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We consider the synchronization of two self-excited pendulums with different masses. We
show that such pendulums hanging on the same beam can show almost-complete (in-phase)
and almost-antiphase synchronizations in which the difference of the pendulums displace-
ments is small. Our approximate analytical analysis allows one to derive the synchronization
conditions and explains the observed types of synchronizations as well as gives an approxi-
mate formula for amplitudes of both the pendulums and the phase shift between them. We
consider the energy balance in the system and show how the energy is transferred between
the pendulums via the oscillating beam allowing synchronization of the pendulums.
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1. Introduction

Currently, we observe growing interest in the studies of coupled oscillatory systems which are
stimulated by various applications in physics, engineering, biology, medicine, etc. (Andronov
et al., 1966; Blekhman, 1988; Pikovsky et al., 2001). Synchronization is commonly observed to
occur between oscillators. It is a process where two or more systems interact with each other
and come to oscillate together. Groups of oscillators are observed to synchronize in a diverse
variety of systems, despite inevitable differences between the oscillators. The phenomenon of
synchronization of clocks hanging on a common movable beam (Kapitaniak et al., 2019) has
been recently the subject of research by a number of authors (Bennet et al., 2002; Czolczynski
et al., 2009a,b, 2011; Dilao, 2009; Fradkov and Andrievsky, 2007; Huygens, 1893; Kanunnikov et
al., 2003; Kumon et al., 2002; Pantaleone, 2002; Perlikowski et al., 2012; Senator, 2006; Ulrichs
et al., 2009). These studies give the definite answer to the question; what Huygens was able
to observe, e.g., Bennet et al. (2002) state that to repeat Huygens’ results, high precision (the
precision that Huygens certainly could not achieve) is necessary, and Kanunnikov et al. (2003)
show that the precise antiphase motion of different pendulums noted by Huygens cannot occur.
Our studies (Czolczynski et al., 2009a,b, 2011; Dilao, 2009) prove that in the case of nonidentical
clocks, only almost-antiphase synchronization can be observed.

In this paper, we consider the synchronization of two self-excited pendulums which have the
the same length but different masses. Oscillations of each pendulum are self-excited by van der
Pol’s type of damping. We show that two such pendulums hanging on the same beam, besides
the complete (in-phase) and antiphase synchronizations already demonstrated for the case of
pendulums with the same masses in Blekhman (1988), Czolczynski et al. (2009b), Fradkov and
Andrievsky (2007), Perlikowski et al. (2012), Ulrichs et al. (2009), perform almost-complete and
almost-antiphase synchronization in which the phase differences of oscillations are respectively
close (but not equal) to 0 or π. We perform an approximate analytical analysis which allows one
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to derive the synchronization conditions and explains the observed types of synchronizations.
The energy balance in the system allows one to show how the energy is transferred between the
pendulums via the oscillating beam.

This paper is organized as follows. Section 2 describes the considered model of the coupled
pendulums. In Section 3 we derive the energy balance of the synchronized pendulums. Section 4
presents the results of numerical simulations and describes the observed synchronization states.
Finally, we summarize our results in Section 5.

2. Model

The analyzed system is shown in Fig. 1. It consists of a rigid beam and two pendulums suspended
on it. The beam of mass M can move in the horizontal direction, its movement is described by
the coordinate x. The mass of the beam is connected to the refuge of a linear spring and linear
damper kx and cx. Each pendulum consists of a light beam of length l and a mass mounted at
its end. We consider the pendulums with the same length l but different masses m1 and m2.
The motion of the pendulums is described by angles ϕ1 and ϕ2 and is self-excited by van der
Pol’s type of damping (not shown in Fig. 1) given by momentum (torgue) cϕvdpϕ̇l(1−ζ

2
l ), where

cϕvdp and ζ are constant.

