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Integrated navigation and flight control systems have found a widespread use in projectiles.
Currently, due to their advantages, they begin to be used more frequently in airplanes
and helicopters. The paper presents one of the most advanced solutions of the integrated
navigation – the flight control system designed for guidance of projectiles and aerial bombs.
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1. The development of the system

The division of the control system adopted in the block diagram (Fig. 1) into the navigation
and flight control subsystems is contractual. Technical implementation of signal processing has
been integrated (Koruba and Ładyżyńska-Kozdraś, 2010).

Fig. 1. Block diagram of the guidance system of the object to the target (source: own data)

The most important factor for the fulfillment of such requirements is to adopt the following
system solutions:

• Integration of navigation and flight control functions, which, among others, eliminates the
necessity of performing independent measurements as well as reduces control procedures
and increases performance of the system;

• The target tracking process and control signals production take place in the coordinate
system pertaining to the object;

• Limitation of the amount of flight control channels in three-dimensional space to a single-
-dimensional one;

• Change of the flight direction with the use of properly arranged and coordinated rocket
engines, acting upon centre of gravity of the object (Grzesik, 2011).
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2. Description of the system performance

The guidance system is implemented in a system of coordinates pertaining to the rotary projec-
tile, and is single channel. The characteristic feature of the system is the lack of moving parts,
which, among others, ensures high operational reliability.
The range of navigation features includes:

• Programmed initiation of target tracking process;

• Optimization of the flight control initiation time;

• Measurement by a tracking head of the target observation deflection line from the projectile
axis – it is so called angular deflection (Fig. 2);

• Determination of the trajectory aimed at reaching the target and processing of the deflec-
tion signal to the control signal K, which ensures the projectile flight to the target along
the predetermined trajectory (Głębocki and Vogt, 2007).

Fig. 2. Principle of operation of the head measuring system (K – angular deflection, E – pulse
deflection signal, φm – angle of inclination of the target measurement plane, the so-called angle of target

location (source: own data)

In the elaborated guidance method above, the issue of navigation, i.e. determination of the
trajectory aimed at reaching the target as well as formation of the control signal have been
solved together. Due to the fact that the tracking head detector is rigidly mounted in the
spinning projectile and due to resignation from the gyroscopic reference system, the deflection
is measured with regard to the projectile axis (Fig. 3). The importance of the method is striving
to ensure that the longitudinal axis of projectile X1 throughout the controlled flight is directed
to the target. Therefore, this method is simply trying to minimize the angular deflection K
(Fig. 3).

2.1. Tracking head

To measure the target position, a one-dimensional linear detector is used, which is rigidly
attached to the spinning projectile (Fig. 2). Thus, the target measurement with regard to the
projectile takes place in polar coordinates. Because the detector is positioned radially on the
measuring dial spinning with the projectile, signal E with angular deflection with regard to
the projectile axis is received at the moment in which the detector is located in the target
measurement plane, inclined at the angle φm. Therefore, the deflection signal E is a series of
pulses (Fig. 4) occurring at a frequency ω equal to the frequency of the projectile rotation around
the longitudinal axis X. Because of the segmented structure of the detector, the value of the
pulse signal of the deflection E abruptly changes with the deflection angle K (Fig. 3). Due to the
lack of a gyroscopic reference system, subsequent moments tn (where n = 0, 1, 2, 3, . . .), in which
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Fig. 3. A simple scheme of the guidance (source: own data)

Fig. 4. Course of the angular deflection and pulse deflection signal registered by the head
(source: own data)

the signal occurs, are subsequent time reference points of the whole control process reference
(Stefański and Koruba, 2012).

2.2. Formation of the deflection signal

To permit the projectile guidance on the pulse target, the deflection signal E is appropriately
processed for the continuous signal ε (Fig. 4) and is subject to:

• Linearization, i.e. processing for continuous signal;

• Forecasting – determination of the course with corresponding anticipation of the course of
time;

• Noise filtering caused by time discontinuities of signal E (Fig. 4) and by oscillation of the
projectile in the range of the angle of attack and sideslip (Głębocki and Vogt, 2000).

