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The work shows computational results of the effect of a simplified mathematical model of
the flight dynamics of a spin-stabilized projectile on the accuracy and speed of calculation
parameters for the projectile trajectory (in the entire range of operating quadrant elevation
of the barrel and possible perturbations of the conditions firing) to determine an appropriate
mathematical model for the automated fire control systems of ground artillery.
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1. Introduction

One of the most challenging issues during the process of designing the ground (field) artillery
fire control system is a model of the trajectory. The model must be simple in the context of
computation (time consuming process), however very precise from the point of view of firing in
real atmospheric conditions. Presented in the earlier Author’s work (2011) the projectile trajec-
tory models for computation, which were based on a rigid body model of the projectile motion
(in short 6DOF model), are time consuming and cannot be accepted in condition of live-firing
on the battle field, where time is the critical issue. Principles of classical mechanics are used
in developing a 6DOF model. They are often used when constructing the equations of motion
of flying objects (Gacek, 1997; Kowaleczko and Żyluk, 2009) which are an alternative to me-
thods based on the principles of analytical mechanics. Among these methods, we can distinguish
ones based on inertial generalized coordinates and referring directly to Hamilton’s principle or
Lagrange equations (Koruba et al., 2010), and methods involving the use of equations of analy-
tical mechanics in quasi-coordinates e.g. Boltzman-Hamel equations (Ładyżyńska-Kozdraś and
Koruba, 2012).
To solve the problem of the right model, NATO alliances recommend a simplified one, called

the Modified Point Mass Trajectory Model (in short the MPMTM), described in STANAG
4355, a NATO official standardization agreement. The MPMTM can be used in fire control
systems and to create artillery firing tables as well. However, application of the MPMTM in
the fire control system requires elaboration or estimation of the specific projectile data such as
mass-inertia, aerodynamic characteristics and fitting factors of the projectile: fL, i, QD, QM .
The mentioned fitting factors are used to adjust the projectile impact point (elaborated from
computer simulations) to live firing results (from the fire range).
STANAG 4144 (Edition 2, 2005) presents the elaboration method of the fitting factors in

function of the quadrant elevation angle (in short QE) taken from the firing test design. One of
tests is the fall of shot method which requires a minimum of 50 rounds per velocity zone fired in
5 round groups at 5 quadrant elevations on a total of 10 occasions; 5 with one weapon/propellant
lot combination and 5 with another. Then, measured coordinates of the average projectile impact
points are used for calibration of the mathematical model, whereas the fitting factors in function



512 L. Baranowski

of the QE are approximated by a polynomial of the proper degree. STANAG 4355 (Edition 2,
1997) recommends a polynomial of degree 2 (quadratic) however, a polynomial of degree 3 (cubic)
is recommended in the updated 3rd edition (2009 issue). For the need of evaluation and possible
application of the MPMTM in ground artillery fire control systems, computer simulation of the
projectile flight time and accuracy of its flight trajectory in real atmospheric conditions were
carried out. Sets of aerodynamic characteristics and fitting factors (needed for the MPMTM)
were computed and elaborated in accordance with STANAG 4144 (Edition 2, 2005) procedures.
Due to high cost of live firing tests, the Author used results of computer simulation of a three
dimensional trajectory for the test projectile to verify the MPMTM model. The investigations
were done with the following procedure:

1) Coordinates of the projectile impact point for five quadrant elevations angles (QE = 350,
550, 750, 950, 1150mil) were taken from computer simulation of firing with the Denel
155mm projectile (Assegai M2000 Series) – considered as a rigid body (6DOF model).
The precise description of the 6DOF model can be found in the Author’s work (2011),
Carlucci and Jacobson (2008), Gacek (1997), McCoy (1999), while the values of mass-
-inertia and aerodynamic characteristics for test projectile are presented in the Author’s
work (2011);