Fig. 1. The model of the system – two self-excited pendulums mounted to the beam which can move
horizontally

The object of studies, whose results are presented in this paper differ from the earlier ones
(Czolczynski et al., 2009a,b, 2011; Kapitaniak et al., 2012; Perlikowski et al., 2012) – as instead
of the clocks with pendulums driven by a discontinuous escapement mechanism, we consider
two self-excited pendulums with van der Pol’s type of damping. The mathematical description
of these pendulums contains the self-excited component cϕvdpϕ̇ and energy-dissipating compo-
nent −cϕvdpζϕ̇ϕ

2. The balance of these components results in creation of a stable limit cycle
(Andronov et al., 1966).

The equations of motion of the considered system are as follows

m1l
2ϕ̈1 +m1ẍl cosϕ1 + cϕvdpϕ̇1(1− ζϕ

2
1) +m1gl sinϕ1 = 0

m2l
2ϕ̈2 +m2ẍl cosϕ2 + cϕvdpϕ̇2(1− ζϕ

2
2) +m2gl sinϕ2 = 0

(2.1)

and

(

M +
2
∑

i=1

mi
)

ẍ+ cxẋ+ kxx+
2
∑

i=1

mil(ϕ̈i cosϕi − ϕ̇
2
i sinϕi) = 0 (2.2)

Equations (2.1) and (2.2), contrary to the equations considered in Czolczynski et al. (2009a,b,
2011), Kapitaniak et al. (2012), Perlikowski et al. (2012), are continuous.
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3. Energy balance of the system

Multiplying both sides of Eq. (2.1) by the angular velocity ϕi, one gets

mil
2ϕ̈iϕ̇i +miglϕ̇i sinϕi = −cϕvdpϕ̇

2
i + cϕvdpζϕ̇

2
iϕ
2
i −miẍl cosϕiϕ̇i i = 1, 2 (3.1)

In the case of periodic oscillations with period T , integration of Eq. (2.2) gives the following
energy balance

T
∫

0

mil
2ϕ̈iϕ̇i dt+

T
∫

0

miglϕ̇i sinϕi dt = −

T
∫

0

cϕvdpϕ̇
2
i dt+

T
∫

0

cϕvdpζϕ̇
2
iϕ
2
i dt

−

T
∫

0

miẍl cosϕiϕ̇i dt i = 1, 2

(3.2)

The left hand side of Eq. (3.2) represents the increase of the total energy of i-th pendulum,
which in the case of periodic oscillations is equal to zero

T
∫

0

mil
2ϕ̈iϕ̇i dt +

T
∫

0

miglϕ̇i sinϕi dt = 0 i = 1, 2 (3.3)

The energy supplied to the system by van der Pol’s damper in one period of oscillations is given
by

W SELFi = −

T
∫

0

cϕvdpϕ̇
2
i dt i = 1, 2 (3.4)

The next component on the right hand side of Eq. (3.2) represents the energy dissipated by the
van der Pol damper

WVDPi = −

T
∫

0

cϕvdpζϕ
2ϕ̇2i dt i = 1, 2 (3.5)

The last component of Eq. (3.2) represents the energy transfer from the pendulum to the beam
or to the second pendulum (via the beam)

W SYNi =

T
∫

0

miẍl cosϕiϕ̇i dt i = 1, 2 (3.6)

Substituting Eqs. (3.3)-(3.6) into Eq. (3.2), one gets energy balances of the pendulums in the
form

W SELF1 −WVDP1 −W SYN1 = 0

W SELF2 −WVDP2 −W SYN2 = 0
(3.7)

Multiplying equation of motion (2.2) by the beam velocity ẋ, one gets

(

M +
2
∑

i=1

mi
)

ẍẋ+ cxẋ
2 + kxxẋ+

(

2
∑

i=1

mil(ϕ̈i cosϕi − ϕ̇
2
i sinϕi)

)

ẋ = 0 (3.8)
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Integrating Eq. (3.8) over the period of oscillations, we obtain the following energy balance

