKI ET AL.

where ¢q(t; qp) is the solution process of a linear dynamic system. The almost-
sure stability depends upon the sign of the maximal Lyapunov exponent which
is an exponential growth rate of the solution of the randomly perturbed dyna-
mic system. The negative sign of the maximal Lyapunov exponent implies the
almost-sure stability, whereas a non-negative value indicates instability. The
exponential growth rate E[||q(¢; qo, do)||?] is provided by the moment Lyapunov
exponent defined as

A4(p) = Jim < log Ela(r:a0) (12)

where E[-] denotes the expectation. If A,(p) < 0, then, by definition
E[|lq(t; g0, 40)||P] — 0 as t — oo and this is referred to as the pth moment
stability. Although the moment Lyapunov exponents are important in the
study of the dynamic stability of stochastic systems, the actual evaluations of
the moment Lyapunov exponents are very difficult.

Arnold et al. (1997) constructed an approximation for the moment Lyapu-
nov exponents, the asymptotic growth rate of the moments of the response
of a two-dimensional linear system driven by real or white noise. A pertur-
bation approach was used to obtain explicit expressions for these exponents
in the presence of small intensity noises. Khasminskii and Moshchuk (1998)
obtained an asymptotic expansion of the moment Lyapunov exponents of a
two-dimensional system under white noise parametric excitation in terms of
the small fluctuation parameter e, from which the stability index was obtained.
Sri Namachchivaya et al. (1994) used a perturbation approach to calculate the
asymptotic growth rate of a stochastically coupled two-degrees-of-freedom sys-
tem. The noise was assumed to be white and of small intensity in order to cal-
culate the explicit asymptotic formulas for the maximum Lyapunov exponent.
Sri Namachchivaya and Van Roessel (2004) used a perturbation approach to
obtain an approximation for the moment Lyapunov exponents of two coupled
oscillators with commensurable frequencies driven by small intensity real noise
with dissipation. The generator for the eigenvalue problem associated with the
moment Lyapunov exponents was derived without any restriction on the size
of pth moment. Kozié¢ et al. (2009, 2010) investigated the Lyapunov exponent
and moment Lyapunov exponents of two degrees-of-freedom linear systems
subjected to a white noise parametric excitation. In the first, almost-sure and
moment stability of the flexural-torsion stability of a thin elastic beam subjec-
ted to a stochastically fluctuating follower force were studied. In the second,
moment Lyapunov exponents and stability boundary of the double-beam sys-
tem under stochastic compressive axial loading were obtained. Pavlovié¢ et al.
(2007) investigated the dynamic stability of thin-walled beams subjected to
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combined action of axial loads and end moments. By using the direct Lyapu-
nov method, the authors obtained the almost-sure stochastic boundary and
uniform stochastic stability boundary as the function of characteristics of the
stochastic process and geometric and physical parameters.

The aim of this paper is to determine a weak noise expansion for the
moment Lyapunov exponents of the four-dimensional stochastic system. The
noise is assumed to be white noise of small intensity such that one can obtain
an asymptotic growth rate. We apply the perturbation theoretical approach
given in Khasminskii and Moshchuk (1998) to obtain second-order weak no-
ise expansions of the moment Lyapunov exponents. The Lyapunov exponent
is then obtained using the relationship between the moment Lyapunov expo-
nents and the Lyapunov exponent. These results are applied to study the pth
moment stability and almost-sure stability of a thin-walled beam subjected to
eccentric stochastic axial loads. The motion of such an elastic system is gover-
ned by the partial differential equations in the paper by Pavlovié¢ et al. (2007).
The approximate analytical results of the moment Lyapunov exponents are
compared with the numerical values obtained by the Monte Carlo simulation
approach for these exponents of a four-dimensional stochastic system.

2. Theoretical formulation

Consider linear oscillatory systems described by equations of motion of the
form

G+ wig +2eB1d1 — VEER) (Kiiqr + Ki2g2) = 0

. . (2.1)
Go + w3qa + 2¢Bade — VEE(t)(Ka1q1 + Kazge) = 0

where ¢1,q2 are generalized coordinates, wi,ws are natural frequencies and
2e(31, 235 represent small viscous damping coefficients. The stochastic term
Ve&(t) is the white-noise process with small intensity with zero mean and
autocorrelation functions

Ree(t, t2) = B[E(t1)E(t2)] = 028(t2 — 1) (2.2)

o is the intensity of the random process &£(t), and 4(-) is the Dirac delta.
Using the transformation