2) Fitting factors, required for the simplified model, were taken in such a way as to get
the compatibility results for the 6DOF with MPMTM model, obtained from computer
simulation, in the context of the fire range Xend and drift yend (mass and aerodynamic
characteristics for the MPMTM model were granted as for the 6DOF model);

3) Polynomials: quadratic and cubic for approximation of the fitting factors (i and fL of
the MPMTM model) in function of QE angle, were elaborated. The simplified model was
called the calibrated model (for the need of this paper);

4) Using both models: the 6DOF and MPMTM calibrated, a considerable number of firing
simulations were done, including full range quadrant elevations angles (0◦ ¬ QE ¬ 80◦)
at standard firing conditions as well with some perturbations.

2. The Modified Point Mass Trajectory Model

The Modified Point Mass Trajectory Model (MPMTM), also known as the 4 degree-of-freedom
model and the Lieske model (after the American ballistician R. Lieske, 1966, who initiated
its widespread usage) is described in STANAG 4355. This model represents the flight of spin-
-stabilized projectiles that are dynamically stable and possess at least trigonal symmetry. Its
basis is a conventional point-mass model but, in addition, the instantaneous equilibrium yaw is
calculated at each time step along the trajectory so as to provide estimates of yaw, drag, drift
and Magnus force effects resulting from the yaw of repose.
The mathematical modeling is accomplished mainly by:

(a) including only the most essential forces and moments,

(b) approximating the actual yaw by the yaw of repose neglecting transient yawing motion,

(c) applying fitting factors to some of the above forces to compensate for their negligence or
approximations for other forces and moments.

The vector of the yaw of repose αe (Fig. 1) has the magnitude (sinαt), where αt is the total
angle of attack; αe is perpendicular to the vector velocity v and lies in the plane of drag. It is
defined as follows (Lieske and Reiter, 1966)

αe = iV × (x× iV ) (2.1)
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where: iV is the unit vector in the direction of the velocity vector with respect to the air v,x –
unit vector along the projectile axis of symmetry (see Fig. 1), |αe| = sinαt, for small angles,
one can assume that |αe| ∼= αt.

Fig. 1. The yaw of repose αe, and the total angle of attack αt

2.1. The vector form of the MPMTM

In its final vector form, the mathematical model of motion of the ground artillery projectiles
contains the following equations (STANAG 4355 Edition 3, 2009):
— dynamic differential equation of motion of the projectile center of mass

mu̇ = DF+ LF+MF+mg +mΛ (2.2)

where

DF = −
πρid2

8
[

CD0 + CDα2 (QDαe)
2
]

v · v − vector of the drag force

LF =
πρd2fl
8
(

CLα + CLα3α
2
e

)

v2αe − vector of the lift force

MF = −
πρd3QMpCmag−f

8
(αe × v) − vector of the Magnus force

mg = −mg0







X1/R
1− 2X2/R
X3/R






− vector of the gravity force

mΛ = 2m(ω × u) − vector of the Coriolis force

u = u0 +
t
∫

0

u̇ dt − vector of projectile velocity with respect to the ground

v = u−w − vector of projectile velocity with respect to the air

— dynamic equation of motion around the projectile axis of symmetry

dp

dt
=
πρd4vCspin
8Ix

p (2.3)

— equation for the vector of the yaw of repose

αe = −
8Ixp(v × u̇)

πρd3
(

CMα + CMα3α
2
e)v4

(2.4)

— equation for the position of the projectile relative to the ground-fixed coordinate system

X = X0 +
t
∫

0

u dt (2.5)
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2.2. The scalar form of the MPMTM

To determine the location of the projectile relative to the Earth in STANAG 4355 (2009)
is used a right-handed, orthonormal, ground-fixed, Cartesian coordinate system with the origin
of coordinates located at the gun muzzle (Fig. 2). In this coordinate system, the 1-3 plane is
tangent to the earth’s surface at the launch point, the 1-axis points downrange, the 2-axis points
vertically upward through the launch point, and the 3-axis points to the right, when looking
downrange.