T
∫

0

(

M+
2
∑

i=1

mi
)

ẍẋ dt+

T
∫

0

kxxẋ dt = −

T
∫

0

(

2
∑

i=1

mil(ϕ̈i cosϕi−ϕ̇
2
i sinϕi)

)

ẋ dt−

T
∫

0

cxẋ
2 dt (3.9)

The left hand side of Eq. (3.9) represents the increase of the total energy of the beam, which for
the periodic oscillations is equal to zero

T
∫

0

(

M +
2
∑

i=1

mi
)

ẍẋ dt+

T
∫

0

kxxẋ dt+ = 0 (3.10)

The first component on the right-hand side of Eq.(3.9) represents the work performed by the
horizontal component of the force with which the pendulums act on the beam causing its motion

WDRIVEbeam = −

T
∫

0

(

2
∑

i=1

mil(ϕ̈i cosϕi − ϕ̇
2
i sinϕi)

)

ẋ dt (3.11)

The second component on the right hand side of Eq.(3.9) represents the energy dissipated by
the damper cx

WDAMPbeam =

T
∫

0

cxẋ
2 dt (3.12)

Substituting Eqs. (3.10)-(2.12) into Eq. (3.9), one gets the energy balance in the following form

WDRIVEbeam −WDAMPbeam = 0 (3.13)

In the case of periodic oscillations, it is possible to prove that

W SYN1 +W SYN2 =WDRIVEbeam =WDAMPbeam (3.14)

so adding Eqs. (3.7) and (3.13) and considering Eq.(3.14) one obtains

WDRIVE1 +WDRIVE2 −WDAMP1 −WDAMP2 −WDAMPbeam = 0 (3.15)

Equation (3.15) represents the energy balance of the whole system (1,2).

4. Numerical results

We perform a series of numerical simulations in which Eqs. (2.1) and (2.2) have been integrated
using the Runge-Kutta method. The primary objective of these simulations is to investigate the
influence of nonidentity of the pendulums on the observed types of synchronization.
In our numerical studies, we consider the following parameters: mass of pendulum 1

m1 = 1.0 kg; pendulums length l = g/4π
2 = 0.2485m (g = 9.81m/s2) (chosen so that the-

ir period of free oscillations in the case of unmovable beam is T = 1.0 s and the frequency
of free oscillations α = 2π s−1), negative damping coefficient causing self-excited oscillations
cϕvdp = −0.01Nms; van der Pol coefficient ζ = 60.0; beam mass M = 10.0 kg, beam damping
coefficient cx = 1.53Ns/m, beam stiffness coefficient kx = 4.0N/m. We assume the mass of the
second pendulum m2 as a control parameter.
Note that because the coefficients of self-oscillations cϕvdp and damping ζ of the two pendu-

lums are the same, in the case of an unmovable beam both pendulums have the same amplitude
Φ = 0.26 (≈ 15◦), regardless of their masses. The motion of the beam may change both the
period and amplitude of oscillations.
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4.1. From complete to almost-antiphase synchronization

The evolution of system (1,2) behavior starting from the complete synchronization of iden-
tical pendulums (m1 = m2 = 1.0 kg) and increasing the value of control parameter m2 is
illustrated in Figs. 2a-2f. Figure 2a presents the bifurcation diagram for the increasing values
of m2 (m2 ∈ [1.0, 6.0]). On the vertical axis, we show the maximum displacement ϕ1 of pen-
dulum 1, and the displacements of pendulum 2 – ϕ2 as well as of the beam x recorded at
moments when ϕ1 is maximum. Creating this diagram, we start with the state of complete syn-
chronization of the pendulums with masses m1 = m2 = 1.0 kg, during which they are moving
in the same way (ϕ1 = ϕ2) in antiphase to the movement of the beam.

