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This paper focuses on the optimal vibration control of clamped-free conical shells using di-
stributed helical piezoelectric sensor/actuator (S/A) pairs. Based on the independent modal
space control, the response of conical shell to external excitations is represented by the sum-
mation of all participating natural modes and their respective modal participation factors,
and each mode can be controlled independently. The modal equation is transformed into the
linear state space form. The linear quadratic (LQ) controllers are designed for each indepen-
dent mode. The optimal gain matrix is related to the ratio G∗ between the control voltage
and sensing signal by the modal control force per unit voltage B2 and the sensing signal
per unit displacement C1. Because B2 and C1 change with locations of the S/A pair, the
optimal control effects, modal control forces and corresponding optimal control voltages are
evaluated using two S/A pairs at different locations. The results indicate that the optimal
control method is effective in vibration control of the shell. The optimal control effect also
depends on the location of the S/A pair and modal shapes as well as the modal control force
and input voltage.
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1. Introduction

Thin plates and shells laminated with active sensing and actuation layers regulated by con-
trol electronics are common configurations of smart structures and structronic systems. The
laminated thin shells have desired characteristics, such as precision manipulation, light weight,
highly integrated, size/energy savings, etc. Among commonly used smart materials, piezoelec-
tric materials are widely used in laminated smart structures for vibration control, shape control,
structural diagnosis, energy harvesting and so on (Chai et al., 2004, 2006; Tzou et al., 2003;
Tzou and Fu, 1994). In vibration control applications, piezoelectric layers are attached to the
substructure and work on both direct and converse piezoelectric effects. In the direct mode, the
piezoelectric patch performs as a sensor, and the sensing signals can be used for the controller.
With the converse effect, the piezoelectric patches perform as actuators, and they generate the
control force for structural actuation and control (Tzou, 1993).

The conical shell is widely used in nozzles, hones, aerospace structures, submarines; for exam-
ple, spacecraft adapters and noses of rockets and missiles. In these applications, conical shells
are subjected to severe dynamic loads and, thus, active vibration control is necessary to protect
the payload or guarantee shape precision of the shell structure. Dynamic and elastic behavior
of conical shells have been investigated for decades. Leissa (1993) reviewed and summarized
earlier work. Studies of vibration behavior of conical shells and conical panels as well as the
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multi-layered conical shells were carried out using the kernel particle (KP) Ritz method (Liew
et al., 2005). Piezoelectric materials are prevalent for distributed sensing and active control of
shells. The sensing signals and control actions of piezoelectric sensors and actuators are related
to the location, size, shape and contributing modes. And certain vibration modes cannot be
controlled by using fully distributed sensors and actuators due to the lack of observability and
controllability (Tzou, 1993).

The optimal control technology, as an effective control algorithm, has been adapted to the
control of beams and plates (Chellabi et al., 2009; Chen and Shen, 1997; To and Chen, 2007). But
the applications to distributed shell structures are still not well explored. Tzou and Ding (2004)
investigated the optimal control of precision paraboloidal shell structronic systems. A linear
quadratic optimal state feedback controller was designed to suppress the transverse vibrations
using the independent modal control method. Ray (2003) reported the active vibration control
of a shell panel using the optimal control algorithm, and found that the piezoelectric actuators
need higher control voltages as the panel width (central angle) decreases to achieve equivalent
control effects.

This study focuses on the optimal vibration control of conical shells using surfaced laminated
revolving helical sensor/actuator pairs. Thin helical-shape sensors and actuators are collocated
on both surfaces of the conical shells. This helical arrangement is used to avoid the observation
of spillover. The equations of motion are given for conical shell first, followed by the derivation
of modal vibration equations, and then transformed into the first-order linear state space form.
The modal participation factor and its time derivative are chosen to be the state vector; the
sensing signal and modal control force are chosen as the system output vector and control input
respectively. The LQ controller is designed for each independent mode. The optimal gain matrix
is evaluated by minimizing the performance criterion function. Then case studies are performed
to evaluate the control effectiveness.

