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The new, more accurate and general possibility of assessments of ma-
ximum amplitudes of vibratory machines and vibroinsulated systems
during their passage through the resonance was considered in the paper.
The energy balance of the system was applied and the analytical solu-
tion for typical systems of several degrees of freedom during free coasting
was given. The formulated method can be applied to systems of multiple
degrees of freedom including continuous systems.
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1. Problem formulation

Designing of technological lines in heavy industry branches requires an estima-
tion of casing conditions of machines and devices in consideration of maximum
amplitudes of vibrations in a steady state and during transient processes.

Dynamic loads, transferred to floors and ceilings and to supporting struc-
tures as well as conditions of cooperation in machine lines, depend on these
amplitudes. This problem concerns a broad class of machines and devices ha-
ving elastic suspensions such as: vibroinsulating systems, fans, compressors
and vibratory machines as: vibrating screens, feeders or vibratory conveyers.

A transient resonance, occurring in vibrating systems when frequencies of
excitation forces are passing via the natural frequencies range of the system,
belongs to the most dangerous dynamic states of the devices. The resonance
during the machine free coasting is specially hazardous since due to a longer
duration of the process it leads to maximum amplitudes being 1 to 2 orders
higher than the amplitudes in the steady state.
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The first estimation of maximum amplitudes (Lewis, 1932) was obtained
for an oscillator of one degree of freedom, at the excitation of a constant am-
plitude and linearly variable frequency. The solution for systems of the exci-
tation amplitude proportional to the square of a force frequency was given in
Kac (1947). These works were applied for the preparation of nomograms used
nowadays in practice (Harris, 1957). An expansion of analysis into systems
of some degrees of freedom by means of uncoupling the equations of motion
was given in works Goliński (1979), Yanabe and Tamura (1980). Numerous
further works were focused on mathematic problems related to solutions of
equations of motion. One of the most important works Markert and Seidler
(2001) is the study in which motion of the oscillator is forced by a linear
combination of the assumed time function and its time derivative. Such de-
scription of exciting forces allows for the analysis of the transient resonance
with taking into account not only the normal but also the tangent compo-
nent (depending on the angular acceleration) of the force of inertia originated
from an unbalanced rotor and the analysis of kinematic forcing by the base
movement.

The common feature of the above cited works is the a priori assumption
of the form of the time excitation function, without taking into consideration
the influence of vibrations of the unbalanced rotor axis on its angular motion.
As it was proved by the author (Michalczyk, 1995) such an approach leads to
significant over-estimation of amplitudes during machine free coastings.

The reason for these errors result from the omission of the additional mo-
ment originating from the force of transportation inertia, occurring in non-
inertial systems related to the vibrating rotor axis (Kononienko, 1964). The
analysis of systems with taking into account the limited driving power were
performed only in relation to the steady state resonance (due to difficulties in
solving equations of motion) – see works of Sommerfeld, Kononienko (1964)
and later e.g. Warmiński (2001).

Works of Agranowska and Blechman (1969) and Michalczyk (1993) based
on the energy balance of the effect are without this fault. However, the first
of these works, based on the kinetic and potential energy balance requires the
knowledge of the frequency at which the maximum amplitude occurs (variable,
depending on the angular acceleration in the circum-resonance zone and not
known a priori), while the second one was formulated for vibrating systems of
one degree of freedom only.

The transient resonance problem for the system of one degree of freedom,
with taking into account couplings between the rotor and body motion, was
undertaken by Cieplok (2009) who obtained (by means of digital analysis)
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nomograms for the determination of maximum amplitudes in the transient
resonance. The fault of this work is the assumption of cophasal synchronous
running of both drives. As it was indicated by Michalczyk and Czubak (2010)
the state of the cophasal drives running is lost in the circum-resonance zo-
ne, which changes the forcing conditions assumed by Cieplok and causes the
pseudo-resonance activations in other directions.

2. Energy method of the resonance amplitude estimation at the

machine coasting

The basis of the proposed – in the hereby paper – method of determination
of the maximum amplitudes in the transient resonance constitutes the obse-
rvation (Michalczyk, 1995) that in the stage of increasing circum-resonance
vibrations during coasting, the unbalanced rotor returns usually 3/4 to 8/9 of
the collected kinetic energy.