Q=1 g1 = wixo g2 = %3 Go = woxy (2.3)

and denoting
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%

pij=—-2o ij=1,2 (2.4)

the above Egs. (2.1) can be represented in the first-order form by a set of
Stratonovich differential equations

dX = ApgX dt + eAX dt + /eBX dw(t) (2.5)

where X = [21,2,23,24] is the state vector of the system, w(t) is the
standard Weiner process and Ag, A and B are constant 4 x 4 matrices given

0 w O 0 0 0 0 0
—w; O 0 0 10 =28 0 0
Ro=109" 0 0 w A=lo 0 0o o0
0 0 —w 0 0 0 0 -2
2 B2 (2.6)
O 0 0 O
B_ |Pu 0 pi2 O
O 0 0 O
pa1 0 paa O
Applying the transformation
T1 = acos pcos O To = —acos psin Oy
T3 = asin ¢ cos Oy x4 = —asin psin Oy
(2.7)
P =al = \/(a} + o3 + 23 + a})p
0<6, <21 0< 0y <21 O<Lp<g — o< p< oo

yields the following set of Stratonovich equations for the pth power of the
norm of the response and phase variables (¢, 01,05)

dl|al|? = eof dt + /e dw(t) de = ecdy dt + /ey dw(t) 28)
2.8
dfy = (w1 + ead) dt + /&3 dw(t) dfy = (wa + eajy) dt + /ey dw(t)

In the above transformations, a represents the norm of the response, 61 and 65
are the angles of the first and second oscillators, respectively, and ¢ describes
the coupling or exchange of energy between the first and second oscillator. In
the previous equation, we introduced the following marking
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%)

aj = —2pP(61 sin? 01 cos? ¢ + B2 sin® 0 sin
o = 31 sin” 6 sin 2 — ﬁg sin? @y sin 2¢
a3 = —(18in 26, = —[35 sin 205

*

P
1= —p?(pll sin 26, cos? ¢ + pag sin 205 sin? ¢

N =
+ p12sin 61 cos O sin 2¢ + pa cos 61 sin Oy sin 2¢) (2.9)
Y5 = % sin 264 sin 2 — % sin 26, sin 2 + % sin 0 cos 0 sin” o

— % cos 0 sin 05 cos? ¢

74 = —p11 cos? 01 — pia cos By cos By tan

*

Yi = —pag cos? g — pay cos B cos By cot

The It6 versions of Egs. (2.8) have the following form

dl|al]? = eay dt + /ey1 dwy(t) dp = eag dt + /ey dw(t) (210)
2.10
dfy = (w1 + eag) dt + /eys dw(t) dfy = (wg + ay) dt + \/eys dw(t)

where «; are given in Appendix 1 and v; =/, (1 =1,2,3,4).
Following Wedig (1998), we perform the linear stochastic transformation

S =T(p,01,02)P P=T"Y¢p,01,05)S (2.11)

introducing the new norm process S by means of the scalar function
T(p, 61,602) which is defined in the stationary phase processes 61, 62 and ¢

1
572 T”

dS = P(n T, +wsTp,) dt +eP(on T+ moT}, +m Ty, +maTy, + 3

1 1
+7273T P01 + 72/74T P02 + /73T9191 + /7374T6162 + 2’74 0262) dt (2-12)

2
FVEP(Tyi + Tyvye + Ty, vs + Ty, ) dw(t)

where

mo = o + 7172 mi = a3 + 7173 me = g + 7174 (2.13)

If the transformation function 7'(0;, 62, ) is bounded and non-singular, both
processes P and S possess the same stability behavior. Therefore, the transfor-
mation function 7T'(61, 63, ) is chosen so that the drift term, of It differential
Eq. (2.13), does not depend on the phase processes 61, 62 and ¢, so that

dS = A(p)S dt + ST~ (Ty1 + T,z + Ty, s + Ty, ) duw(t) (2.14)
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By comparing Egs. (2.12) and (2.14), it can be seen that such a transformation
function T'(p, 0;,62) is given by the following equation

[Lo +eL1]T(p,01,02) = A(p)T' (0, 01,02) (2.15)

Here Ly and L; are the following first and second-order differential operators

0
Lo—wlael 28—92
2 82 82 82 82
Li=a1—=
1 a18g02+ 2892 +a3802 +a48¢891+a58<p892 (2.16)
ram L 0 D
590,00, " top T 206, | 206,

where a; = a;(¢,01,02), (i =1,2,...,6), bj = bj(p,01,62), (j = 1,2,3), and
¢ = c(p,01,02) are given in Appendix 2.

