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A numerical study of an axisymmetric steady laminar incompressible flow of an electrically
conducting micropolar fluid over a stretchable disk is carried out when the fluid is subjected
to an external transverse magnetic field. The governing nonlinear equations of motion are
transformed into a dimensionless form through Von Karman’s logic similarity functions. An
algorithm based on a finite difference scheme is used to solve the reduced coupled nonlinear
ordinary differential equations with the associated boundary conditions. Effects of the mi-
cropolar parameters, the magnetic parameter and the Prandtl number on the flow velocity
and temperature distribution are discussed. Investigations predict that the heat transfer rate
at the surface of the disk increases with an increase in the values of micropolar parameters.
The magnetic field enhances the shear and couple stresses. The shear stress factor is lower
for micropolar fluids as compared to Newtonian fluids, which may be beneficial in flow and
heat control of polymeric processing.
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1. Introduction

The study of flow and heat transfer over a stretching surface has generated much interest in
recent years in view of its numerous industrial applications such as extrusion of polymer sheets,
extrusion of plastic sheet, rolling and manufacturing plastic films, artificial fibres, extrusion
paper production, glass blowing, metal spinning, metal industries and drawing plastic films.
The rate of heat transfer at the stretching surface determines the quality of the final product.
The flow of an incompressible viscous fluid over a stretching surface has an important bearing
on several technological applications in the field of metallurgy and chemical engineering.

Nature is abundant with examples of flows involving non-Newtonian fluids. The flow of
non-Newtonian fluids occurs in a wide variety of applications: from oil and gas well drilling,
to well completion operations, from industrial processes involving waste fluids, synthetic fibres,
foodstuffs to extrusion of molten plastic, and as well as in some flows of polymer solutions.
This class of fluids represents mathematically many industrially important fluids, as paints,
blood, body fluids, polymers, colloidal fluids and suspension fluid and is expected to provide
a mathematical model for the non-Newtonian fluid behavior. Such flows have been attracting
the attention of investigators for a long time. This attraction has been considerably growing
especially during the last few decades. The resulting equations of non-Newtonian fluids are
nonlinear, high order, and much more complicated than the Navier Stokes (NS) equation. The
flow characteristics of non-Newtonian fluids are quite different in comparison to Newtonian
fluids.

The theory of micropolar fluids introduced by Eringen (1964, 1966) takes into account the
microscopic effect arising from the local microstructure and intrinsic motion of fluid particles, and
is expected to provide a mathematical model for the non-Newtonian fluid behavior. Such fluids
can be subjected to surface and body couples in which the material points in a volume element
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can undergo motions about the centre of masses along with the deformation. In practice, the
theory requires that one must solve an additional transport equation representing the principle
of conservation of local angular momentum as well as the usual transport equation for the
conservation of mass and linear momentum, and additional constitutive parameters are also
introduced.

The surface stretching problem was first proposed and analyzed by Sakiadis (1961) based
on the boundary layer approximation. Crane (1970) presented an exact solution of the two di-
mensional NS equations for a stretching sheet problem with the closed analytical form, where
the surface stretching velocity was proportional to the distance from the slot. This problem
was later generalized to a power law stretching velocity (Banks, 1983). However, for the power
law stretching velocity, the solution was not exact any more. The Crane (1970) problem with
suction/injection at the wall was investigated by Gupta and Gupta (1977). Recently, the axisym-
metric stretching surface problem was extended to a stretchable disk with both disk stretching
and rotation by Fang (2007).

Fang and Zhang (2008) presented an exact solution for the steady state NS equations in
cylindrical polar coordinates by a similarity transformation technique. The solution involves the
flow between two stretchable infinite disks with accelerated stretching velocity. The transition
effect of the boundary layer flow due to a suddenly imposed magnetic field over a viscous flow
past a stretching sheet and due to sudden withdrawal of the magnetic field over a viscous flow
past a stretching sheet under a magnetic field was analyzed by Kumaran et al. (2010). Non
dimensionalised equations were solved numerically using the implicit finite difference method
of Crank Nicholson type. Ezzat et al. (2004) considered perfectly electrically conducting fluid
past a non isothermal stretching sheet in the presence of a transverse magnetic field acting
perpendicularly to the direction of motion of the fluid. Attia (2007) analyzed the steady MHD
laminar three dimensional stagnation point flow of a viscous fluid impinging on a permeable
stretching surface with heat generation or absorption. The theoretical analysis of the laminar
boundary layer flow and heat transfer of power law non-Newtonian fluids over a stretching
sheet was considered by Xu and Liao (2009). Takhar et al. (2000) analyzed the flow and mass
transfer characteristics of a viscous electrically conducting fluid on a continuously stretching
surface having non-zero slot velocity. The implicit finite difference scheme was used to solve
the governing partial differential equations. A numerical study of the two dimensional boundary
layer stagnation point flow over a stretching sheet in the case of injection/suction through porous
medium with heat transfer was considered by Layek et al. (2007).