2. Dynamics and actuation of conical shells

Revolving helical distributed piezoelectric sensors and actuators (S/A) are laminated on the
conical shell surface. In the control procedure, the dynamic response is detected by piezoelectric
sensors, and the signals are subsequently used as the control input. The controller estimates the
required control voltage based on the vibrational signal and then generates a control signal to
the power amplifier (PA). The PA generates the accurate voltage to actuate the piezoelectric
actuator. Thus, the vibration characteristics should be investigated before the controller design
in the control procedure.

It is assumed that the truncated conical shell of an revolution is made of isotropic material,
and the shell is thin so that the Kirchhoff-Love assumptions are applicable (Tzou, 1993). Also,
since the S/A layers are much thinner than the shell structure, their mass and elasticity are
negligible, and only the piezoelectric sensing/actuation effects are considered. Figure 1 shows the
conical shell model in which the tri-orthogonal coordinate system (x, ψ, 3) locates on the neutral
surface of the shell, where x is the longitudinal coordinate, ψ the circumferential coordinate,
and α3 the thickness direction. The shell is defined from x1 (minor end) to x2 (major end) in
the x coordinate, and from – h/2 to h/2 in the α3 coordinate, where h is shell thickness. The
hatched area represents the helical piezoelectric S/A strips. The conical shell has semi-vertex
angle β∗, the sensor stripe has thickness hS and the actuator has thickness ha.

The equations of motion for a thin circular conical shell in linear vibration are given as
(Soedel, 2004)
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Fig. 1. Definition of conical shell with helical piezoelectric sensor/actuator
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where Nij and Mij are the membrane forces and the bending moments respectively; ρ is the
shell mass density; qi is the mechanical load; ui is the displacement response in the i-th direction
and i = x, ψ, 3.
In the vibration analysis of conical shells, the modal expansion method is used to synthesize

the dynamic response using known mode shape functions. The amount of each modal parti-
cipation in the total dynamic response is defined by a modal participation factor. The total
dynamic response can be represented by the summation of all participating natural modes and
their respective modal participation factors (Tzou, 1993)

ui(x, ψ, t) =
∞∑

m=1

ηm(t)Uim(x, ψ) (2.3)

where the subscript i = x, ψ, 3 denotes the coordinate; ηm(t) is the modal participation factor;
Uim(x, ψ) is the modal shape function of the m-th mode; and the subscript m = 1, 2, . . . of
a shell continuum. Therefore, imposing the modal orthogonality, transforming shell Eqs. (2.1)
into the modal coordinate and adding the modal viscous damping yields the independent modal
vibration equation

η̈m + 2ζmωmη̇m + ω
2
mηm = Fm(t) (2.4)
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where ωm is the m-th natural frequency; ζm is the modal damping ratio; Fm(t) is the modal
force which can be decomposed into the mechanical force F̂m and control force F̂

c
m and their

contributing components (T̂m)i,j

Fm = F̂m + F̂
c
m (2.5)

and

F̂m =
1

ρhNm

∫

x

∫

ψ

( 3∑

i=1

qiUim
)
x sin β∗ dψ dx

F̂ cm = (T̂m)x,mem + (T̂m)x,bend + (T̂m)ψ,mem + (T̂m)ψ,bend

(2.6)

where (T̂m)i,j is the modal control force components, i.e., the longitudinal membrane and ben-
ding components ((T̂m)x,mem , (T̂m)x,bend) and the circumferential membrane and bending com-

ponents ((T̂m)ψ,mem , (T̂m)ψ,bend ) derived later. At the steady state, the response is also harmonic,
but lagging behind by a phase angle ψm

ηm(t) = η
∗

me
j(ωt−ψm) (2.7)

where j =
√
−1; ω is the frequency of excitation; and η∗m is the response magnitude

η∗m =
Fm

ω2m
√
[1− (ω/ωm)2]3 + 4ζ2m(ω/ωm)2

ψm = tan
−1 2ζ(ω/ωm)