Fig. 2. Evolution from the complete to almost-antiphase synchronization; (a) bifurcation diagram for
increasing values of m2, (b) time histories of almost-complete synchronization m1 = 1.0 kg and
m2 = 2.0 kg; (c) plots of system energy; (d) time histories of almost-complete synchronization for
m1 = 1.0 kg and m2 = 3.5 kg; (e) time histories of almost-antiphase synchronization: m1 = 1.0 kg,

m2 = 5.0 kg; (f) nonstationary complete synchronization: m1 = m2 = 3.0 kg
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Increasing the value of m2, we observe that initially both pendulums are in the state of
almost-complete synchronization. Figure 2b found for m1 = 1.0 kg, m2 = 2.0 kg shows the
displacements ϕ1 ≈ ϕ2 and the displacement of the beam x (for better visibility enlarged
10 times) as a function of time (on the horizontal axis, the time is expressed as the number of
periods of free oscillations of pendulums suspended on an unmovable beam – N). Notice that
the differences ϕ1-ϕ2 are hardly visible.
Further increase of the mass m2 causes an increase of the amplitude of pendulums oscillations

and an increase of the amplitude of beam oscillations as can be seen in Fig. 2d (m2 = 3.5 kg). One
also observes an increase of the period of pendulum oscillations (Fig. 2b presents 11.25 periods
of oscillations while Fig. 2d – 12 periods in the same time). This is due to the fact that with the
increasing mass of pendulum 2, the center of mass moves towards the ends of the pendulums,
i.e., towards the material points with masses m1 and m2, and moves away from the beam with
the constant mass.
Noteworthy is the fact that in the state of complete synchronization, when the displacements

of both pendulums fulfill the relation ϕ1(t) = ϕ2(t), the energy transmitted to the beam by each
pendulum is proportional to its mass. Therefore, these energies satisfy the following equations

W SELF1 =

T
∫

0

cϕvdpϕ̇
2
1 dt =

T
∫

0

cϕvdpϕ̇
2
2 dt =W

SELF
2

WVDP1 =

T
∫

0

cϕvdpζϕ̇
2
1ϕ
2
1 dt =

T
∫

0

cϕvdpζϕ̇
2
2ϕ
2
2 dt =W

VDP
2

W SYN1 =

T
∫

0

m1ẍl cosϕ1ϕ̇1 dt =
m1
m2

T
∫

0

m2ẍl cosϕ2ϕ̇2 dt =
m1
m2
W SYN2

(4.1)

After substituting Eqs. (4.1) into Eqs. (3.7), Eqs. (3.7) become contradictory (except for spe-
cial non-robust case of two identical pendulums when m1 = m2). In the general case when
m1 6= m2, instead of the complete synchronization, an almost-complete synchronization occurs
during which the displacements and velocities of the pendulums are almost-equal, and appro-
priate energies satisfy the following equations

WDAMP1 =

T
∫

0

cϕϕ̇
2
1 dt ≈

T
∫

0

cϕϕ̇
2
2 dt =W

DAMP
2

W SYN1 =

T
∫

0

m1ẍl cosϕ1ϕ̇1 dt ≈

T
∫

0

m2ẍl cosϕ2ϕ̇2 dt =W
SYN
2

W SELF1 =

T
∫

0

cϕvdpϕ̇
2
1 dt ≈

T
∫

0

cϕvdpϕ̇
2
2 dt =W

SELF
2

WVDP1 =

T
∫

0

cϕvdpζϕ̇
2
1ϕ
2
1 dt ≈

T
∫

0

cϕvdpζϕ̇
2
2ϕ
2
2 dt =W

VDP
2

W SYN1 =

T
∫

0

m1ẍl cosϕ1ϕ̇1 dt ≈

T
∫

0

m2ẍl cosϕ2ϕ̇2 dt =W
SYN
2

(4.2)

After substitution of Eqs. (4.2), the energy equations (3.7) are satisfied for pendulums of different
masses. Figure 2c shows the values of all energies as a function of the mass m2. As one can see,
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for m2 < 4.0 kg all energies are positive. This means that both pendulums transfer a part of
their energy to the beam, causing its motion (see Eq. (3.14)).

