
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

51, 1, pp. 3-13, Warsaw 2013

LEAST SQUARES METHOD MODIFICATION APPLIED TO

THE NASGRO EQUATION

Sylwester Kłysz

Air Force Institute of Technology, Warsaw, Poland and

University of Warmia and Mazury, Olsztyn, Poland; e-mail: sylwester.klysz@itwl.pl

Janusz Lisiecki, Andrzej Leski

Air Force Institute of Technology, Warsaw, Poland

Tomasz Bąkowski

AD ASTRA Executive Charter S.A., Warsaw, Poland

The paper has been intended to present some modification of Least Squares Method (LSM)
as used for describing of experimentally gained fatigue crack propagation data by means of
the NASGRO equation. In particular, the specific nature of the NASGRO equation and con-
sequent difficulties with theoretical description of test data have been shown. An algorithm
has been presented of how to find coefficients of the NASGRO equation for the modified
LSM criterion. Computations have been performed for the aluminum alloy 2024 taken from
the rotor blades of Mi-8 helicopter.
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1. Introduction

The analysis of fatigue crack propagation is the most important factor in the study of stability
and lifespan of structural components, but it may require time and expense to investigate it
experimentally. Computer simulation is especially useful for studying the crack propagation
problem in cases when it is difficult to obtain detailed results by direct experimentation. Hence, in
order to be efficient, fatigue crack propagation software should estimate the remaining life of any
construction or structural component both experimentally and by simulation. The critical size
of the crack can be calculated using material constants which have been derived experimentally
and from the constant amplitude crack propagation curve, crack size-life data and curve using
crack propagation software. Many publications in the field of fracture mechanics prove significant
development in the numerical analysis of test data from fatigue crack propagation tests.

The maximum likelihood method and the second moment approximation is a simple stocha-
stic crack growth analysis method, and the crack growth rate is considered to be random variable.
A deterministic differential equation is used for the crack growth rate, while it is assumed that
parameters in this equation are random variables. The analytical methods are implemented into
engineering use and to estimate the statistics of the crack growth behavior (Xing and Hong,
1999).

However, due to the number and complexity of mechanisms involved in this problem, there
are probably as many equations as there are researchers in the field. Though many models have
been developed, none of them enjoys universal acceptance. In more detail, each model can only
account for one or several phenomenological factors. Moreover, the applicability of each model
varies from case to case, there is no general agreement among the researchers to select any
fatigue crack growth model in relation to the concept of fatigue crack behaviour (Farahmand,
2006; Kujawski, 2001; Mohanty et al., 2009; Murthy et al., 2004).
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Mathematical models proposed e.g. by Paris, Forman, and further modifications thereof
describe crack propagation with account taken of such factors as: material properties, geometry
of a test specimen/structural component, acting loads and the sequence of these loads (Paris
and Erdogan, 1963; Forman et al., 1967; Willenborg et al., 1971; Wheeler, 1972; Kłysz, 2001).
Application of the NASGRO equation, derived by Forman and Newman from NASA, de Koning
from NLR and Henriksen from ESA, of the general form (Paris and Erdogan, 1963; Forman et
al., 1967)

da

dN
= C
( 1− f
1−R

∆K
)n

(

1− ∆Kth
∆K

)p

(

1− Kmax
Kc

)q (1.1)

has significantly extended possibilities of describing the crack growth rate tested according to
the standard (Wheeler, 1972). The coefficients stand for (Paris and Erdogan, 1963; Forman et
al., 1967; [11], [12])

a – crack length [mm]
N – number of load cycles
C,n, p, q – empirical coefficients
R – stress ratio
∆K – the stress-intensity-factor (SIF) range that depends on the size of the

specimen, applied loads, crack length, ∆K = Kmax −Kmin
∆Kth – the SIF threshold, i.e. minimum value of ∆K, from which the crack

starts to propagate

∆Kth = ∆K1

√

a

a+ a0

(

1−R
1−f

)1+RCth

(1−A0)(1−R)Cth
(1.2)

or

∆Kth = ∆K0

√

a

a+ a0

( 1− f
(1−A0)(1−R)

)

−(1+CthR)
(1.3)

where: a0 – structural crack length that depends on the material grain size [mm], ∆K0 –
threshold SIF at R → 0, ∆K1 – threshold SIF at R → 1, Cth – curve control coefficient for
different values of R; equals 0 for negative R, equals 1 for R ­ 0, for some materials it can be
found in the NASGRO database

Kmax – SIF for the maximum loading force in the cycle
Kc – critical value of SIF
f – Newman’s function describing closing of the crack

f =

{

max(R,A0 +A1R+A2R
2 +A3R

3) for R ­ 0
A0 +A1R for −2 ¬ R < 0

(1.4)

where A0, A1, A2, A3 coefficients are equal

A0 = (0.825 − 0.34α + 0.05α2) α
√

cos
(π

2

Smax
σ0

)

A1 = (0.415 − 0.071α)
Smax
σ0

A2 = 1−A0 −A1 −A3 A3 = 2A0 +A1 − 1
(1.5)

α, Smax/σ0 – Newman’s empirical coefficients.