1− (ω/ωm)2
(2.8)

Both the modal mechanical force and the modal control force are functions of the mode shape
function. The mode shape functions depends on the boundary conditions in this study, because
the mode shape function should satisfy the geometrical constrains at the boundaries. Then the
constants in the modal functions are solved using the Rayleigh-Ritz method. In this study, the
boundary conditions are chosen to be clamped at the major end and free at the minor end,
i.e., similar to a nozzle setup. The modal functions for clamped-free conical shells are further
assumed as (Leissa and Kang, 1999)

Uxm(x, ψ) = cos(nψ)(x − x2)
I∑

i=0

Aix
i

Uψm(x, ψ) = sin(nψ)(x− x2)
J∑

j=0

Bjx
j

U3m(x, ψ) = cos(nψ)(x− x2)
K∑

k=0

Ckx
k

(2.9)

where n is the circumferential wave number. Ai, Bj and Ck are arbitrary coefficients determined
by using the Rayleigh-Ritz procedure. I, J and K are constants defining the order of the modal
functions. Based on this mode shape functions, the four components, i.e., longitudinal membrane
and bending components and circumferential membrane and bending components of the modal
control force in Eq. (2.6)2 are given as (Li et al., 2010a)
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and

Nm =

x2∫

x1

ψ2∫

ψ1

( 3∑

i=1

U2im

)
x sin β∗ dψ dx (2.11)

where Yp is Young’s modulus of the piezoelectric actuator; r
a is the distance between the shell

neutral surface and the mid-surface of the actuator layer; d31 is the piezoelectric strain constant;
and φa(t) is the control voltage. Assuming that the piezoelectric layer and the shell structure
have a uniform thickness, and the thickness keeps identical over the actuator patch. It is assumed
that only the transverse voltage φ3(x, ψ, t) is considered, i.e., φ

a(t) = φ3(x, ψ, t). δ(·) is a Dirac
delta function. x∗i and ψ

∗

i are locations of the S/A pair.
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The modal sensing signal of the clamped-free conical shell is expressed as

φSm =
hS

Se

xS
2∫

xS
1

ψS
2∫

ψS
1

(h31Sxx + h32Sψψ)x sin β
∗ dψ dx (2.12)

where Sxx and Sψψ are the strains of the m-th mode; h
S is the sensor thickness; h31 and h32

are piezoelectric strain constants; and Se is the electrode area given as

Se =

xS
2∫

xS
1

ψS
2∫

ψS
1

x sin β∗ dψ dx (2.13)

Here the modal sensing signal is a time-domain response, because the strains Sxx and Sψψ are
functions of the modal participation factor ηm(t) and mode shape functions Uim(x, ψ). The
amplitudes of the modal strains are S∗xx and S

∗

ψψ, i.e., Sxx = ηm(t)S
∗

xx and Sψψ = ηm(t)S
∗

ψψ.

Furthermore, the strains can be written as S∗xx = S
0∗
xx − rSxk∗xx and S∗ψψ = S0∗ψψ − rSψk∗ψψ, where

rSi is the distance between the shell neutral surface and the mid-surface of the sensor layer.
Accordingly, the sensing signal φSm can be factorized into four components, i.e., longitudinal
membrane and bending components and circumferential membrane and bending components
(Li et al., 2010b)
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The modal control force and sensing signal are important parameters in the controller design.
The sensing signal represents the dynamic response of the structure and it is usually used as the
input signal to the controller. And the modal control force equations are used by the controller
to evaluate the accurate control voltage to the actuator. The system equation in the state space
and the controller design are presented next.
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3. State space equations

In this section, the modal vibration equation is transformed into the state space since the
state space formulation is fundamental in modern control techniques. The performance criterion
function and optimal gain matrix will be derived next.