Equation (2.15) defines an eigenvalue problem for a second-order differen-
tial operator of three independent variables, in which A(p) is the eigenvalue
and T'(p,0,02) the associated eigenfunction. From Eq. (2.14), the eigenva-
lue A(p) is seen to be the Lyapunov exponent of the pth moment of system
(2.5), i.e., A(p) = Ay)(p)- This approach was first applied by Wedig (1998)
to derive the eigenvalue problem for the moment Lyapunov exponent of a two-
dimensional linear It6 stochastic system. In the following section, the method
of regular perturbation is applied to eigenvalue problem (2.15) to obtain a we-
ak noise expansion of the moment Lyapunov exponent of a four-dimensional
stochastic linear system.

3. Weak noise expansion of the moment Lyapunov exponent

Applying the method of regular perturbation, both the moment Lyapunov
exponent A(p) and the eigenfunction T'(p, 61,62) are expanded in the power
series of ¢ as

Ap) = Ao(p) + eA1(p) + 2 Aa(p) + ... + " An(p) +
(¢, 01,02) = To(p, 01,02) + eTi(p, 01, 02) + 2T (p, 01, 62) (3.1)
+ ...+ EnTn(tp, 91,92) +

Substituting perturbation series (3.1) into eigenvalue problem (2.15) and equ-
ating the terms of equal powers of ¢ leads to the following equations
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e’ — LoTy = Ao(p)To

e' — LoTy + LiTy = Ao(p)Ty + A1(p)To

€2 = LoTy + LT = Ao(p)Ty + Ay (p) Ty + Aa(p)To

% — LoTs + L1 Ty = Ao(p)T5s + Ar(p)Ts + Az (p)Ti + As(p)Th (3.2)

e" — LoTy + LiTy 1 = Ao(p)Th + Ar(p)Tr—1 + A2(p) T2
+ ...+ An_l(p)Tl + An(p)TQ

where each function T; = T;(p,01,62), (i = 0,1,2,...) must be positive and
periodic in the range 0 < ¢ < 7/2, 0 < 6; < 2w and 0 < 6, < 2.

3.1. Zeroth order perturbation

The zeroth order perturbation equation is LoTy = Ag(p)Tp or
— ftwo=— = /lo(p)To (3.3)

From the property of the moment Lyapunov exponent, it is known that
A(0) = Ag(0) + A1 (0) + 2 45(0) + ... +€"4,(0) =0 (3.4)

which results in A4,(0) = 0 for n =0,1,2,.... Since eigenvalue problem (3.3)

does not contain p, the eigenvalue Ay (p) is independent of p. Hence, A¢(0) =0
leads to
Ao(p) =0 (3.5)
Now, partial differential Egs. (3.3) have the form
0Ty Ty
— — =0 3.6
“igg, + wo 96, (3.6)

The solution to Eq. (3.6) may be taken as

To(p,01,02) = Yo(p) (3.7)

where 1y(p) is an unknown function of ¢ which has yet to be determined.

3.2. First order perturbation

The first order perturbation equation is

L()Tl = Al(p)T() - LlT() (38)
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Since homogeneous Eq. (3.6) has a non-trivial solution as given by Eq. (3.7), for
Eq. (3.8) to have a solution, it is required that, from the Fredholm alternative

(LoT1,Ty) = (A1(p)To — L1 Ty, T5) = 0 (3.9)

In the previous equation, T = 1)y (¢) is the unknown solution to the associated
adjoint differential equation of (3.6), and (f,g) denotes the inner product of
functions f(p,61,602) and g(p,01,02) defined by

m/2 27 2m
(f.9) = ///f(90,91,92)9(90,91,92)d91 dfs d (3.10)
0 00
Considering (3.7), (3.8) and (3.10), expression (3.9) now has the form
m/2 27 2
[ [ [tatorio - Lrvoyivoto) doy sz dio = 0 (3.11)
000

and will be satisfied if and only if

27 2

[ [ty — Lavo) doy v = 0 (312
00

After the integration of the previous expression, we have that

dip

L(tho) = A1(e )d—(pg + Bi(p) ; + C1()ho — A1 (p)bo =0 (3.13)

where
21 27 21 27
://a1 0,01, 0,) d; dbs Bi(y) ://bl(gp,Hl,Hg)dﬁl 6,
00 00
o 2 (3.14)
://C (p,91,92 d01d02
00
Finally, there
A _ 1 9(p2 2 4 _p%z—pgl 2 2 2
1() = =z [Py + Pha — 2(py + p31)] cos dp — 2L (WP — W) cos 2

128
—[p}) + P32 + 6(pTy + 131))]