For m2 = 4.0 kg, the system undergoes bifurcation, an attractor of an almost-complete
synchronized state loses its stability and we observe the jump to the co-existing attractor of
almost-antiphase synchronization as shown in Fig. 2e (m2 = 5.0 kg). The amplitudes of oscilla-
tions are different but the phase shift between the pendulums is close to π. The oscillations of
the beam are so small that they are not visible in the scale of Fig. 2e.

One can show that when one changes the mass of pendulum 1 to m1 = 2.0 kg, m1 = 3.0 kg,
m1 = 4.0 kg, the bifurcation from almost-complete to almost-antiphase synchronization occurs
respectively for m2 = 3.0 kg, m2 = 2.0 kg and m2 = 1.0 kg. This bifurcation occurs when the
total mass of both pendulums reaches the critical value mcr = 5.0 kg, which depends on the
system parameters, particularly on the beam ones M , cx and kx.

Figure 2f shows the time histories of beam vibrations and oscillations of two pendulums in
the case of identical masses m1 = m2 = 3.0 kg in the state of complete synchronization. These
results have been obtained for identical initial conditions, so that they constitute de facto the
pendulum of mass m = 6.0 > mcr. It is easy to see that this synchronized state is unstable:
small disturbances lead to a stable coexisting attractor of antiphase synchronization. Notice
that for the pendulums with slightly different masses (e.g., m1 = 2.99 kg and m2 = 3.01 kg) it
is impossible to obtain a result similar to that shown in Fig. 2f, even for the identical initial
conditions. Different pendulummasses cause that initially an almost-complete synchronization is
observed, but small differences in ϕ1 and ϕ2 lead to the stable almost-antiphase synchronization.

To summarize the bifurcation diagram in Fig. 2a, the existence of three different types of
synchronization can be disinguished; (i) complete for m1 = m2 = 1.0 kg, (ii) almost-complete
for 1.0 kg < m2 < 4.0 kg , (iii) almost-antiphase for m2 > 4.0 kg.

4.2. From complete synchronization to quasiperiodic oscillations

Evolution of the behavior of system (1,2), starting from the complete synchronization of
identical pendulums (m1 = m2 = 1.0 kg) and decreasing the values of the control parameter m2,
is illustrated in Figs. 3a-3d. Figure 3a shows the bifurcation diagram for decreasing values of
mass m2 (m2 ∈ [0.01, 1.00]). In the interval 1.0 kg > m2 > 0.0975 kg, both pendulums are in
the state of almost-complete synchronization. Their oscillations are “almost-identical” as can
be seen in Fig. 3b for m1 = 1.0 kg and m2 = 0.01 kg – the differences between the amplitudes
and phases of ϕ1 and ϕ2 are close to zero, both pendulums remain in (almost) antiphase to the
oscillations of the beam.

Figure 3c shows values of different energies. Like in the interval 1.0 kg < m2 < 4.0 kg of
Fig. 2c, all energies are positive and both pendulums drive the beam. Further reduction of
the mass m2 leads to the loss of synchronization, and motion of the system becomes quasi-
-periodic. Figure 3d presents the Poincaré map (the displacements and velocities of the pendu-
lums have been taken at the moments of greatest positive displacement of the first pendulum) for
m2 = 0.07 kg. The mechanism of the loss of stability is explained in Fig. 3c. In the interval
0.35 kg > m2 > 0.07 kg, the energy dissipated by the first pendulum W