The standard form of state space equations are given as (Tzou and Ding, 2004)

ẋ = Ax+Bu+Ew y = Cx (3.1)

where x is the state variable vector; u is the control input vector; w is the external excitation
vector; y is the output vector; A, B, C and E are the system matrix, input matrix, output
matrix and excitation matrix, respectively (Wang et al., 2006). Here the modal participation
factor and its time derivative are chosen as the state variables (Tzou and Ding, 2004)

x =

{
ηm(t)
η̇m(t)

}

(3.2)

According to Eq. (2.6)2, distributed control actions induced by the distributed actuators are
converted into a single modal control force F̂ cm. Therefore, the control input vector reduces into
a single parameter

u = φa (3.3)

The output vector is chosen to be the sensing signal induced by the distributed sensor related
to the m-th mode

y = φSm (3.4)

And the modal mechanical load is chosen to be the external excitation

w = F̂m (3.5)

To keep consistent with Eqs. (3.1)-(3.5), the corresponding coefficient matrices B and E have
to be reduced to be single column vectors, respectively and the matrix C has to be reduced to
be a single row vector.

By substituting the constant matrix and system vectors in Eqs. (3.2)-(3.5), Eq. (2.4) can be
transformed into the first order linear state space form as

{
η̇m(t)
η̈m(t)

}

=

[
0 1
−ω2m −2ζmωm

]{
ηm(t)
η̇m(t)

}

+

{
0
B2

}

φa(t) +

{
0
1

}

F̂m(t)

y = φSm =
[
C1 0

]{ηm(t)
η̇m(t)

} (3.6)

where B2 and C1 are elements of the coefficient matrix B and C, respectively. B2 is the
control modal force generated by the piezoelectric actuator with unit control voltage. And C1 is
the sensing signal generated by the piezoelectric sensor with unit modal participation factor
(ηm = 1).

According to Eqs. (2.6)2 and (2.10), the ratio of the control force and the control input signal
B2 becomes

B2 =
F̂ cm
φa
=
1

φa
[(T̂m)x,mem + (T̂m)x,bend + (T̂m)ψ,mem + (T̂m)ψ,bend ] (3.7)
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The coefficient C1 can be derived according to the signal expressions in Eqs. (2.14) and
(2.15)
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Once the coefficient matrices A, B, C and E are known, the task left is to determine the optimal
controller u so as to minimize the objective quadric function.

4. Optimal control

In this section, the focus is on the development of an optimal control law with the helical
distributed piezoelectric S/A pair. The objective is to determine the control input functions
that minimize the performance criterion given by

J =

∞∫

o

[xTQx+ uTRu] dt (4.1)

where Q is the state weighting matrix, R is the control weighting matrix, both are real sym-
metric, positive-definite. Generally, to achieve quick vibration suppression, a larger value of the
state weight matrix should be chosen. Also, to reduce the energy consumption, a larger value
of R matrix should be chosen (Sethi and Song, 2005). G is the optimal gain matrix (usually
diagonal). The superscript T denotes the matrix transpose. u is the control input vector defined,
in the controller design, the control input vector is usually written as

u = −Gx (4.2)

here G is the optimal controller gain. This gain is a main parameter in active control and it is
a function of the control weighting matrix R, system input vector B and the matrix M

G = R−1BTM (4.3)

where the matrix M is the solution to the Riccati equation

MA+ATM−MBR−1BTM+Q = 0 (4.4)



778 H. Li et al.

In this Riccati equation, the coefficient matrices Q and R are the weighting matrix in Eq. (4.1).
When Q and R are specified, the matrix M can be evaluated. The state weighting matrix is
chosen as

Q =

[
1 0
0 Q22

]

(4.5)

where Q22 is the state weighting coefficient. According to Eq. (3.3), the control input vector
reduces to a single parameter. Therefore, the control weighting matrix R in Eq. (4.1) reduces
to a single parameter R.
As mentioned before, in the distributed control of shell vibrations, the sensing signal from

the sensor in the helical S/A pair is used as the feedback signal. The optimal controller calculates
the control voltage according to the sensing signals

u = φa = −G∗
{
φSm
φ̇Sm

}

= −G∗C1
{
ηm(t)
η̇m(t)

}

= −C1G∗x (4.6)

here G∗ is the gain between the control input u to the sensing signal φSm and its time de-
rivative φ̇Sm. From Eqs. (4.2) and (4.6), one derives the relation between G and G

∗ written
as

G∗ =
1

C1
G (4.7)

This optimal control scheme of conical shells using the revolving helical S/A pair is demon-
strated in case studies presented next.