Determination of the above coefficients for the equation that correctly approximates test
data is difficult and causes some singularities when the Least Squares Method (LSM) is used; it
can become feasible when the below proposed modification is introduced.
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2. Data analysis

Analysis was based on fatigue tests conducted with the Round Compact Tension (RCT) speci-
men (Fig. 1) made of duralumin alloy. Analyzed specimens were of thickness B = 2mm, width
W = 27.5mm, initial crack length a = 7mm. Tests were conducted in accredited AFIT Labo-
ratory for Materials Strength Testing, according to appropriate standard [2], under laboratory
conditions, with the loading frequency 15Hz, for three values of stress ratio R = 0.1; 0.5; 0.8.
The crack length was measured with the COD clip gauge using the compliance method. The
crack propagation rate was determined using the polynomial method. The test data come from
the examination of the 2024 aluminum alloy taken from the Mi-8 helicopter rotor blades [4].

Fig. 1. RCT specimen used in fatigue crack propagation tests

The formula that describes the stress intensity factor for the RCT specimen is as follows

KI =
P

B
√
W
Y (2.1)

where: P – applied force, Y – the shape function of the specimen, for the RCT specimen ([2],
Fuchs and Stephens, 1980)

Y =
2 + a

W
√

1− a
W

[

0.886 + 4.64
a

W
− 13.32

( a

W

)2
+ 14.72

( a

W

)3
− 5.56

( a

W

)4]

(2.2)

where a/W is a nondimensional crack length.
The compliance function to compute the crack length in the RCT specimen has the form

a

W
= 1− 4.459u + 2.066u2 − 13.041u3 + 167.627u4 − 481.4u5 (2.3)

where: u – compliance described by the following formula

u =
1

1 +
√

EBCOD
F

and E – Young’s modulus, COD – Crack Opening Displacement.

Results of fatigue crack growth rate tests for 9 specimens (3 specimens for each value of R)
are presented in the figures below and approximated with NASGRO equation – in different
configurations, separately for each specimen or divided into groups with different procedures
used for defining coefficients of the above mentioned equation.
The degree of fit of the theoretical description to test data using the NASGRO equation

can be almost perfect if a single da/dN -∆K propagation curve is considered. In Fig. 2, sample
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curves for 3 selected specimens are shown, each of which was tested at different R. It can be
concluded that the defined NASGRO equation coefficients are valid. The coefficients were defined
using the Least Square Method in which the criterion is to achieve the minimum sum of squared
deviations between approximated and approximating values of the form

S =
n
∑

i=1

(yi − yi)
2 (2.4)

where yi are approximations of the test data yi (i.e. values of da/dNi).

Fig. 2. Approximation of the test data for a single da/dN -∆K curve with the NASGRO equation, for:
(a) R = 0.8; (b) R = 0.5 and (c) R = 0.1

However, if one applies these coefficients to describe the courses of two remaining data sets
corresponding to specimens tested at different values of R, then this description is not valid –
Fig. 3 (curves plotted against test data points of all 9 tested specimens – description thereof
under such conditions would, of course, be analogous – for readability reasons they are not shown
on the graphs). It can be seen that for these cases the description of test data for specimens
tested at different values of R is not valid.

It can also be seen in Figs. 3b and 3c that the approximation in the range of high values of
∆K and da/dN (critical range) is better than that for smaller values (threshold range).