Hayat et al. (2009) analyzed the steady two dimensional MHD stagnation point flow of
an upper convected Maxwell fluid over the stretching surface. The governing nonlinear partial
differential equations were reduced to ordinary ones using the similarity transformation. The
homotopy analysis method (HAM) was used to solve these equations. The numerical study of
a steady laminar viscous boundary layer flow of an electrically conducting fluid over a heated
stretching sheet in the presence of a uniform transverse magnetic field was analyzed by Panto-
kratoras (2006). Kumaran et al. (2009) studied the problem of an MHD boundary layer flow
of an electrically conducting fluid over a stretching and permeable sheet with injection/suction
through the sheet. The study of a steady two dimensional stagnation point flow of a micropolar
fluid over a stretching sheet when the sheet was stretched in its own plane and the stretching
velocity was proportional to the distance from the stagnation point was examined by Nazar
et al. (2004). The resulting coupled equations of nonlinear ordinary differential equations were
solved numerically. Desseaux and Kelson (2000) considered a boundary layer flow of a micropo-
lar fluid driven by a porous stretching sheet. A similarity solution was defined, and numerical
solutions were obtained using Runge Kutta and quasilinearisation schemes. The analysis of the
boundary layer flow of a micropolar fluid on a fixed or continuously moving permeable surface
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was presented by Ishak et al. (2007). They considered both parallel and reverse moving surfaces
to the free stream. The nonlinear ordinary differential equations were solved numerically.
The purpose of the present work is to present a comprehensive parametric study of an MHD

flow and heat transfer of a steady incompressible viscous electrically conducting micropolar
fluid over a stretching disk in the presence of a uniform magnetic field. A numerical solution is
obtained for governing momentum, angular momentum and energy equations using an algorithm
based on the finite difference approximation.

2. Problem formulation

Consider an axisymmetric laminar incompressible flow of an electrically conducting micropolar
fluid over a stretchable disk. A uniform transverse magnetic field B0 is applied at the disk. The
governing equations of motion for the MHD laminar viscous flow of a micropolar fluid introduced
by Eringen (1964, 1966) are:
— continuity equation

∂ρ

∂t
+ (∇ · ρV) = 0 (2.1)

— momentum equation

(λ+ 2µ+ κ)∇(∇ ·V) + κ∇× v−∇p− (µ+ κ)[∇(∇ ·V)−∇2V] + J×B = ρV̇ (2.2)

— angular momentum equation

(α+ β + γ)∇(∇ · v)− γ[∇(∇ · v)−∇2v] + κ∇×V − 2κv + ρl = ρjv̇ (2.3)

— Gauss’s law for magnetism

∇ ·B = 0 (2.4)

— Ampere’s law

∇×B = µmJ (2.5)

— Faraday’s law of induction

∇×E = 0 (2.6)

— Ohm’s law

J = σe(E +V×B) (2.7)

where V is the fluid velocity vector, v the microrotation, ρ the density, p the pressure, l the
body couple per unit mass, j the microinertia, J the current density, ∇ the gradient operator,
µm the magnetic permeability, E the electric field, B the total magnetic field so that B = B0+b,
b the induced magnetic field and σe the electrical conductivity of the fluid, λ, µ, α, β, γ, κ the
material constants of micropolar fluids (or viscosity coefficients), where the dot signifies material
derivatives. From equation (2.4) and (2.5), we see that ∇ · J = 0. The velocity vector V and
the microrotation vector v are unknown.
The induced magnetic field b is negligible as compared with the imposed field so that the

magnetic Reynolds number is small (Shereliff, 1965). The applied polarization voltage is also
assumed to be zero, which implies that the electric field E = 0. The electrical current flowing



28 M. Ashraf, K. Batool

in the fluid will give rise to an induced magnetic field which would exist if the fluid was an
electrical insulator. We have considered the fluid as electrically conducting, for our problem.
In view of the above assumptions, the electromagnetic body force acting in equation (2.2)

has the following linearized form (Rossow, 1958)