VDP
1 approaches the le-

vel of the energy supplied by the self-exited component of this pendulum W SELF1 . Consequently,
the energy supplied by the first pendulum to the beam W SYN1 decreases. The energy supplied
to the system by the second pendulum also decreases W SELF2 , which drives the pendulum from
the beam. For m2 < 0.07 kg, the energy balance is disrupted: pendulum 2 has not enough ener-
gy to cause its oscillations, the oscillations of the beam additionally support the oscillations of
pendulum 1. In this case, the almost-antiphase synchronization is not possible (see Section 3.4),
and system (1,2) exhibits quasiperiodic oscillations.
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Fig. 3. Evolution from the complete synchronization to quasiperiodic oscillations; (a) bifurcation
diagram for increasing values of m2, (b) time histories of almost-complete synchronization for

m1 = 1.0 kg and m2 = 0.1 kg, (c) energy plots, (d) Poincaré map showing quasiperiodic oscillations for
m1 = 1.0 kg and m2 = 0.07 kg

In summary, the bifurcation diagram in Fig. 3a shows the existence of: (i) complete synchroni-
zation for m1 = m2 = 1.0 kg, (ii) almost-complete synchronization for 1.0 kg > m2 > 0.0975 kg,
(iii) the lack of synchronization and quasi-periodic oscillations for m2 < 0.0975 kg.

4.3. From antiphase to almost-antiphase synchronization

The evolution of the system (1,2) behavior starting from antiphase synchronization of iden-
tical pendulums (m1 = m2 = 1.0 kg) and the increase of the values of the control parameter m2
are illustrated in Figs. 4a-4d. Figure 4a presents another bifurcation diagram for the increasing
values of m2 (m2 ∈ [1.0, 6.0]). This time we start with a state of antiphase synchronization of
the pendulums with masses m1 = m2 = 1.0 kg, during which two pendulums are moving in the
same way (ϕ1 = −ϕ2) and the beam is at rest.

The increase of the control parameter m2 leads to the reduction of pendulum 2 amplitude
of oscillations but the amplitude of oscillations of pendulum 1 remains nearly constant. The
pendulums remain in a state of almost-phase synchronization: the phase shift between the di-
splacements is close to π, as shown in Fig. 4b (m1 = 1.0 kg, m2 = 1.5 kg). The displacement of
the beam is practically equal to zero.

In the state of antiphase synchronization when the pendulums’ oscillations satisfy the con-
dition ϕ1(t) = −ϕ2(t), two van der Pol’s dampers dissipate the same amount of energy. The
energies transmitted by both pendulums to the beam have absolute values proportional to pen-
dulums masses and opposite signs



Energy balance of two synchronized self-excited pendulums... 737

Fig. 4. Evolution from antiphase to almost-anitphase synchronization; (a) bifurcation diagram for
increasing values of m2, (b) time series of almost-antiphase synchronization for m1 = 1.0 kg and

m2 = 1.5 kg, (c) energy plots, (d) time series of almost-antiphase synchronization for m1 = 1.0 kg and
m2 = 20.0kg

W SELF1 =

T
∫

0

cϕvdpϕ̇
2
1 dt =

T
∫

0

cϕvdpϕ̇
2
2 dt =W

SELF
2

WVDP1 =

T
∫

0

cϕvdpζϕ̇
2
1ϕ
2
1 dt =

T
∫

0

cϕvdpζϕ̇
2
2ϕ
2
2 dt =W

VDP
2

W SYN1 =

T
∫

0

m1ẍl cosϕ1ϕ̇1 dt = −
m1
m2

T
∫

0

m2ẍl cosϕ2ϕ̇2 dt = −
m1
m2
W SYN2

(4.3)

After substituting the energy values satisfying Eqs. (4.3) into Eqs. (3.7), Eqs.(3.7) are not
contradictory equations only when the beam acceleration is zero, which implies the zero value
of its velocity and acceleration (in the synchronization state of the behavior of the system is
periodic). This condition requires the balancing of the forces which act on the pendulum beam,
and this in turn requires that the pendulums have the same mass. If the pendulums’ masses are
different, instead of antiphase synchronization we observe an almost-antiphase synchronization,
during which the pendulums’ displacements have different amplitudes and phase shift between
these displacements is close, but not equal to π. Hence