Thus, in order to estimate the amplitudes of resonance vibrations it is
possible – not committing any significant error – to perform the energy balance
between the kinetic energy of the vibrator angular motion and the kinetic
energy of the body vibrations. It is assumed that the entire energy, which the
vibrator or a set of n synchronous vibrators possess at the moment of entering
into the i-th resonance zone is transferred into increasing amplitudes of the
machine body vibrations, which vibrates in accordance with the i-th form of
its natural frequencies.

Thus, it occurs

n
1

2
Jzrω

2
0i =
1

2
q̇⊤max iMq̇max i (2.1)

where: n is the number of identical synchronously running driving systems,
Jzr – moment of inertia of the driving system reduced on the rotor shaft of
the unbalanced vibrator, ω0i – angular velocity at which the energy exchan-
ge occurs (generally different (Lewis, 1932) in a certain range from the i-th
frequency of natural machine body vibrations on an elastic suspension sys-
tem), q = col{xs, ys, zs, ϕx, ϕy , ϕz} – vector of coordinates, describing the
system vibrations, q̇max i – velocity vector determined for the moment of the
maximum amplitude of the i-th form in the i-th resonance
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m 0 0 0 0
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
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

(2.2)

m — body mass, Jij – corresponding elements of the tensor of inertia in
the central system Sxyz, xs, ys, zs – coordinates of the machine mass centre,
ϕx, ϕy , ϕz – angles of small rotation with respect to the axis x, y, z.

For harmonic vibrations of a frequency ω0i, the maximum values of gene-
ralised velocities q̇max i are related to the maximum amplitudes of the displa-
cement vector by the following dependence: q̇max i = ω0iqmax i, which leads
to

n
1

2
Jzrω

2
0i =
1

2
ω20iq

⊤

max iMqmax i (2.3)

or after reduction

nJzr = q
⊤

max iMqmax i (2.4)

Let vibratory motion of the machine body placed on an elastic suspension
system be described by the equation of small, free and undamped vibrations

Mq̈ +Kq = 0 (2.5)

where K is the symmetrical elasticity matrix.

For the basic – in applications - case of the machine placed on a system of
j = 1, . . . , ν parallel, identical elastic elements of constants:

– in a vertical direction, kz
– in horizontal directions, kx, ky = kxy

and coordinates xj, yj , zj of points where the elastic elements were mounted
to the body in the static equilibrium of the machine, it is easy to prove the
following

K =
(2.6)
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∑
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For the harmonic form of solutions q = qmax[sin(ωt + γ)], the condition
of existing of the non-zero solution to equation (2.5) leads to the dependence

det[K− ω2M] = 0 (2.7)

This dependence allows one to determine the set of natural frequencies:
ω0i, i = 1, . . . , 6 and later on the modal vectors

Ψ i(ωi) = col{ψ1i, ψ2i, ψ3i, ψ4i, ψ5i, ψ6i} (2.8)

Let us assume for a moment that these frequencies are different and suffi-
ciently distant (in a sense of circum-resonance vibration amplification). This
allows one to write the amplitude vector for vibrations of the i-th frequency
and form

qmax i = col
{ψ1i

ψki
qmax ki,

ψ2i

ψki
qmax ki, qmax ki,

ψ6i

ψki
qmax ki

}

= qmax ki col
{ψ1i

ψki
,
ψ2i

ψki
, 1,

ψ6i

ψki

}

(2.9)

where qmax ki means the maximum amplitude of arbitrarily selected for the
representation of the i-th form of vibrations (on the assumption: ψki 6= 0)
coordinate qk.
Denoting

col
{ψ1i

ψki
,
ψ2i

ψki
, 1,

ψ6i

ψki

}

= aki (2.10)

and substituting the above to (2.9) and (2.4), we finally obtain a dependence
for the maximum amplitude of the k-th coordinate during the system passing
via the resonance with the i-th natural frequency

qmax ki =

√

nJzr

a⊤kiMaki
(2.11)