5. Case studies

In this section, the optimal control of independent modes of a clamped-free conical shell is
investigated by the use of the foregoing algorithm. The conical shell model is made of Plexiglas
material. The hexagonal piezoelectric material polyvinylidene-fluoride (PVDF) is used for the
sensors and actuators, then d31 = d32 and h31 = h32. (Note that the generic mathematical
model and derivations can account for various shell and piezoelectric materials.) The helical
S/A strips are divided into 10 segments or ten S/A pairs; each has its respective electrodes, as
shown in Fig. 2. And the locations of the S/A pairs are defined as

x1 +
i− 1
10
(x2 − x1) < x < x1 +

i

10
(x2 − x1) i = 1, 2, 3, . . . , 10

x− x2
x1 − x2

α∗ − w

2
< ψ <

x− x2
x1 − x2

α∗ +
w

2

where α∗ = π/4 is the orientation angle of the diagonal strips in the circumferential direction
and w is their width. The structural and material parameters are listed in Table 1.
Four cases are performed to evaluate the controller of the clamped-free conical shell: case 1 –

optimal control of mode (1,2); case 2 – optimal control of mode (2,2); case 3 – optimal control of
mode (1,3); and case 4 – optimal control of mode (2,3). The parameters in the modal functions
are chosen as I = J = K = 4. It is assumed that:

1) no external mechanical excitation is applied to the shell,

2) the structural damping effect of the conical shell is 1% for each mode,

3) the initial velocity is 0m/s,

4) the initial displacement of the reference point is 0.001m.
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Fig. 2. Locations of S/A pair segments

Table 1. Geometry and material properties of the conical shell control system

Parameters Plexiglas shell PVDF layer Units

Location x1 = 0.2 – m
x2 = 0.5 – m

Semi-vertex angle β∗ = π/4 – rad

Thickness h = 2 · 10−3 hS = ha = 0.5 · 10−3 m

Width – w = 0.2 rad

Young’s modulus Y = 3.1 · 109 Yp = 2.0 · 109 N/m2

Poisson’s ratio µ = 0.3 – –

Mass density ρ = 1190.0 ρp = 1800.0 kg/m3

Piezoelectric const. – h31 = 4.32 · 108 V/m
– d31 = 2.3 · 10−11 C/N

The reference points used in the four cases are the points on the shell surface where the vibra-
tional displacement amplitude gets the maximal value. The corresponding initial modal partici-
pation factors are evaluated via dividing the initial displacements by the modal shape functions.
The snap-back response is used to evaluate the shell control effectiveness.

To enhance the vibration control, the S/A segment at the optimal location is chosen for the
vibration control for each mode. Also, S/A-2 is chosen in the optimal control of each mode. The
selected S/A segments are listed in Table 2.

Table 2. S/A segments chosen for the specific modal control

m
n

2 3

1 No. 2 and 5 No. 2 and 5

2 No. 2 and 9 No. 2 and 9

In the four cases, the control performances of both S/A segments are evaluated. The optimal
controllers are firstly designed to satisfy the expected control performances and control voltage
requirements. In this case, the control input weighting coefficient R is chosen to be 1. The state
weighting matrix Q is set as a diagonal positive-definite matrix, where Q11 = 1 and Q22 is
the design parameter of the optimal controller with the expected efficiency and cost. Q22 is
evaluated using the following empirical equation



780 H. Li et al.

Q22 = [q1 + q2 cos(q3ωm,n) + q4 sin(q3ωm,n)]
√
|BOpt2,mn/BSA2

2,mn|

where

q1 = 5.72 · 104 q2 = −2.20 · 104 q3 = 2.36 · 10−3 q4 = −7.57 · 104

and BOpt2,mn is the ratio of the control force and the control input signal of the optimal S/A

segment; and BSA2
2,mn is the ratio of the control force and the control input signal of the S/A-2

segment. Generally, higher control voltage results in better vibration suppression effects, but
high voltage may lead to overload or damage to the control system. And this empirical equation
is chosen to avoid the overload and to guarantee the control effects.