16

128
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1 .
Bi(p) = =7 (p = Dlpi + pa — 2(pTy + pay)]sindep
1
—g(p%Q sin? ptan ¢ — p3; cos? p cot @) (3.15)

o5 (165 = 16% — (0 + 2)(h — 32) + 200 — 1o, — pB1)]}sin 2
Ci(p) = @P(

~ 55 (1681 — 1685 — [(p+ 201 — ) — 4(py — )]} cos 2

p—2)[pT1 + p3y — 2(piy + p3))] cos de

+1L28p{—6461 — 6455 + [(10 + 3p) () + p35) + 2(6 + p) (ply +13))]}

Since coefficients (3.15) of Eq.(3.13) are periodic functions of ¢, a series expan-
sion of the function y(¢) may be taken in the form

N

Po(p) =Y Kjcos2kp (3.16)
k=0

Substituting (3.16) in (3.13), multiplying the resulting equation by cos 2k
(k = 0,1,2,...) and integrating with respect to ¢ from 0 to 7/2 leads to
a set of 2N + 1 homogeneous linear equations for the unknown coefficients
Ko, K1, Ko, ...

N
> Ajpkj = Mi(p) Ky (3.17)
§=0
where
/2
Ajp = / L(cos 2jp) cos 2kp dp k=0,1,2,...,N (3.18)
0

When N tends to infinity, solution (3.16) to equations tends to the exact
solution. The condition for system homogeneous linear equation (3.17) to have
nontrivial solutions is that the determinant of system homogeneous linear
equations (3.17) is equal to zero. The coefficients Aj; to order N = 3 are
presented in Appendix 3.

In the case when N = 0, we assume solution (3.16) in the form
Yo(p) = Ko, from conditions that Agy = 0, the moment Lyapunov exponent
in the first perturbation is defined as

p(10 + 3p)

p(6 +p)(
128

P43, +031) (319)

Mi(p) = =5 (Bu+ Ba) + (v} +p32) +
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In the case when N = 1, solution (3.16) has the form () = Ko+ K1 cos 2¢p,
the moment Lyapunov exponent in the first perturbation is the solution to the
equation A% + dgl)/ll + d(()l) = 0 where coefficients d((]l) and dgl) are presen-
ted in Appendix 4. In the case when N = 2, solution (3.16) has the form
o) = Ko + Kj cos 2p + Ks cos 4, the moment Lyapunov exponent in the
first perturbation is the solution to the equation A3 +d§2’/1§ —|—d( )Al +d(2) =
where coefficients déz), dgz) and déz) are presented in Appendix 5. However, for
N = 3, it is impossible to obtain explicit expressions of A;(p) and numerical
results must be given.

4. Application to a thin-walled beam subjected to an eccentric
stochastic axial load

The purpose of this section is to present the general results of the above
sections in the context of real engineering applications and show how these
results can be applied to physical problems. To this end, we consider the
flexural-torsinal vibration stability of a homogeneous, isotropic, thin-walled
beam with two planes of summetry which is subjected to an eccentric axial
load (Fig. 1a), where R is the eccentricity. By transferring the eccentric load
to the plane of symmetry of the cross-section of the beam, an axial load and
a couple are obtained, which are shown in Fig. 1b.

The governing differential equations for the coupled flexural and torsional
motion of the beam can be written as (Pavlovié et al., 2007)

82U ou v — 9% . 0*U
o ¢ > U o '

Pl + o — (GJ—F() )822+M( )ﬁ+ElaZ4 0

where U is the flexural displacement in the z-direction, ¢ is the torsional
displacement, p is the mass density, A is the area of the cross-section of
beam, I,, I, Is are the axial, polar and sectorial moment of inertia, J is
Saint-Venant’s torsional constant, E is Young’s modulus of elasticity, G is
the shear modulus, a7, oy are viscous damping coefficients, 7' is time and
Z is the axial coordinate. Using the following transformations

I
U=u Zp Z =zl R=rl
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T = kit
2El,
FCT’ - l2
LTt AR,
GJ A2
%= SEIT
2 El,I,

M(T) = RF(T)

A 4
g2 = A

EI,

1 A
Eﬂg = T« l2

279"\ pEL,I2

F(T) = Fch(t)
Al

e =

Iy‘[p
12724
Si=—
IP

(4.2)

where [ is the length of the beam, F,, is the Euler critical force for the simply
supported narrow rectangular beam, S; and Sy are slenderness parameters,
(1 and (9 are reduced viscous damping coefficients, we get governing equations

as
82

¢ 9¢
e T 2lgr -

ou
at2+2sﬁ1 +—+ VS F(t

2\/—F

772F(T)

Pu_,
Z
84¢

(4.3)
=0

84
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Taking free warping displacement and zero angular displacements into ac-
count, the boundary conditions for the simply supported beam are