This dependence constitutes an over-estimated assessment (in typical ca-
ses, quite accurate) of the maximum amplitude of the selected k-th coordinate
in the i-th resonance, ou the condition that the vibrator exciting force operates
at vibrations of the investigated form. This is equivalent to the demand that
the relevant modal force is not zero. Not meeting this condition means passing
through the resonance zone without exciting significant machine vibrations.
When equal multiple frequencies occur in the spectrum of natural frequ-

encies of the system, the above given proceedings are usually not possible in
relation to these frequencies due to ambiguity of the vibration form. The sym-
metrical systems for which we know the vibration forms, e.g. from the physical
analysis, constitute an exception.
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3. System with a vertical main inertial axis, h 6= 0

For better clarity of considerations, let us assume the case of a system with
a vertical main axis of inertial (often occurring in practice), e.g. a two-drive
vertical vibratory conveyer shown in Fig. 1.

Fig. 1. Vertical vibratory conveyer (OFAMA vibratory conveyer PWS);
1 – machine body, 2 – vibrator, 3 – elastic support

The machine body motion will be described in the system Sxyz of the
vertical axis z, coinciding with the main axes of inertia of the machine in the
static equilibrium under dead weight.

Additionally, we will assume that in the elastic supporting system (in ac-
cordance with the requirements concerning vibroinsulation systems and pla-
cements of vibratory machines) the conditions for equal static load of elastic
elements hold:

∑

xj = 0,
∑

yj = 0, and that these elastic elements are fa-
stened to the machine in the horizontal plane, being by a distance h below
the machine mass centre: zj = −h, and that at least one symmetry plane of
distribution of elastic elements, zx or zy, exists. Then, as it is easily proved

K =



















Kxy 0 0 0 −Kxyh 0
Kxy 0 Kxyh 0 0

Kz 0 0 0
KSϕx 0 0

sym. KSϕy 0

Kϕz



















(3.1)
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where

Kz = νkz Kxy = νkxy Kϕz = kxy
∑

(x2j + y
2
j )

Kϕx = kz
∑

y2j Kϕy = kz
∑

x2j KSϕx = Kϕx +Kxyh
2

KSϕy = Kϕy +Kxyh
2

(3.2)

In addition, in the assumed main coordinate system Sxyz, mass matrix
(2.2) contains elements on the main diagonal only.

Then

[K− ω2M] =










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



a11 0 0 0 −Kxyh 0
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a44 0 0

sym. a55 0
a66



















(3.3)

where a11 = a22 = Kxy − ω2m, a33 = Kz − ω2m, a44 = KSϕx − ω2Jxx,

a55 = K
S
ϕy − ω

2Jyy, a66 = Kϕz − ω
2Jzz.

From condition of non-trivial solution (2.7), it is possible to obtain a set
of system natural frequencies

ω1 =

√

Kz

m
ω2 =

√

Kϕz

Jzz

ω3,4 =

√

√

√

√

(Kxy

2m
+
KSϕy

2Jyy

)

±

√

(Kxy

2m
+
KSϕy

2Jyy

)2

−
KxyKϕy

mJyy

ω5,6 =

√

√

√

√

(Kxy

2m
+
KSϕx

2Jxx

)

±

√

(Kxy

2m
+
KSϕx

2Jxx

)2

−
KxyKϕx

mJxx

(3.4)

Substituting in equation

[K− ω2M]qmax = 0 (3.5)

successive natural frequency values (3.4), it is possible to obtain modal vec-
tors (2.8) which, after normalising due to the selected coordinates, determine
vectors aki (2.10)
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for ω1 : az1 = col{0, 0, 1, 0, 0, 0}

for ω2 : aϕz2 = col{0, 0, 0, 0, 0, 1}

for ω3 : aϕy3 = col {c3, 0, 0, 0, 1, 0}

for ω4 : ax4 = col{1, 0, 0, 0, c4 , 0}

for ω5 : aϕx5 = col{0, c5, 0, 1, 0, 0}

for ω6 : ay6 = col {0, 1, 0, c6 , 0, 0}

(3.6)

where

c3 = 2h


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KSϕy
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m
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√
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1 +
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m
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− 4
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
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
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
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KSϕx
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KSϕx