However, if one tries to describe all 9 curves, for the same LSM criterion, then the effect
would be as shown in Fig. 4. Graphs 4a correspond to the case when constant values of Kc
and ∆Kth parameters are assumed for all values of R. Graphs 4b correspond to the theoretical
case with different values of Kc and ∆Kth parameters assumed, following the test results for
individual values of R. Graphs 4c for the assumed different values of Kc and ∆Kth parameters
are, according to the test results, for individual specimens/curves. The presented approximations
have been obtained while complying with the LSM criterion, i.e. the minimum of the sum S
(in case 4a, a scaled measure of the sum S is equal to 161.5; in case 4b, to 167.8 – this could
indicate in favour of the first case). However, it can be seen that in both cases the description is
not valid – only for the highest values of da/dN the approximating curves show good correlation
with the test data.
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Fig. 3. Approximation of the test data for two different da/dN -∆K curves with different values of R,
based on the same coefficients as used to plot graphs in Fig. 2

Fig. 4. Approximations of the test data for 9 da/dN -∆K curves using the NASGRO equation, for
cases: (a) Kc = const , ∆Kth = const ; (b) theoretically assumed Kc = f(R), ∆Kth = f(R);

(c) theoretically assumed Kc and ∆Kth fitted separately for each curve

This is a result of chosen LSM criterion (2.4) that has the following properties, which some-
times may prove their disadvantages:

• value of the sum S increases regarding the order of magnitude, as values of the approxi-
mated numbers grow – if the values of test data are of the order e.g. 10, 1000, 1000000,
then with the scatter of 10% the summed differences are of the order 1, 100, 100000 – and
therefore, consequently:

– the same, e.g. 2-, 5-times change in the test results in different as to the order of
magnitude values of the summed differences;
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– the dynamics of changes in the total value of S depends on the size of values of
differences; as a quadratic function it is characterized by a linear function of the
derivative, which also means that in the case of differences close to zero (e.g. 10−5,
10−8, etc.) this dynamics is much smaller than for differences of higher values, which
affects the “flexibility” of the performed approximation;

– if the test data represent a wide range of values (e.g. from 1 to 100000 or from
10−8 to 10−2), the values approximated near the lower range give much smaller
contribution to the sum S than the values approximated near the upper range –
which means that, for example, tens or hundreds of test points which differ by 100%
around the value of 1 are much less important in this approximation than one or a
few points of 1% difference around the value of 100000;

• hence, the approximation is always “asymmetric” since it gives a better approximation for
higher values of the test data neglecting at the same time differences around lower values
– an example of such an approximation is shown in Fig. 1. It shows a good fit of the the-
oretical description of the 9 curves around large values of da/dN (above 10−4mm/cycle)
with a total misfit around the smallest values (below 10−5mm/cycle).

If the test data fit in a wide range of values, e.g. 5 orders of magnitude as in this case
from 10−2 to 10−7mm/cycle, then the sum of squared deviation S will be much more sensitive
to differences between the highest test values and the value of the approximating function,
while differences even by two or three orders of magnitude for lower values do not significantly
contribute to the value of this sum.

Hence, the misfit of the approximating function for low values of da/dN , practically for
values lower by only one order of magnitude than the maximum values of da/dN , i.e. below
10−3mm/cycle. Within this range the theoretical description is rather random and has rather
no effect on the value of the sum S,which indicates that this criterion is rather useless for this
type of analysis.

Hence, it seems reasonable to use one of the following criterion modifications, which will
allow one to remove the above stated problems:

• changing the form of the criterion, or

• using logarithmic values of da/dN

S =
n
∑

i=1

(log yi − log yi)2 or S =
n
∑

i=1

(log yi − log yi)
2 (2.5)

In the present study, the first variant has been examined due to the fact that it is more general
since it does not limit itself only to positive values of predicted yi, which is a requirement in the
second variant. In the case of crack propagation test data, all the da/dN values are positive;
therefore the second variant could also be used.

3. Modification of the optimisation criterion

The following modified LSM criterion proposed in Kłysz et al. (2010) is suggested to test data
described by means of the NASGRO equation, i.e. for the sum of squared deviations of the form

S =
n
∑

i=1

(yi − yi
yi

)2
=
n
∑

i=1

(yi
yi
− 1
)2

(3.1)

instead of standard (2.4).
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The fraction in brackets in formula (3.1), as a relative error, is a measure of deviation
independent of the order of magnitude of the compared values (approximated and approximating
ones), so that the contribution of all the test data is equally ”strong” to the total error S, which
should have good influence on the approximation within the whole range.

In order to carry out the approximation of the test data, it is necessary to calculate coefficients
of the approximating equation used to determine yi. Equation (1.1), after applying logarithms,
takes the form

log
da

dN
= logC + n log

( 1− f
1−R

∆K
)

+ p log
(

1−
∆Kth
∆K

)

− q log
(

1−
Kmax
Kc

)

(3.2)

and can be presented in the following general way

y = b0 + b1f1 + b2f2 + b3f3 (3.3)

Coefficients bi (i = 0, 1, 2, 3) are directly connected with C, n, p and q (b0 = logC, b1 = n,
b2 = p, b3 = −q), whereas functions fi are dependent on ∆K and R and include all the
remaining coefficients of the NASGRO equation. Coefficients bi of the approximating equation
are calculated from the minimum condition of equation (3.1), i.e.