2 2
w(t,0) =u(t,1) = 24 220y
022 022
(t,0) (¢,1) (4 4)
ot 0) = or,1) = 20| _ POl |
’ ’ 8Z2 (t,O) 822 (t,l)

Consider the shape function sin 7z which satisfies the boundary conditions for
the first mode vibration, the displacement w(t,z) and twist angle ¢(t,z) can
be described by

u(t,z) = q1(t)sinmz o(t,z) = 1(t)sinmz (4.5)
Substituting u(t, z) and ¢(t, z) from (4.5) into equations of motion (4.3) and

employing Galerkin’s method, the unknown time functions can be expressed
as

u + w%ul + 2B1etq — \/E(Kllul + Klgwl)F(t) =0 (4 6)
U1+ wihy + 2Baeth — VE(Karuy + Kagthy)F(t) =0 .
If we define the expressions
w? =7t w3 =145y +e)
A 1 (4.7)
Kihn=Kyp=m Ky = K91 = 7%/51

and assume that the compressive axial force is stochastic white-noise process
(2.2) with small intensity

F(t) = VEE(R) (4.8)
then Eq. (4.4) is reduced to Eq. (2.1).
Using the above result for the moment Lyapunov exponent

A(p) = eA1(p) + O(2) (4.9)

with the definition of the moment stability A(p) < 0, we determine analytically
(the case where N = 0, A;(p) is shown with Eq. (3.19)) the pth moment
stability boundary of the oscillatory system in the first-order perturbation

1 10+3p 6+p

2, 4

1 4.1
Bi+ By > o +52+e)( e S) (4.10)
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It is known that oscillatory system (4.3) is asymptotically stable only if the
Lyapunov exponent A < 0. Then expression

A =¢e)\ +O(e%) (4.11)

is employed to determine the almost-sure stability boundary of the oscillatory
system in the first-order perturbation

Bi+ B > o?n' (1+ 521+ e) (3—52 + %51) (4.12)

For the sake of simplicity, we assume, in what follows, that two viscous dam-
ping coefficients are equal

pr=P0=p (4.13)

For this case, we determine the almost-sure stability boundary of the oscilla-
tory system in the first-order perturbation

8> 37;4202 (1+ 521+ ) (g ) (4.14)

and the pth moment stability boundary is

0'271'4
G > o1 (1+

S, + e) [5 + gp + (6 +p)51} (4.15)

With respect to standard I-section, we can approximatiely take h/ ~ 2, b/6; ~
11, §/6; ~ 1.5, where h is depth, b is width, § is thickness of the flanges
and 4 is thickness of the rib of I-section. These ratios yield S; ~ 6(R/h)2,
So 2~ 0.01928(1/h)? and e = 1.276.

Figure 2 shows the almost-sure stability boundaries with respect to the
damping coefficient (§ and intensity of random process o. The stability regions
are given in space for a constant geometrical ratio (I/h = 10) of length of the
beam and depth of the standard I-profil. They are enlarged when the axial
force is closer to the axis of symmetry, with the greatest enlargement in the
case when the force acts towards the main axis of symmetry. With the increase
of ratio R/h, the stability regions are reduced.

Figure 3 shows the almost-sure and pth moment stability boundaries with
respect to the damping coefficient (§ and intensity of the random process o.
Note that the moment stability boundaries are more conservative than the
almost-sure boundary. These boundaries become increasingly more conserva-
tive as p increases, as shown in Fig. 3.



74 G. JANEVSKI ET AL.

0.5
o
0.4t R/h=0
0.3} R/h=01 R/h=0.2
0.2 R/h=0.5
0.1 stability region
0 . . . L

05 10 1.5 20 , 25
o

Fig. 2. Stability regions for almost-sure (a-s) stability for € = 0.1 and I/h =10

0.5
o
0.4} a-s
0.3t p=2
0.2+ pA
0.1k stability region
0 L L . .

05 10 15 20 ,25
4

Fig. 3. Stability regions for almost-sure (a-s) and pth moment stability for ¢ = 0.1,
I/h =10 and R/h =02

5. Numerical determination of the pth moment Lyapunov
exponent

Numerical determination of the pth moment Lyapunov exponents is impor-
tant in assessing the validity and ranges of applicability of the approximate
analytical results. In many engineering applications, amplitudes of noise exci-
tations are not small, and the approximate analytical methods, such as the
method of perturbation of the method of stochastic averaging, cannot be ap-
plied. Therefore, numerical approaches have to be employed to evaluate the
moment Lyapunov exponents. The numerical approach is based on expan-
ding the exact solution to the system of Ito stochastic differential equations
in powers of the time increment h and the small parameter & as proposed
in Milstein and Tret’Yakov (1997). The state vector of system (2.5) is to be
rewritten as a system of Ito stochastic differential equations with small noise
in the form
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dr1 = wixs dt dry = (—wlxl — €2ﬁ1l’2) dt + \/E(pn:El + p12l’3) dw(t)
(5.1)
drs = woxy dt dry = (—OJQl’g — €2ﬁ2l’4) dt + \/E(pm:El + p22$3) dw(t)