J×B = σe[(V ×B0)×B0] = −σeB20V (2.8)

A suitable coordinate system for the present problem is a cylindrical polar coordinate system.
The components of velocity (u, v,w) and microrotation (v1, v2, v3) along the radial, transverse
and axial directions can be written as

u = u(r, z) v = 0 w = w(r, z)

v1 = 0 v2 = v2(r, z) v3 = 0
(2.9)

For the problem under consideration, equation (2.8) can be written as

J×B = (−σeB20u, 0, 0) (2.10)

For axisymmetric steady viscous incompressible fluid in the cylindrical polar coordinate system,
governing equations of motion (2.1)-(2.3) for the boundary layer approximation, in view of
equations (2.8)-(2.10), are reduced to the following dimensionless form:
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(2.11)

And the equation for temperature field, neglecting the viscous dissipation, can be written as

ρcp
(

u
∂T

∂r
+ w

√

ω

ν

∂T

∂η

)

− κ0
(∂2T

∂r2
+
1

r

∂T

∂r
+
ω

ν

∂2T

∂η2

)

= 0 (2.12)

where T is the temperature, cp the specific heat at a constant pressure, κ0 is the thermal
conductivity of the fluid, and η = z

√

ω/ν is the similarity variable.
Here, the quantity ω is a pseudoangular velocity corresponding to the disk stretching and

its unit is 1/s. The boundary conditions over the stretching disk for the velocity field for the
present problem are

u(r, 0) = rω w(r, 0) = 0 u(r,∞) = 0 (2.13)

The no-spin boundary conditions at the boundaries for microrotation are given by

(v1, v2, v3) = (0, 0, 0) at η = 0 and η =∞ (2.14)

The boundary conditions for the temperature field can be written as

T =

{

T0 at η = 0

T∞ at η =∞
(2.15)

where T0 is the constant temperature at the disk, and T∞ is the constant temperature at infinity
(with T0 > T∞).
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In order to obtain the velocity, microrotation and temperature fields for the present pro-
blem, we have to solve equations (2.11) and (2.12) subject to the boundary conditions given in
equations (2.13) and (2.14). For this purpose, we use the following similarity transformation

u = −rωH
′(η)

2
w =
√
ωνH(η) p = ρωνP (η)

v2 =

√

ω

ν
rωg(η) θ(η) =

T − T∞
T0 − T∞

(2.16)

Using equations (2.16)1,2, we see that continuity equation (2.11)1 is identically satisfied, and
hence velocity components represent a possible fluid motion.
Now by using equations (2.16)1,2,3 in momentum equation (2.11)2, we get

(H ′)2

2
−HH ′′ + 2c1g′ + (1 + c1)H ′′′ −M2H ′ = 0 (2.17)

where

c1 =
κ

µ
M2 =

σeB
2
0

ρω

are the vortex viscosity parameter and the magnetic parameter, respectively. M is also known
as Hartmann number.
Using equations (2.16)1−4 in the angular momentum equation (2.11)3, we get

c2g
′′ − c1

(H ′′

2
+ 2g
)

− c3
(

Hg′ − H
′

2
g
)

= 0 (2.18)

where

c2 =
γω

νµ
c3 =

ρωj

µ

are the spin gradient viscosity parameter and the microinertia density parameter, respectively.
Energy equation (2.12), in view of equations (2.16)1,2 and (2.16)5, takes the form

θ′′ − PrHθ′ = 0 (2.19)

where Pr = µcp/κ0 is the Prandtl number.
Boundary conditions (2.13)-(2.15) in view of transformation equations (2.16) in dimensionless

the form can be written as

H(0) = 0 H ′(0) = −2 H ′(∞) = 0
g(0) = 0 g′(∞) = 0 θ(0) = 1 θ(∞) = 0

(2.20)

The quantities of physical interest, the shear and couple stresses on the disk are defined respec-
tively as

τω = −(µ+ κ)
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(2.21)

We have to solve the system of equations (2.17), (2.18) and (2.19) subject to the boundary
conditions given in equation (2.20).
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3. Numerical solution

Governing ordinary differential equations (2.17), (2.18) and (2.19) being highly nonlinear are
difficult to solve analytically. We seek for a numerical solution to these equations subject to
boundary conditions (2.20) using a finite difference scheme. The order of governing equations
(2.17) and (2.18) can be reduced by one as done by Chamkha and Issa (2000), Ashraf and Ashraf
(2011) and Ashraf and Bashir (2011), by substituting

q = H ′ =
dH

dη
(3.1)