Case 1: Optimal control of mode (1,2)

The time domain displacement responses of the conical shell, control voltages, damping ratio
and optimal gains G∗ are solved for each S/A segment. Figure 3 shows the displacement response
of the reference point with respect to time for mode (1,2). The thin solid line is the displacement
response of the conical shell without control; the dashed line is the displacement response with
the optimal control using S/A-2; and the thick solid line is the displacement response with the
optimal control using the optimal S/A segments (No. 5). In this mode, the optimal controller is
effective to vibration control, and the optimal S/A segment generates more damping. The modal
ratio using S/A-2 is 0.317%, and the damping ratio using the optimal S/A segment is 0.47%.
The optimal gain G∗ of S/A-2 is [2.62E-9, 30.3], and it is [1.07E-9, 9.92] for the optimal S/A
segment. Figure 4 shows the control voltages for both S/A segments.

Fig. 3. Displacement response of (1,2) mode using S/A-2 and S/A-5 (optimal)

Fig. 4. Control voltages of S/A-2 and S/A-5 (optimal), mode (1,2)
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Case 2: Optimal control of mode (2,2)

In the control of mode (2,2), the optimal S/A segment (No. 9) is much more effective than
S/A-2, as shown in Fig. 5. The displacement response of the conical shell reduces to zero at
t = 0.025 s using the optimal S/A-9, and the modal damping ratio is 4.74%. S/A-2 generates
a damping ratio of 0.120%. The optimal gain G∗ for S/A-2 is [1.06E-8, 26.3], and it is [9.73E-
9, 2.61] for the optimal S/A-9. At mode (2,2), the control voltages for S/A-2 and the optimal S/A
have opposite phases, as shown in Fig. 6. This is because that the two S/A segments have different
locations. At this mode, the optimal S/A generate a positive actuation force (extensional modal
control force) while applying positive voltage, but S/A-2 generates a negative modal control
force (shrink force) with the same voltage. Therefore, to generate the same control effects, the
S/A segments need opposite control voltage.

Fig. 5. Displacement response of (2,2) mode using S/A-2 and S/A-9 (optimal)

Fig. 6. Control voltages of S/A-2 and S/A-9 (optimal), mode (2,2)

Case 3: Optimal control of mode (1,3)

At mode (1,3), the modal damping ratio of optimal S/A segments is 2.29%, the modal
damping ratio of S/A-2 is 0.948%, but the control voltage of the optimal S/A-5 is lower than
the voltage of S/A-2, as shown in Figs. 7 and 8. The optimal gain G∗ of S/A-2 is [2.84E-9, 21.3],
and it is [−1.75E-8,−59.2] for the optimal S/A-9.

Case 4: Optimal control of mode (2,3)

Figure 9 shows the displacement response of the conical shell at mode (2,3). The optimal
S/A reduces the vibration to zero at t = 0.03 s, and the modal damping ratio is 4.94%. The
modal damping ratio of S/A-2 is 1.11%. The optimal gain G∗ of S/A-2 is [3.51E-8, 67.7], and
the optimal gain G∗ for the optimal S/A-9 is [1.81E-8, 7.25]. But the control voltage of S/A-9
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Fig. 7. Displacement response of (1,3) mode using S/A-2 and S/A-5 (optimal)

Fig. 8. Control voltages of S/A-2 and S/A-5 (optimal), mode (1,3)

Fig. 9. Displacement response of (2,3) mode using S/A-2 and S/A-9 (optimal)

Fig. 10. Control voltages of S/A-2 and S/A-9 (optimal), mode (2,3)
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is a little less than the voltage of S/A-2, as shown in Fig. 10. At this mode, the control voltages
of the two S/A segments have opposite phases, for the same reason at mode (2,2).