For the numerical solutions of the stochastic differential equations, the Runge-
Kutta approximation may be applied, both with the error R = O(h* + £*h).
The interval discretization is [tg,T] : {tx : k = 0,1,2,...,M; to < t1 <
to < ... <ty =T} and the time increment is h = tj;1 — t;. The following
Runge-Kutta method is obtained for the (k+ 1)th iteration of the state vector
X = [:L'l, xo, X3, :E4]

N, O /My 0 p11P11 p12P1 k
x (k+1) 1 + x (k)
0 Ny "°| o B2Mo Ve p21P2  p22Pa2
(5.2)
where Ng, Mg, P, and Py (k= 1,2) are 2 X 2 matrices
N;, — Nip Ny M, — My Mz,
—Nop  Nig My, Moy, (53)
P — Wi Wiy P, — Wi Wsg .
Wy W W5 Wiys
and the members of previous matrices can be evaluated as follows
hzwi h4wé h2w,%
le:1; ) + 2 Ngk:hwk(l— g 2) »
oy B h2wi  h wy
Mlk = ?wk - M2k‘ = —2h(1 — g ; 36 )
h*w h*w
_p2 _ k 12 . k
Mgk— hwk(l 9 ) M4k—hwk(1 6 )
h3/2 h3/2
Wi = T(f + 2n)wy, Wap = T(f — 2n)wy,
ho2 h2w?
W3y, = wak Wy, = \//E(l -3 )5
h2 h3 2
W5:\/E[1—F(w%+w§)}§ WGZT(§_277)W2
h3/2
Wy = T(f — 2n)wy
(5.4)

Random variables & and n; (i = 1,2) are simulated as

-1 1
P(TliZE):P(THZE)Z

i=
1
2
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Having obtained L samples of the solutions to stochastic differential equations
(5.1), the pth moment can be determined as follows

L
E[| X (te11)[] = % > IX ()P (5.6)
j=1 '

X (tian) | = \/1X] (tha) X (s

By the Monte-Carlo technique (Xie, 2005), we numerically calculate the pth
moment Lyapunov exponent for all values of p of interest defined as

A(p) = 7 log BI|IX (T) (57)

6. Numerical results and conclusions

In this paper, the moment Lyapunov exponents of a thin-walled beam sub-
jected to eccentric stochastic axial loads are studied. The method of regular
perturbation is applied to obtain a weak noise expansion of the moment Ly-
apunov exponent in terms of the small fluctuation parameter. The weak noise
expansion of the Lyapunov exponent is also obtained. The slope of the mo-
ment Lyapunov exponent curve at p = 0 is the Lyapunov exponent. When
the Lyapunov exponent is negative, system (4.6) is stable with probability 1,
otherwise it is unstable. For the purpose of illustration, in the numerical stu-
dy we considere the set of system parameters 1 = o = 8 = 1, ¢ = 0.1,
L = 4000, h = 0.0005, M = 10000 and z1(0) = z2(0) = 23(0) = z4(0) = 1/2.

Typical results of the moment Lyapunov exponents A(p) for system (4.6)
given by Eq. (4.9) in the first perturbation are shown in Fig. 4 for I-section,
e =0.1,l/h = 10 and R/h = 0.2, the noise intensity o = 0.2 and damping
coefficient 3 = 1. The accuracy of the approximate analytical results is vali-
dated and assessed by comparing them to the numerical results. The Monte
Carlo simulation approach is usually more versatile, especially when the no-
ise excitations cannot be described in such a form that can be treated easily
using analytical tools. From the Central Limit Theorem, it is well known that
the estimated pth moment Lyapunov exponent is a random number, with the
mean being the true value of the pth moment Lyapunov exponent and stan-
dard deviation equal to n,/ V'L, where n, is the sample standard deviation
determined from L samples.