W SELF1 6=W SELF2 WVDP1 6=WVDP2 W SYN1 6=W SYN2 (4.4)

The values of each considered energy is shown in Fig. 4c. In a state of almost-antiphase synchro-
nization we have W SELF1 < WVDP1 and W SELF2 > WVDP2 . W SELF2 part of the energy W SELF2
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supplied by van der Pol’s damper of pendulum 2 (with a greater mass) is transferred via the
beam as W SYN2 to the pendulum 1 (for this pendulum it is negative energy denoted by W SYN1 )
and together with the energy W SELF1 dissipated as WVDP1 by van der Pol damper. Van der
Pol’s component of pendulum 2 dissipates the rest of the energy W SELF2 , as WVDP2 . The energy
dissipated by the beam damper is negligibly small, because the beam virtually does not move.

Figure 4d shows the time series of the system oscillations for the m2 = 20.0 kg. We observe
that further increase m2 causes the reduction of the amplitude of pendulum 2 oscillations, the
amplitude of oscillations of pendulum 1 remains unchanged. It can be observed that when the
mass m2 increases, the equality of forces, with which the pendulums act on the beam occurs
at decreasing amplitude of oscillations of pendulum 2. Pendulum 1 (with a smaller mass) has a
virtually constant amplitude of oscillations and works here as a classical dynamical damper.

The comparison of Fig. 2a and Fig. 4a indicates that in the interval 1.0 kg < m2 < 4.0 kg
almost-complete and almost-antiphase synchronization coexist (which of them takes place the
initial conditions decide).

In summary, the diagram shown in Fig. 4a shows the existence of: (i) antiphase synchroniza-
tion for m1 = m2 = 1.0 kg, (ii) almost-antiphase synchronization for 1.0 kg < m2 < 6.0 kg (our
research shows that this state is preserved for larger values m2).

4.4. From antiphase synchronization to quasiperiodic oscillations

The evolution of system (1,2) behavior starting from antiphase synchronization of identical
pendulums (m1 = m2 = 1.0 kg) and the decrease of the values of the control parameter m2
are illustrated in Figs. 5a-5d. Figure 5a shows the bifurcation diagram of the system (1,2)
for decreasing values of m2 (m2 decreases from an initial value 1.0 up to 0.01). We start
from the state of antiphase synchronization observed for m1 = m2 = 1.0 kg. In the interval
1.0 kg > m2 > 0.45 kg, both pendulums are in the state of almost-antiphase synchronization,
as shown in Fig. 5b for m2 = 0.5 kg. We observe a phenomenon similar to that of Fig. 4a, i.e.,
when decreasing mass m2, the amplitude of oscillations of pendulum 1 decreases (in this case
pendulum 1 has a larger mass), the amplitude of pendulum 2 oscillations is practically constant
and pendulum 2 acts as a dynamical damper. In Fig. 5c one can see the negative energy W SYN2
– there is a transfer of energy from pendulum 1 to pendulum 2.

For m2 = 0.45 kg we observe the loss of synchronization due to the fact that energy W
SELF
1

becomes equal to energy W SYN1 which means that all the energy supplied to pendulum 1 by van
der Pol’s damper is transmitted to pendulum 2. For smaller values of m2, pendulum 2 is not able
to supply the energy needed to maintain a state of almost-antiphase synchronization and the
system first obtains the state of almost-complete synchronization, and next when m2 < 0.095 kg
exhibits unsynchronized quasi-periodic oscillations. The behavior of the system for m2 < 0415 kg
has been described in Section 2.2.

In the narrow interval between the state of almost-antiphase and the state of almost-complete
synchronization, i.e., for 0.45 kg > m2 > 0415 kg we observe quasiperiodic oscillations of the
system, as shown on the Poincaré map of Fig. 5d (m2 = 0.44 kg).