Fig. 2. The ground-fixed coordinate system with the unit vectors (1, 2 and 3)

The scalar equations of motion, which were used in the simulation model, were obtained by
projecting vector equations (2.2)-(2.5) on the axes of the ground-fixed coordinate system O0123.
The thus construed mathematical model is a system of differential-algebraic equations including:
— scalar dynamic equations of motion for the centre of mass derived from equation (2.2)

du1
dt
= −
πρid2

8m
[

CD0 + CDα2 (QDαe)
2
]

vv1 +
πρd2fL
8m

(

CLα + CLα3α
2
e

)

v2αe1 − g0
X1
R

−
πρd3QMpCmag−f

8m
(αe2v3 − αe3v2)− 2Ω[sin(lat)u3 + cos(lat) sin(AZ)u2]

du2
dt
= −
πρid2

8m
[

CD0 + CDα2 (QDαe)
2
]

vv2 +
πρd2fL
8m

(

CLα + CLα3α
2
e

)

v2αe2 − g0
(

1−
2X2
R

)

(2.6)
−
πρd3QMpCmag−f

8m
(αe3v1 − αe1v3) + 2Ω[cos(lat) sin(AZ)u1 + cos(lat) cos(AZ)u3]

du3
dt
= −
πρid2

8m
[

CD0 + CDα2 (QDαe)
2
]

vv3 +
πρd2fL
8m

(

CLα + CLα3α
2
e

)

v2αe3 − g0
(X3
R

)

−
πρd3QMpCmag−f

8m
(αe1v2 − αe2v1)− 2Ω[cos(lat) cos(AZ)u2 − sin(AZ)u1]

— scalar kinematic equations of motion for the centre of mass derived from equation (2.6)1

dXi
dt
= ui i = 1, 2, 3 (2.7)

— scalar dynamic equation of motion around the projectile axis of symmetry derived from (2.3)

dp

dt
=
πρd4pvCspin
8Ix

(2.8)



Feasibility analysis of the modified point mass trajectory... 515

— equations for components of the yaw of repose vector derived from equation (2.4)

αe1 = −
8Ixp(v2u̇3 − v3u̇2)

πρd3
(

CMα + CMα3α
2
e

)

v4
αe2 = −

8Ixp(v3u̇1 − v1u̇3)
πρd3

(

CMα + CMα3α
2
e

)

v4

αe3 = −
8Ixp(v1u̇2 − v2u̇1)

πρd3
(

CMα + CMα3α
2
e

)

v4

(2.9)

— equations for components and magnitude of the vector of projectile velocity with respect to
the air

vi = ui − wi i = 1, 2, 3 v =
√

v21 + v
2
2 + v

2
3 (2.10)

where: g0 = 9.80665(1 − 0.0026 cos(2lat))m/s2 – acceleration due to gravity at mean sea level,
Ω = 7.292115 · 10−5 rad/s – angular speed of the earth, Rz = 6356766 m – radius of the sphere,
locally approximating the geoid, lat – latitude of the launch point; for the southern hemisphe-
re lat is negative [deg], AZ – azimuth (bearing) of 1 axis measured clockwise from the true
north [mil], m = 43.7 kg – fuzzed projectile mass, Ix = 0.1444 kgm2 – axial moment of inertia.
In the work, the ISO Standard Atmosphere (1975) (air temperature, density, Mach number

and their distribution in function of altitude) was taken as the projectile trajectory model
simulation test.

3. Study of the effect of the polynomial on the precision of trajectory calculation

Results of the range fitting factors (as form factor i) as well the deflection fitting factor (as
lift factor fL) by mean-square approximation with polynomials of the 2nd and 3rd degree,
are depicted in the figures (see below), in form of the regress line in shade of nodal points
within the approximation section (for QE = 350, 550, 750, 950, 1150mil) as well as beyond the
approximation section (for QE = 150 and 1244.4 mil). In addition, in the figures, the form of
the approximation polynomial and determination correlation coefficient R2 were depicted. The
closer to 1, the coefficient of the regression line is better adjusted (see STANAG 4144 Ed. 2,
2005).
Two variants of firings were considered: for minimal – VK0 = 319m/s (Fig. 3) and maximal

– VK0 = 935m/s (Fig. 4) initial (muzzle) velocity of the projectile.