It is evident that analytical results agree very well with the numerical
results, except for N = 0 when the function 1(¢) does not depend on ¢ and
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Fig. 4. Moment Lyapunov exponent A(p) for c =0.2 and =1

assumes the form y(p) = Ko = const. It is observed that the discrepancies
between the approximate analytical and numerical results decrease for a larger
number N of series (3.16). Further increase of the N number of members
does not make sense, because the curves merge into one. Further increase in
the number of members in the supposed solution does not make sense also
because the approximation of the exact solutions is worse. On the other side,
the equation from which we can determine the value of the exponent of the
moment Lyapunov exponent is of a higher order and the coefficients in them
are of a more complex form.
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Appendix 1

a1 = —2pP (b1 sin? 0, cos? ¢ + [ sin” Ay sin? ®)

plp—2)P

+ 16

(p11pa2 + p1ap21) sin 26, sin 26, sin? 2

P
+p_ (p% cos® 0y cos® P+ pr cos? 6, sin’

) ©)[cos? 01 + (pcos® p — cos 2¢p)]

P
—l—% (p3y cos? By sin? ¢ + p3; cos® 0 cos? @) [cos? By + (psin?  + cos 2p)]

P
—I—% cos 61 cos s sin 2p{paap21[p + 2 — (p — 2)(cos 205 + 2 sin? 65 cos 2¢)]

+p11p12lp+2— (p— 2)(cos26; — 2 sin? 0y cos 2p)]}

plp—2)P

T3

sin 2 sin 01 sin 3 (p11p21 cos B cos? @ + paapra cos® By sin? @)
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1
az = (A sin 01 — (3 sin® f2) sin 2 — 1—6(p11p22 + p12p21) sin 261 sin 265 sin 4
—(p11p21 cos? 01 cos? p + paapra cos? By sin’ ) sin 6 sin O3 cos 2

1
- prl cos? 01 sin 2¢(cos 26, — cos 2p sin® 6;)

1
+1p§2 cos? 0 sin 2¢(cos 26, + cos 2 sin® fy)

1
+§p§2 cos? 0 sin? o (sin? 0 sin 2 — cos? f; tan )

1
— §p§1 cos? 0 cos? p(sin? O sin 2 — cos? O cot )

—p11p12 cos B cos By sin’ p(cos 201 — cos2p sin? 61)
+paapar cos by cos B cos? p(cos 205 + cos 2¢ sin? 62)

1
az = —( sin 26, — 3 (p11 cos By + p12 cos b tan cp)2 sin 260
1
g = —f28in 205 — 3 (p22 cos B2 + pay cos b1 cot @)2 sin 265
Appendix 2

1
p118in 201 — pao sin 292)2 sin? 2

a1:3—2(

1
+§ (p12 cos By sin B, cos? ¢ — pay sin 0y cos b sin® cp)2
1
1 (p11 Sin 201 — pag sin 2605)(p12 sin Oy cos By sin? ¢ — pa cos 0y sin O cos? ©) sin 2¢

1
as = 3 cos® 0, (p11 cos 01 + pi2 cos by tan ‘P)2

1
a3 =3 c0s? 3 (pag cos By + pay cos B cot p)?

1 | . |
as=—7 cos? 0y sin 2¢[p7, sin 20, — (p11p2a — p1apai) sin 20s]
+p11p21 cos® 0 sin B cos®

—p12 cos b1 cos O sin® © (p11 sin 2607 — % sin 205 + p12 sin 67 cos 65 tan go)

as = i cos? 0 sin 2[p3, sin 205 — (p11pa2 + prap2r ) sin 26 ]
—pagp12 sin by cos® By sin”
—pa1 cos B cos o cos? (p(% sin 201 + pag sin 205 + pa1 cos By sin @5 cot gp)
ag = (p11p22 + Pi2p21) cos? 0, cos? O + cos 0 cos Oy (p11pot cos? 0y cot v
+p22p12 cos? O tan )

-1
by = (Bysin? 0; — By sin’ 0y) sin 2 + % (p11p2z + p1apa1) sin 201 sin 2605 sin 4

1
- (prl cos 01 sin 2¢ + p11p12 cos Oy sin? gp) [cos2 01+2(p—1) cos? <psin2 61] cos 64
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4
1
- §p§2 cos? 0 sin” [(p — 1) sin? 6 sin 2 + cos® f; tan ]

1
—|—§p§1 cos? 01 cos? @[(p — 1) sin? 6 sin 2¢ + cos? f cot ]
—(p — 1) sin 6y sin By cos 2¢(p11pa1 cos? O cos? @ + Paapia cos? O sin’ )
1
by = —f31sin 267 + 5(19%1 cos 01 + p11pi2 cos By tan ) [(p — 1) cos® ¢

— sin® ] sin 26, cos 1 + g(pllpm + p12p21) cos® B sin 20 sin®

—l—%pfg sin 26, cos? f2[(p — 1) cos? ¢ — sin? @] tan? o

+gp11p21 cos® 0y sin f5 sin 2p + gngplg cos 01 cos B sin 205 sin? ptang
by = —[32sin 205 + %(p%Q c0s 03 + paapa1 cos by cot )[(p — 1) sin? ¢