∂S

∂bk
=
∂
∑n
i=1

(

b0+b1f1,i+b2f2,i+b3f3,i−yi
yi

)2

∂bk
= 0 k = 0, 1, 2, 3 (3.4)

This leads to the following system of equations

∂S

∂b0
= 2

n
∑

i=1

[(b0 + b1f1,i + b2f2,i + b3f3,i − yi
yi

) 1

yi

]

= 0

∂S

∂b1
= 2

n
∑

i=1

[(b0 + b1f1,i + b2f2,i + b3f3,i − yi
yi

)f1
yi

]

= 0

∂S

∂b2
= 2

n
∑

i=1

[(b0 + b1f1,i + b2f2,i + b3f3,i − yi
yi

)f2
yi

]

= 0

∂S

∂b3
= 2

n
∑

i=1

[(b0 + b1f1,i + b2f2,i + b3f3,i − yi
yi

)f3
yi

]

= 0

(3.5)

It is a system of 4 linear equations with 4 unknowns bi, which after transformation takes the
form

n
n
∑

i=1

1

yi
− b0

n
∑

i=1

1

y2i
− b1

n
∑

i=1

f1,i
y2i
− b2

n
∑

i=1

f2,i
y2i
− b3

n
∑

i=1

f3,i
y2i
= 0

n
n
∑

i=1

f1,i
yi
− b0

n
∑

i=1

f1,i
y2i
− b1

n
∑

i=1

f21,i
y2i
− b2

n
∑

i=1

f1,if2,i
y2i
− b3

n
∑

i=1

f1,if3,i
y2i

= 0

n
n
∑

i=1

f2,i
yi
− b0

n
∑

i=1

f2,i
y2i
− b1

n
∑

i=1

f1,if2,i
y2i
− b2

n
∑

i=1

f22,i
y2i
− b3

n
∑

i=1

f2,if3,i
y2i

= 0

n
n
∑

i=1

f3,i
yi
− b0

n
∑

i=1

f3,i
y2i
− b1

n
∑

i=1

f1,if3,i
y2i
− b2

n
∑

i=1

f2,if3,i
y2i
− b3

n
∑

i=1

f23,i
y2i
= 0

(3.6)

and is easily solved by subtracting in the following steps:
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— eliminating b0

n
n
∑

i=1

1
yi

n
∑

i=1

1
y2
i

−
n
n
∑

i=1

f1,i
y2
i

n
∑

i=1

f1,i
y2
i

− b1









n
∑

i=1

f1,i
y2
i

n
∑

i=1

1
y2
i

−

n
∑

i=1

f2
1,i

y2
i

n
∑

i=1

f1,i
y2
i









− b2









n
∑

i=1

f2,i
y2
i

n
∑

i=1

1
y2
i

−

n
∑

i=1

f1,if2,i
y2
i

n
∑

i=1

f1,i
y2
i









− b3









n
∑

i=1

f3,i
y2
i

n
∑

i=1

1
y2
i

−

n
∑

i=1

f1,if3,i
y2
i

n
∑

i=1

f1,i
y2
i









= 0

n
n
∑

i=1

1
yi

n
∑

i=1

1
y2
i

−
n
n
∑

i=1

f2,i
y2
i

n
∑

i=1

f2,i
y2
i

− b1









n
∑

i=1

f1,i
y2
i

n
∑

i=1

1
y2
i

−

n
∑

i=1

f1,if2,i
y2
i

n
∑

i=1

f2,i
y2
i









− b2









n
∑

i=1

f2,i
y2
i

n
∑

i=1

1
y2
i

−

n
∑

i=1

f2
2,i

y2
i

n
∑

i=1

f2,i
y2
i









− b3









n
∑

i=1

f3,i
y2
i

n
∑

i=1

1
y2
i

−

n
∑

i=1

f2,if3,i
y2
i

n
∑

i=1

f2,i
y2
i









= 0

n
n
∑

i=1

1
yi

n
∑

i=1

1
y2
i

−
n
n
∑

i=1

f3,i
y2
i

n
∑

i=1

f3,i
y2
i

− b1









n
∑

i=1

f1,i
y2
i

n
∑

i=1

1
y2
i

−

n
∑

i=1

f1,if3,i
y2
i

n
∑

i=1

f3,i
y2
i









− b2









n
∑

i=1

f2,i
y2
i

n
∑

i=1

1
y2
i

−

n
∑

i=1

f2,if3,i
y2
i

n
∑

i=1

f3,i
y2
i









− b3









n
∑

i=1

f3,i
y2
i

n
∑

i=1

1
y2
i

−

n
∑

i=1

f2
3,i

y2
i

n
∑

i=1

f3,i
y2
i









= 0

(3.7)

what gives 3 equations of the general form

Bk − b1B1,k − b2B2,k − b3B3,k = 0 k = 1, 2, 3 (3.8)