Equations (2.17) and (2.18) in view of equation (3.1) can be written as

q2

2
−Hq′ + 2c1g′ + (1 + c1)q′′ −M2q = 0

c2g
′′ − c1

(q′

2
+ 2g
)

− c3
(

Hg′ − q
2
g
)

= 0

(3.2)

Boundary conditions (2.20) are reduced as

H(0) = 0 q(0) = −2 q(∞) = 0
g(0) = 0 g′(∞) = 0 θ(0) = 1 θ(∞) = 0 (3.3)

For the numerical solution to the above boundary value problem, consisting of equations (3.2)
and (2.19), we discretize the domain [0,∞) uniformly with a step size h. Simpson’s rule (Gerald,
1974) with the formula given in Milne (1953) is applied to integrate equation (3.1). The central
difference approximations are used to discretize equations (2.19) and (3.2) at a typical grid point
η = ηn of the interval [0,∞).
The Successive Over Relaxation (SOR) method is used to solve iteratively the obtained

system of algebraic equations subject to the associated boundary conditions given in equation
(3.3). The solution procedure, which is mainly based on the algorithm described in Syed et al.
(1997) is used to accelerate the iterative procedure and to improve the accuracy of the solution.
The iterative procedure is stopped if the following criteria is satisfied for four consecutive

iterations

max
(

‖q(i+1) − q(i)‖2, ‖g(i+1) − g(i)‖2, ‖H(i+1) −H(i)‖2, ‖θ(i+1) − θ(i)‖2
)

< TOLiter (3.4)

Here TOLiter is the prescribed error tolerance, and we have taken at least 10
−12 for it during

our calculations, for the execution of computer programme in Fortran 90. The higher order
accuracy of the approximations to the exact solutions is obtained by the use of Richardson’s
extrapolation. This process is carried out using any extrapolation scheme (Deuflhaard, 1983).

4. Results and discussion

The present study is focused on the numerical investigation of the flow and heat transfer cha-
racteristics associated with the steady laminar incompressible viscous flow of an electrically
conducting micropolar fluid over the stretchable disk in the presence of a uniform magnetic
field. In this Section, a comprehensive numerical study of our findings in tabular and graphical
forms together with the discussion and their interpretation is presented. To develop better un-
derstanding of the influences of the micropolar structure of electrically conducting fluids on the
flow and thermal characteristics in the case of a stretchable disk, we have presented shear and
couple stresses at the disk and the velocity, microrotation and temperature fields over the disk
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for a range of values of the micropolar parameters (vortex viscosity parameter c1, spin gradient
viscosity parameter c2, microinertia density parameter c3, magnetic parameter M , and the
Prandtl number Pr).

The results are computed for three grid sizes h, h/2 and h/4 for the stability of our numerical
scheme and then extrapolated on the finer grid using Richardson’s extrapolation to obtain
more accuracy. A comparison of the numerical values of the axial velocity H(η) for the three
grid sizes and their extrapolated values is given in Table 1. Excellent comparison validates our
computational technique.

Table 1. Comparison of dimensionless axial velocity H(η) on three grid sizes and extrapolated
values for M = 2, c1 = 2, c2 = 0.4, c3 = 0.5 and Pr = 0.7

H(η)
η

h = 0.08 h = 0.04 h = 0.02
Extrapola-
ted value

0 0 0 0 0

0.8 −0.965176 −0.964779 −0.964680 −0.964647
1.6 −1.235644 −1.235008 −1.234849 −1.234795
2.4 −1.318906 −1.302135 −1.301970 −1.301915
3.2 −1.322735 −1.318259 −1.318097 −1.318043
4.0 −1.323643 −1.322097 −1.321937 −1.321884
4.8 −1.323858 −1.323008 −1.322849 −1.322796
5.6 −1.323909 −1.323225 −1.323066 −1.323012
6.4 −1.323920 −1.323276 −1.323117 −1.323064
7.2 −1.331510 −1.323287 −1.323117 −1.323075
8.0 −1.323922 −1.323289 −1.323130 −1.323077

For the upper boundary, η∞ depends on the parameters used. We have adjusted η∞ in such
a way that the profiles become compatible with the asymptotic boundary condition (Pantokra-
toras, 2009).