— cos” ] sin 265 cos b + g(pnpzz + p12p21) sin 207 cos® O cos®

—I—%p%l sin 20 cos? 0 [(p — 1) sin? ¢ — cos? @] cot? v

+§p11p21 sin 26, cos 61 cos O cos? pcot p + gpzzplz sin 61 cos® O sin 2¢
¢ = —2p(31 sin? 6 cos® ¢ + Ba sin? O sin? )

p(p—2)

+T(p11p22 + p12p21) sin 264 sin 26, sin® 2¢

p(p—2)

+ "L (p11p21 cos? B cos® ¢ + pagpio cos? By sin? ) sin 01 sin 65 sin 2¢

2
p
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1
+ (—p%Q €0s B sin 2¢ + paapa1 cos By cos> cp) [cos? By 4 2(p — 1) sin? @ sin? 6] cos O

4= (p11 cos 0y cos @ + p12 cos By sin )2 {cos® B + [(p — 1) cos®  + sin® ] sin? 6, }

=N

Appendix 3

(10+3p), o | o )+p(6+p)(

p b
Ago = —A1(p) — 5(51 + B2) + 198 (P11 + P2o 64 Pz +P31)
p+2 1 1
Ao = == (B = B2) + o (P +2)* (1, — P3y) + 7 (P12 — P3)
(P+2)(p+4) 17
Agg = ———[p}) + 135 — 203 + p51)] — = (P12 + P31)
256 32
3
Azg = Z(Z’%z - p§1)
P p(p+2) P
Aot = =7 (61 = B2) + T(pfl —D32) — E(pﬂ )

1

An :—5/11(17)—%(51 + f2) +

Tp? + 22p — 8
512

p? + 10p — 56
256

(p11 + p3s) +

+§(p22 €08 B sin ¢ + pa1 cos B cos )2 {cos? By + [(p — 1) sin? o + cos® ] sin? O}

+ p31)
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p+4 p*+6p—+3 p+20
Ao = ——(51 B2) + = —— (011 — Do) + 5 — (P12 — P31)
128 32
p? + 10p + 24 p? + 10p + 216
Az = T( 1+ p3a) — T( to +p51)
p(p—2)
Aoy = 2756[(19%1 +132) — 2(pts + p31)]
p—2 (p+2)(p—2) p—2
A = —T(ﬁl — Ba2) + T(Z’%l —pgg) + T(pfz —p§1)
1 P 3p® 4+ 10p — 16 p? + 6p — 80
T N S et USRI S I RN
4 256 128
p+6 p? 4+ 8p + 12 p+18
Agy = ———(B1 — f2) + ————— (P11 — P3a) + ——— (P12 — P31)
512 16
Ag3 =0
2
p“ —6p+8
Az = T[(pfl + p39) — 2(pTs + 31)]
p—4 1 3
Agz = 8 [(5 —B2) — E(p +2)(p}, — p3o) + Z(Z’%z —p31)
1 » 3p2 + 10p — 36
Azz = ——/11( ) — —(51 + f2) + T(pu + p3a)
202 4+ 12p — 312
T( to +D51)
Appendix 4
1 7 11p  3p?
a4 — (____ (_____) 2 2
L p(51+62)+ 32 256 ) P T P2) + (5~ G~ 1o8) Pl Pm)
2 5p3
P = 2 ( P
0o = gP ( 2)(6F + 13) + ( +3p)f1f2 + 2048 + 3102 T 2006

5 4 4 4 5 p2 p3 p4 3p
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Momentowe wykladniki Lapunowa i stateczno$é stochastyczna
cienko$ciennej belki poddanej mimosrodowemu obcigzeniu
w kierunku osiowym

Streszczenie

W artykule zbadano wyktadniki Lapunowa i momentowe wyktadniki Lapunowa
uktadéw o dwdch stopniach swobody poddanych parametrycznemu wymuszeniu bia-
lym szumem. Zastosowano regularna metode perturbacyjna do wyznaczenia jawnych
wyrazen na te wykladniki w obecnosci szuméw o malej intensywnosci. Wykladniki
Lapunowa i momentowe wykladniki Lapunowa sa waznymi wielkodciami w okresla-
niu prawie pewnej i momentowej statecznosci stochastycznej uktadu dynamicznego.
Jako przyktad rozwazono cienkoscienng belke poddana mimosrodowemu obciazeniu
osiowemu o charakterze losowym. Poprawnos$¢ otrzymanych wynikéw przyblizenia
momentowych wykladnikow Lapunowa sprawdzono w drodze symulacji numerycznej
przy wykorzystaniu metody Monte Carlo.
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