Kxy
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Jxx
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KSϕx

Kxy
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1 +
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m
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
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(3.7)

Substituting the above vectors into relationship dependence (2.11), it is
possible to determine maximum amplitudes of individual coordinates during
passing through the successive natural frequencies

for ω1 : zmax =

√

nJzr

m

for ω2 : ϕz max =

√

nJzr

Jzz

for ω3 : ϕymax =

√

nJzr

mc23 + Jyy
xmax = ϕy maxc3

for ω4 : xmax =

√

nJzr

m+ Jyyc
2
4

ϕy max = xmaxc4

for ω5 : ϕxmax =

√

nJzr

mc25 + Jxx
ymax = ϕxmaxc5

for ω6 : ymax =

√

nJzr

m+ Jxxc
2
6

ϕxmax = ymaxc6

(3.8)
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Resonances of the highest frequencies are usually the most dangerous,
which is obvious on the grounds of the performed energy considerations.
Coordinates which do not occur in expressions (3.8) for the given frequency,

do not participate in the circum-resonance growing of vibrations. In a similar
fashion, there is none circum-resonance amplitude increase in relation to forms
at which the exciting force is not performing work. Certain doubts can be
raised in relation to two-drive vibratory machines of with linear translatory
motion, in which the exciting force does not induce e.g. rotational vibrations.
However, if the vibrators experience a loss of the cophasal running sta-

bility in the circum-resonance zone (see Michalczyk and Czubak, 2010), the
resonance for this form of vibrations will also occur.

4. The case of multiple frequencies, h = 0

In the case when h = 0, vibrations of the system become uncoupled and two
of natural frequencies become equal. Carrying out the analogous analysis, we
obtain

ω1 =

√

Kz

m
ω2 =

√

Kϕz

Jzz
ω3 =

√

Kxy

m

ω4 =

√

Kϕy

Jyy
ω5 =

√

Kxy

m
ω6 =

√

Kϕx

Jxx

(4.1)

and ω3 = ω5

for ω1 : zmax =

√

nJzr

m
for ω2 : ϕz max =

√

nJzr

Jzz

for ω3 : xmax ¬

√

nJzr

m
for ω4 : ϕymax =

√

nJzr

Jyy

for ω5 : ymax ¬

√

nJzr

m
for ω6 : ϕxmax =

√

nJzr

Jxx

(4.2)

Symbols ¬ mean that depending on the exciting forces character the dri-
ving system energy can distribute itself into vibrations along the axes x and y
in a different way. Sometimes there are physical grounds to consider that this
distribution is equal (e.g. for a single drive machine with the a vertical rotor
axis). In such a case

for ω3,5 : xmax, ymax =

√

nJzr

2m
(4.3)
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5. Conclusions

• The method of the assessment of the maximum amplitudes of systems
with several degrees of freedom – during the transient resonance – was
formulated in the paper. Especially, vibrations of bodies elastically sup-
ported in a way enabling small, arbitrary vibrations during the free co-
asting of the rotating unbalanced driving system, were analysed.

• The applied approach requires – in the engineering practice – only the
knowledge of the basic and easily determined system parameters, and
does not present computational problems. It provides the assessment of
maximum amplitudes (‘a top estimation’), which for typical systems is
close to reality.

• The proposed approach can be successfully applied to the determination
of maximum amplitudes in the transient resonance of vibrating systems
with continuous distribution of mass e.g. beams, shafts, frames and plates
(Michalczyk, 2012).
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Rezonans przejściowy w maszynach i urządzeniach w ruchu ogólnym

Streszczenie

W pracy wskazano na nową , dokładniejszą, możliwość oszacowania amplitud mak-
symalnych maszyn o ruchu drgającym i układów wibroizolowanych, podczas przej-
ścia przez rezonans. Wykorzystano w tym celu bilans energetyczny układu i podano
rozwiązanie analityczne dla typowych układów o wielu stopniach swobody podczas
wybiegu swobodnego. Sformułowana metoda może mieć zastosowanie dla dowolnych
układów wielomasowych, w tym, układów ciągłych.
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