A method of polynomial approximation has been used to linearization and forecasting.
The main drawback of the simple guidance method is that the implemented flight trajectory

requires high gravity loads to guide onto targets that move at a greater speed. In order to
reduce these gravity loads, the method has undergone an appropriate modification. The essence
of this change is to minimize, while guiding, not only the angle but also the angular velocity
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of the deflection angle. In addition, to ensure greater stability of the flight control process, an
additional noise filtering is introduced by the introduction of a first order inertia element. Hence,
the control law takes form typical for the PD-type control

T
dK

dt
+K = ka

(

ε+ Tf
dε

dt

)

(2.1)

where K is the control signal at the output of navigation and control units; T – time constant
of the unit; ka – gain; Tf – differentiating constant.
The parameters T , Tf , ka depend on dynamic properties of the projectile as well as on target

motion and position with regard to the launcher.
In the adopted solution, the flight control is performed by means of rocket correction engines

arranged radially around the target centre of gravity (of projectile, bomb). Starting a single
engine generates the force pulse headed in a perpendicular manner to the axis of symmetry and
along a straight line passing through its centre of gravity (Figs. 3 and 6).

Fig. 5. Location of correction engines around the bomb axis (source: own data)

Fig. 6. Principle of the projectile guidance using rocket correction engines. The grey area represents the
operation time of the correction engine (source: own data)

Fig. 7. Changes in the angle of attack at a multiplicity of N = 3 (source: own data)

The engine activation directly affects the velocity vector change of the bomb flight with
respect to both the direction as well as the magnitude. On the basis of the measurement of
the bomb position with regard to the designated target point and to the predetermined flight
trajectory, the time and direction of pulses correcting the flight path are worked out, and then
the signals for pulse rocket thrusters are initiated (Głębocki and Vogt, 2000).
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The engines are arranged radially around the centre of gravity. They give off single control
pulses headed in a perpendicular manner to the main projectile axis. The function which initiates
the engine start-off depends on the value of the control signal, on the phase position of the target
as well as on the angular position of the projectile spinning motion (Figs. 2 and 6). The spatial
flight of the target, with a single-channel control, is possible thanks to swirling motion of the
target and to starting at the moment corresponding to the angle φm of the phase target position
(Fig. 2).

3. Conclusions

Single-channel pulse direct flight control allows achieving the required control quality with appro-
priate selection of engine start-off algorithms as well as with dynamic stability of the projectile.
Hence, the stability of the directly controlled projectiles can be arbitrarily large. The engine
start-off algorithms are highly complex. In their designation, one should take into account such
an order of projectile launching at which the dynamic imbalance of the projectile will be mi-
nimal. These algorithms must ensure the required flight control quality, among others, thanks
to proportionality of the average control effect to the value of the control signal (Głębocki and
Vogt, 2007).
Properties of the projectile controlled by a set of impulse engines:

a) Pulse control is limited in the number of correction pulses.

b) The reaction is much faster, a change in the direction does not require inclination of the
projectile.

c) During the direct control, there appear much smaller angles of attack and sideslip.

d) Pulse implementing systems do not have moving mechanisms complicating the structure
and increasing demand for energy.

e) Requirements for the projectile aerodynamics are reduced.

f) The projectile control does not depend on flight velocity, which constitutes the greatest
advantage of targets of this class.

References

1. Głębocki R., Vogt R., 2000, Impulse control of anti-tank missile, NATO-RTO Meeting Proce-
eding, Brunschwig

2. Głębocki R., Vogt R., 2007, Guidance systems of smart mortar missile, The Archive of Mecha-
nical Engineering, LIV, 1

3. Grzesik N., 2011, Zaawansowane systemy uzbrojenia lotniczego. Budowa i zastosowanie, WSOSP,
Dęblin

4. Koruba Z., Ładyżyńska-Kozdraś E., 2010, The dynamic model of combat target homing
system of the unmanned aerial vehicle, Journal of Theoretical and Applied Mechanics, 48, 3,
551-566

5. Stefański K., Koruba Z., 2012, Analysis of the guiding of bombs an ground targets using a
gyroscope system, Journal of Theoretical and Applied Mechanics, 50, 4, 473-485

Manuscript received March 31, 2014; accepted for print July 24, 2014