— eliminating b1

B1
B1,1
−
B2
B2,1
− b2
(B1,2
B1,1
−
B2,2
B2,1

)

− b3
(B1,3
B1,1
−
B2,3
B2,1

)

= 0

B1
B1,1
−
B3
B3,1
− b2
(B1,2
B1,1
−
B3,2
B3,1

)

− b3
(B1,3
B1,1
−
B3,3
B3,1

)

= 0

(3.9)

what gives 2 equations of the general form

Ck − b2C2,k − b3C3,k = 0 k = 2, 3 (3.10)

— eliminating b2

C2
C2,2
−
C3
C2,3
− b3
(C3,2
C2,2
−
C3,3
C2,3

)

= 0 (3.11)

hence

b3 =

C2
C2,2
− C3
C2,3

C3,2
C2,2
− C3,3
C2,3

=

B1
B1,1
− B2
B2,1

B1,2
B1,1
− B2,2
B2,1

−
B1
B1,1
− B3
B3,1

B1,2
B1,1
− B3,2
B3,1

B1,3
B1,1
− B2,3
B2,1

B1,2
B1,1
− B2,2
B2,1

−
B1,3
B1,1
− B3,3
B3,1

B1,2
B1,1
− B3,2
B3,1

(3.12)
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Hence, the coefficient b2 can be calculated from one of formulae (3.9); secondly, the coeffi-
cient b1 from one of equations (3.7), and finally, the coefficient b0 from one of equations (3.6).

The result of approximation with the coefficients calculated by means of the modified LSM
criterion is shown in Fig. 5, and values of these coefficients are presented in Table 1.

Fig. 5. Approximation of da/dN -∆K test data based on modified LSM criterion (3.1)

Table 1. The NASGRO equation coefficients for curves from Fig. 5 and correlation coefficients
for the obtained approximation

α Smax/σ0 a0 ∆Kth Kc C n p q
Correlation
factor

1.60 41.17
2.0 0.3 0.0381 2.08 35.22 7.172 · 10−8 3.0089 0.2452 2.0012 0.8517

3.61 33.16

Coefficients ∆Kth and Kc have been assumed constant for individual tests for a given value
of R – estimated also by the criterion of the minimum sum S.

Significant improvement in the theoretical description of the test data da/dN -∆K is clearly
visible within the whole range.

4. Conclusion

Using the Least Square Method in its classical form (2.4) to determine coefficients, e.g. for
the NASGRO equation describing fatigue crack propagation curves da/dN -∆K, is ineffective
since this approximation criterion does not prove correct when values of the approximated curves
(da/dN) are within the range of few orders of magnitude. The test data are not evenly distributed
along the curve (ranges: threshold, stable growth, critical) and several curves grouped in sets
for different values of R are being approximated at the same time.
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In this paper, modification (3.1) of the approximation criterion has been proposed for the
theoretical description of test curves da/dN -∆K, which results in an improvement of the ap-
proximation effects. The presented methodology shows the following advantages:

• it is effective while approximating individual, several, as well as large numbers of
sets/curves of test data,

• it is more accurate, smaller scatters of the test data are observed within the same groups
(for single test),

• it can be used for other similar analyses involving test data regression since it contains a
universal procedure not associated only with da/dN -∆K crack propagation curves.
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Modyfikacja metody najmniejszych kwadratów w zastosowaniu do równania NASGRO

Streszczenie

W pracy zaprezentowano modyfikacje Metody Najmniejszych Kwadratów (MNK) w zastosowaniu
do opisu przy pomocy równania NASGRO danych doświadczalnych propagacji pęknięć zmęczeniowych.
W szczególności wskazano na szczególną postać równania NASGRO i wynikające z tego trudności w teo-
retycznym opisie wyników badań doświadczalnych. Przedstawiono algorytm do wyznaczania współczyn-
ników tego równania przy zmodyfikowanym kryterium MNK. Obliczenia przeprowadzono dla stopu alu-
minium 2024 pobranego z łopat wirnika śmigłowca Mi-8.
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