The bifurcation diagram of Fig. 5a shows the existence of: (i) antiphase synchronization for
m1 = m2 = 1.0 kg, (ii) almost-antiphase synchronization for 1.0 kg > m2 > 0.45 kg, (iii) the
lack of synchronization and quasi-periodic oscillations for 0.45 kg > m2 > 0.415 kg, (iv) almost-
-complete synchronization for 0.415 kg > m2 > 0.095 kg, (v) the lack of synchronization and
quasi-periodic oscillations for m2 < 0.095 kg.



Energy balance of two synchronized self-excited pendulums... 739

Fig. 5. Evolution from antiphase synchronization to quasiperiodic oscillations; (a) bifurcation diagram
of system (1,2) for decreasing m2, (b) time series of almost-antiphase synchronization for m1 = 1.0 kg,
m2 = 0.5 kg, (c) energy plots, (d) Poincaré maps showing quasiperiodic oscillations for m1 = 1.0 kg and

m2 = 0.44kg

5. Conclusions

Our studies show that the system consisting of a beam and two self-excited pendulums with
van der Pol’s type of damping can perform four types of synchronization: (i) complete syn-
chronization (possible only for nonrobust case of identical masses of both pendulums), i.e., the
periodic motion of the system during which the displacements of both pendulums are identical
(ϕ1(t) = ϕ2(t)), (ii) almost-complete synchronization of the pendulums with different masses,
in which phase difference between the displacements ϕ1(t) and ϕ2(t) is small (not larger than a
few degrees), (iii) antiphase synchronization (possible only for nonrobust case of identical masses
of both pendulums), i.e., the periodic motion of the system, during which the phase difference
between the displacements ϕ1(t) and ϕ2(t) is equal to 180

◦, (iv) almost-antiphase synchroni-
zation, during which the phase difference between the displacements ϕ1(t) and ϕ2(t) is close
to 180◦ and the amplitude of oscillations of both pendulums are different.

The observed behavior of the system (1,2) can be explained by the energy expressions derived
in Section 3. The examples of the energy flow diagrams are shown in Figs. 6a,b. In the state (ii)
both pendulums drive the beam (transferring to it part of the energy obtained from van der
Pol’s dampers) as seen in Fig. 6a. In the case (iv) the pendulum with larger mass and smaller
amplitude of oscillations transmits part of its energy to the pendulum lower mass. The beam
motion is negligibly small and the pendulum with lower mass reduces the amplitude of vibration
of the pendulum with larger mass, acting on the classical model of the dynamic damper.

We identified two reasons for the sudden change of the attractor in system (1,2); (i) loss of
stability of one type of synchronization after which the system trajectory jumps to the coexisting
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Fig. 6. Energy balances of the system (1,2); (a) almost-complete synchronization – both pendulums
driver the beam, (b) almost-antiphase synchronization – pendulum 1 drives pendulum 2 via the beam

synchronization state, (ii) inability of van der Pol’s damper of one of the pendulums energy
necessary to drive the second pendulum.
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Bilans energii dwóch zsynchronizowanych wahadeł samowzbudnych o różnych masach

Streszczenie

Artykuł prezentuje analizę zjawiska synchronizacji dwóch wahadeł samowzbudnych o różnych ma-
sach. Pokazano, że jeśli takie wahadła zostaną zawieszone na wspólnej, ruchomej podstawie, zachodzi
zjawisko ich (prawie) zupełnej lub (prawie) antyfazowej synchronizacji. Analiza bilansu energetycznego
układu pozwala na określenie parametrów układu w stanie synchronizacji (amplitudy drgań i przesunięcia
fazowe). Analiza bilansu energetycznego wyjaśnia także mechanizm synchronizowania się ruchu wahadeł:
stały przepływ strumienia energii od jednego wahadła, via wspólna ruchoma podstawa, do drugiego wa-
hadła powoduje, że ruch układu jest okresowy, a przesunięcia fazowe pomiędzy wahadłami przyjmują
stałe, charakterystyczne wartości.
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