Four cases for the values of micropolar parameters c1, c2 and c3 for the problem under
consideration are given in Table 2. The shear and couple stresses and heat transfer rate for the
four cases is presented in Table 3. The case 1 (c1 = c2 = c3 = 0) stands for Newtonian fluids.
The remaining three are for micropolar fluids. It may be noted that micropolar fluids reduce
shear stresses as compared to Newtonian fluids. This is due to the reason that micropolar fluids
offer a great resistance because of dynamic viscosity and vortex viscosity to the fluid motion as
compared to Newtonian fluids.

Table 2. Four cases of micropolar parameters c1, c2 and c3 discussed

Case No. c1 c2 c3

1∗ 0 0 0

2 2 0.2 0.3

3 4 0.4 0.5

4 6 0.6 0.7
∗ Newtonian

The heat transfer rate −θ′(0) and couple stresses increase by increasing the values of mi-
cropolar parameters c1, c2 and c3. The influence of imposition of the external magnetic field
on the shear and couple stresses, and the heat transfer rate at the disk is given in Table 4. The
applied magnetic field enhances the values of shear stresses, magnitude of couple stresses and



32 M. Ashraf, K. Batool

Table 3. Shear and couple stresses, and heat transfer rate over the disk for M = 2, Pr = 0.7
and for various values of c1, c2 and c3

Case No. H ′′(0) −g′(0) −θ′(0)
1 4.62085 0 0.53752

2 2.41773 2.32706 0.62980

3 1.80029 1.90932 0.69095

4 1.48693 1.66545 0.72756

the heat transfer rate for fixed values of micropolar parameters c1, c2 and c3 as well as the
Prandtl number Pr. The effect of Pr on the heat transfer rate at the disk is given in Table 5.
The heat loss increases by increasing the values of the Prandtl number Pr as shown in Table 5.
The shear and couple stresses remain unaffected by the variation of Pr.

Table 4. Shear and couple stresses, and values of heat transfer rate over the disk for c1 = 3,
c2 = 0.1, c3 = 0.2, Pr = 0.7 and for various values of M

M H ′′(0) −g′(0) −θ′(0)
0 0.98820 2.19514 0.78550

1 1.29915 2.77224 0.74247

2 1.98111 3.93447 0.65388

3 2.79668 5.16728 0.57386

4 3.67174 6.33861 0.53123

5 4.58056 7.42231 0.53121

Table 5. Values of the heat transfer rate over the disk for M = 2, c1 = 4, c2 = 0.4, c3 = 0.5
and for various values of Pr

Pr −θ′(0)
0.5 0.54422

1.0 0.87874

2.0 1.35695

3.0 1.72319

4.0 2.03143

5.0 2.30279

6.0 2.54809

Now we give the graphical interpretation of velocity, microrotation and thermal fields across
the disk.
Figures 1-4 illustrate the influence of micropolar parameters c1, c2 and c3 on the velocity,

microrotation, and temperature fields. The axial velocity profiles H(η) decrease for increasing
the values of c1, c2 and c3 as shown in Fig. 1. The magnitude of radial velocity −H ′(η) and
velocity boundary layer thickness increase by increasing the values of micropolar parameters
c1, c2 and c3 as shown in Fig. 2. Figure 3 presents the effect of micropolar parameters c1,
c2 and c3 on the microrotation for M = 2 and Pr = 0.7. Case 1 corresponds to Newtonian
fluids and, therefore, there is no microrotation in this case. The other three cases show that
the micropolar parameters have significant influence on the microrotation. The magnitude of
microrotation g(η) increases by increasing the values of c1, c2 and c3. The microrotation profiles
increase far from the boundary and decrease near the boundary. The temperature profiles for
four cases of micropolar parameters decrease by increasing the values of c1, c2 and c3 as shown
in Fig. 4. The thermal boundary layer thickness decreases by increasing the values of micropolar
parameters c1, c2 and c3.
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Fig. 1. Variation of dimensionless axial velocity H(η) for M = 2, Pr = 0.7 and for various values of
micropolar parameters c1, c2 and c3

Fig. 2. Variation of dimensionless radial velocity −H ′(η) for M = 2, Pr = 0.7 and for various values of
micropolar parameters c1, c2 and c3

Fig. 3. Variation of microrotation profile −g(η) for M = 2, Pr = 0.7 and for various values of
micropolar parameters c1, c2 and c3