Fig. 3. Results of approximations of the fitting factors (i and fL) versus quadrant elevation for the
variant of firing with the minimum initial (muzzle) velocity VK0 = 319m/s



516 L. Baranowski

Fig. 4. Results of approximations of the fitting factors (i and fL) versus quadrant elevation for the
variant of firing with the maximum initial (muzzle) velocity VK0 = 935m/s

For the need of visualization of the used approximated polynomial for the fitting factors
approximation (i and fL), and their effect on the accuracy of the projectile trajectory (its
coordinates) during a live fire test (in standard condition), simulation was conducted. The
simulation was done for the simplified MPMTM model, and three following variants were taken
into account:

• without fitting factors,

• with fitting factors approximated by the polynomial of the 2nd degree (quadratic),

• with fitting factors approximated by the polynomial of the 3rd degree (cubic).

Then, using the simulation of the projectile trajectory (by the 6DOF model), the following
percentage errors were calculated (Figs. 5-7):
— relative range error

∆rXend =
Xend(6DOF)−Xend(MPMTM)

Xend(6DOF)
· 100% (3.1)

— relative drift error

∆ryend =
yend(6DOF)− yend(MPMTM)

yend(6DOF)
· 100% (3.2)

— relative vertex error

∆rHmax =
Hmax(6DOF)−Hmax(MPMTM)

Hmax(6DOF)
· 100% (3.3)

The below presented simulations and verifications confirmed that the fitting factors are
necessary in the MPMTM model. The factors reduce the trajectory error significantly, especially
in the context of the range and drift of the impact point (Fig. 5) as well.
Moreover, it can be pointed out that the approximation fitting factors by the cubic poly-

nomial reduce the error more than an adequate approximation by the quadratic polynomial.
Relatively significant errors in the case of the range simulation (Fig. 5b) and side deflection –
drift (Fig. 6) for the barrel quadrant elevations outside the approximation section (QE = 155
and 1244.4 mil) confirmed the need for the extension of live fire tests beyond STANAG 4144
Ed. 2 recommendation, it means for additional barrel angles: maximum angle for a specific
cannon and for angles below 350mil.
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Fig. 5. Computational errors of the range for the minimum initial velocity VK0 = 319m/s (a) and for
the maximum initial velocity VK0 = 935m/s (b)

Fig. 6. Computational errors of the drift for the minimum initial velocity VK0 = 319m/s (a) and for the
maximum initial velocity VK0 = 935m/s (b)

Fig. 7. Computational errors of the vertex the minimum initial velocity VK0 = 319m/s (a) and for the
maximum initial velocity VK0 = 935m/s (b)

4. Comparison of the calculation results of the nutation angle with the yaw of

repose angle

For more comprehensive verification of both models (6DOF and MPMTM), in Figs. 8 and 9
the following parameters are depicted: nutation angle δ(t) for the 6DOF model and the yaw of
repose angle αe(t) for the MPMTM model (the approximation of the fitting factors by the cubic
degree polynomial was used).
In the same way as it was done in previous investigations, two variants of fire were considered

(in standard condition): minimum VK0 = 319m/s (Fig. 8) and maximum VK0 = 935m/s (Fig. 9)
projectile initial velocities, both with six barrel quadrant elevations (QE = 350, 550, 750, 950,
1150, 1244.4 mil) of the cannon.
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Fig. 8. Comparison of the nutation angle δ(t) and the yaw of repose angle αe(t) during firings with the
minimum initial velocity VK0 = 319m/s

Generally, except for the initial phase of the fire, where the projectile due to its angular
velocity (existing in the cross section of the muzzle-barrel end) reaches a local maximum angle
of nutation about 4 deg, the yaw of repose angle αe is similar to the nutation angle δ (Fig. 9a-d)
or goes very close (Fig. 9e,f), or can be its approximation to some extent (Fig. 8c-f).