The proposed optimal controller is effective in the vibration control of conical shell using
different S/A segments. But the control performance mainly depending on the S/A location and
the mode shape. In the numerical case, the S/A-5 is more effective than others in m = 1 modes.
S/A-5 suppresses the vibration more quickly and generates a higher modal damping ratio while
the control voltages are close to each other. In m = 2 modes, S/A-9 at the major end is more
effective. For all evaluated modes, the element G∗1 is far less than the element G

∗

2 of the optimal
gain G∗. This reveals that the control voltage solved by the optimal controller is mainly related
to the modal velocity η̇. The overall control effects depending on the S/A locations, modes and
the control voltage. To get best control effects, the optimal actuator is desired when the control
voltage is given.

6. Conclusions

This study focused on the optimal control of conical shells using distributed revolving helical
piezoelectric sensors and actuators. The helical piezoelectric strips were used as the sensors
and actuators; the sensor strip was laminated on the inner surface of the conical shell and
the actuator strip was laminated on the outer surface. The actuation and sensing equations of
the helical sensors and actuators were given and the dynamic equations were translated into
modal equation. The modal participation factor and its time differential were chosen as the
system state vector, and the state space equation of the vibration equation was established. The
optimal controller was derived using a linear quadratic regulator with output feedback.

Four cases were performed to evaluate the controller at four modes of the clamped-free
conical shell. In each case, two S/A segments or pairs (S/A-2 and the optimal S/A pair) were
chosen to study the performance differences of different S/A segments. For the same controller
or control voltage, the control effects are related to the location of the S/A segments and modes.
The optimal S/A segment is No. 5 in the middle of the conical shell for m = 1 modes; for
m = 2 modes the optimal S/A segment is No. 9 at the major end. The optimal control voltage
is mainly related to the modal velocity. Therefore, the S/A locations for each mode as well as
the weighting matrix and modal control force should be considered in the controller design for
effective vibration control of shells.
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Optymalne sterowanie drganiami powłok stożkowych za pomocą spiralnego skolokowanego
układu czujnika i elementu wykonawczego

Streszczenie

W pracy skoncentrowano się na problemie optymalnego sterowania drganiami jednostronnie zamo-
cowanych powłok stożkowych za pomocą spiralnie ułożonego układu piezoelektrycznego czujnika skolo-
kowanego z elementem wykonawczym (S/A). W oparciu o wyniki płynące z rozwiązania przestrzennego
zagadnienia sterowania modalnego, dynamiczną odpowiedź powłoki na wymuszenie zewnętrzne wyrażo-
no sumą postaci własnych, jednocześnie stwierdzając, że można niezależnie ingerować w poszczególne
postaci własne układu. Równanie modalne przetransformowano do liniowej formuły stanu. Zaprojekto-
wano sterowniki liniowo-kwadratowe (LQ) niezależnie dla każdej postaci własnej. Optymalną macierz
współczynników wzmocnienia skorelowano z transmitancją G∗ pomiędzy napięciem sterowania i sygnału
czujnika poprzez jednostkową siłę sterującą odniesioną do napięcia B2 oraz sygnału czujnika w stosun-
ku do przemieszczenia C1. Ponieważ B2 i C1 zmieniają się wraz ze zmianą położenia skolokowanych
par S/A, przeprowadzono ewaluację modalnych sił sterujących i odpowiadających im napięć dla różnych
położeń układu sterowania. Wyniki badań potwierdziły efektywność optymalnego sterowania drgania-
mi powłoki stożkowej. Zauważono także wrażliwość uzyskanego stopnia sterowania na położenie pary
czujnika i elementu wykonawczego oraz wartości modalnej siły sterującej, jak i napięcia.
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