Figure 5 shows that the magnitude of axial velocity decreases as the value of increases.
Figure 6 presents the influence of the applied magnetic field for fixed values of micropolar
parameters c1, c2, c3 and the Prandtl number Pr on radial velocity. The results indicate that
the magnitude of radial velocity decreases with increasing values of M . Furthermore, the velocity
boundary layer becomes thinner by increasing the values of M . The reverse flow caused due to
the stretching of the disk can be controlled/stopped by applying a strong magnetic field.
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Fig. 4. Variation of temperature profile θ(η) for M = 2, Pr = 0.7 and for various values of micropolar
parameters c1, c2 and c3

Fig. 5. Variation of dimensionless axial velocity H(η) for c1 = 3, c2 = 0.1 c3 = 0.2, Pr = 0.7 and for
various values of M

Fig. 6. Variation of dimensionless radial velocity −H ′(η) for c1 = 3, c2 = 0.1 c3 = 0.2, Pr = 0.7 and for
various values of M

Figure 7 illustrates the effect of the magnetic field on the microrotation for fixed values of
the micropolar parameters c1, c2 and c3 as well as the Prandtl number Pr. The microrotation
profiles decrease far from the boundary and a reverse effect is found near the boundary. The
microrotation profiles decrease due to the damping effect of the magnetic field which shows that
the intensity of the applied magnetic field can be used to decrease the angular rotation especially
in suspension flows, arising in lubrication problems. The effect of the magnetic field on the
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temperature distribution for fixed values of c1, c2 c3 and Pr is shown in Fig. 8. An increase in
the temperature profiles is observed with an increase in the values of M . The thermal boundary
layer increases by increasing the values of M .

Fig. 7. Variation of microrotation profile −g(η) for c1 = 3, c2 = 0.1 c3 = 0.2, Pr = 0.7 and for various
values of M

Fig. 8. Variation of temperature profile θ(η) for c1 = 3, c2 = 0.1 c3 = 0.2, Pr = 0.7 and for various
values of M

Fig. 9. Variation of temperature profile θ(η) for c1 = 4, c2 = 0.4 c3 = 0.5, M = 2 and for various values
of Pr

Figure 9 illustrates the variation of dimensionless temperature θ(η) for selected values of the
Prandtl number Pr. An increase in the values of Pr results in the fall of temperature profiles
and thinning of the thermal boundary layer.
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5. Conclusions

A numerical study of the MHD flow and heat transfer of an electrically conducting micropolar
fluid in the presence of the applied magnetic field over a stretchable disk is presented to describe
the effects of some governing parameters. Numerical solutions to the transformed self similar
governing equations and the associated boundary conditions have been obtained using a finite
difference discretization method. The following conclusions have been made.

• Micropolar fluids reduce the shear stresses and enhance couple stresses as compared to
Newtonian fluids.

• Velocity boundary layer thickness increases by increasing the value of micropolar parame-
ters.

• The magnetic field enhances the shear stresses and heat transfer rate.
• The velocity boundary layer becomes thinner, while the thermal boundary layer becomes
thicker by increasing the values of the magnetic parameter.

• Increasing the Prandtl number decreases the thermal boundary layer thickness.
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Przepływ magnetohydrodynamiczny oraz przewodzenie ciepła w cieczy mikropolarnej

opływającej rozciągliwy dysk

Streszczenie

W pracy zaprezentowano wyniki badań numerycznych nad osiowo-symetrycznym, laminarnym i usta-
lonym opływem elektrycznie przewodzącej cieczy mikropolarnej wokół rozciągliwego dysku przy jedno-
czesnym oświetleniu cieczy polem magnetycznym. Nieliniowe równanie ruchu opływu sprowadzono do
postaci bezwymiarowej za pomocą funkcji podobieństwa von Karmana. Do rozwiązania uproszczonych,
sprzężonych i nieliniowych równań różniczkowych zwyczajnych z towarzyszącymi warunkami brzegowymi
użyto algorytmu opartego na metodzie różnic skończonych. Przedyskutowano wpływ parametrów mi-
kropolarności, wartości pola magnetycznego oraz liczby Prandtla na rozkład prędkości i temperatury
cieczy. Według badań, tempo przepływu ciepła na powierzchni dysku wzrasta z rosnącymi wartościami
parametrów mikropolarności. Dodatkowo, obecność pola magnetycznego powiększa naprężenia ścinają-
ce i momentowe. Wartość naprężeń ścinających jest mimo to mniejsza dla cieczy mikropolarnej niż dla
newtonowskiej, co może być korzystne w monitorowaniu przepływu i transferu ciepła podczas procesu
obróbki polimerów.
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