5. Investigation of the effect of perturbations of the firing conditions on the

trajectory precision calculation

Finally, analysis of the computational accuracy (by the MPMTM model) of the vertex coordi-
nates and impact point in the case of so-called perturbed (non-standard) conditions was done.
Typical perturbations of the live firing were investigated, including:
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Fig. 9. Comparison of the nutation angle δ(t) and the yaw of repose angle αe(t) during firings with the
maximum initial velocity VK0 = 935m/s

• projectile mass error: ∆m = 2%

• initial velocity deviation: up to ∆VK0 = 5%

• air density error: ∆ρ = 2%

• difference in altitude of the target and the gun: 200m

• longitudinal (range) wind, its velocity: uWg = −10m/s

• side (cross) wind, its velocity: vWg = 10m/s.

Below, selected results of computations are presented (in form of absolute errors) for such
parameters as: range, deflection, and vertex for the following variants of firing: minimum initial
velocity VK0 = 319m/s (Fig. 10), maximum initial velocity VK0 = 935m/s (Fig. 11), five barrel
quadrant elevations within the approximation sections (QE = 350, 550, 750, 950, 1150mil) and
one outside the approximation section (QE = 150mil).
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The absolute errors such as range, deflection and vertex (marked on the graphs by the
symbol ∆) were calculated on the basis of the following expressions:

• absolute range error ∆Xend = |Xend(6DOF)−Xend(MPMTM)|

• absolute deflection error ∆yend = |yend(6DOF)− yend(MPMTM)|

• absolute vertex error ∆Hmax = |Hmax(6DOF)−Hmax(MPMTM)|

Fig. 10. The effect of perturbations of firing conditions on computation errors of the range, deflection
and vertex during firings with the minimum initial velocity VK0 = 319m/s; (a) difference in the

projectile mass, (b) difference in the initial velocity, (c) difference in the air density, (d) difference in the
altitude of the target and gun, (e) the longitudinal (range) wind, (f) the side (cross) wind

6. Summary and final recommendations

The following conclusions can be formulated, from the analysis of the final results:

• approximation of the fitting factors by the cubic polynomial generally gives better results
(reduces error) than approximation by the quadratic polynomial (Fig. 3 and Fig. 4),

• relatively considerable errors for the range and deflection simulations (Fig. 6) for the
barrel quadrant elevations outside the approximation section (QE = 155 and 1244.4 mil)
pointed out the need for the extension of live fire tests beyond the STANAG 4144 Ed. 2
(2005) recommendation. It means for additional barrel angles: maximum angle for a specific
cannon and for angles below 350mil,
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Fig. 11. The effect of perturbations of firing conditions on computation errors of the range, deflection
and vertex during firings with the maximum initial velocity VK0 = 935m/s; (a) difference in the

projectile mass, (b) difference in the initial velocity, (c) difference in the air density, (d) difference in the
altitude of the target and gun, (e) the longitudinal (range) wind, (f) the side (cross) wind

• diagrams of angles αe and δ (Fig. 8 and Fig. 9) confirmed a satisfactory computatio-
nal compatibility for both numerical models (6DOF and MPMTM) of projectile flight
simulation in standard and non-standard conditions,

• in most cases of live firing perturbations, the range and deflection errors (Fig. 10 and
Fig. 11) do not exceed a few meters, whereas the highest errors in the range (up to 25m)
are associated with the steep firing trajectory in strong longitudinal wind condition,

• it can be concluded, from the results of investigations, that a properly calibrated MPMTM
is satisfactorily accurate and gives a fast-time effective model (approx. ten times faster
than the 6DOF fastest model), what makes it applicable to the algorithms used in the fire
control computers of the ground artillery.
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