Journal of Theoretical
and Applied Mechanics

0, 0, pp. , Warsaw 0

Accuracy of determined S-N curve by selected models

Przemysław Strzelecki
The study shows the models defining the relationship between the fatigue life and the stress amplitude. The first models have been developed at the beginning of the 20th century; however, new models are still being developed. The author decided to compare the most commonly used model, i.e. a linear regression model and the two models discussed in ISO-12107. The comparison also included some recently developed models, i.e. Stromeyer, Basenaire, Castillo et al., Kohout and Vechet, Leonetti et al., and Pasual and Meeker model, including its modified version. The fatigue data for S355J2+C and AISI 1045 steel were used for the comparison. The best estimate of the fatigue life was obtained by using the modified Pasual and Meeker model.
Keywords: S-N curve; high-cycle fatigue; steel; fatigue design; data analyse

References


ASTM E-739-91. 2006. Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data.

Aviles, R., Albizuri, J., Rodriguez, A., Lopez De Lacalle, L. N. 2013. Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel. International Journal of Fatigue, 55, pp. 230–244. http://doi.org/10.1016/j.ijfatigue.2013.06.024

Bochat, A., Wesolowski, L., Zastempowski, M. 2015. A Comparative Study of New and Traditional Designs of a Hammer Mill. Transactions of the ASABE, 58(3), pp. 585–596. http://doi.org/10.13031/trans.58.10691

Castillo, E., Canteli, A. F., Esslinger, V., Thurlimann, B. 1985. Statistical Model for Fatigue Analysis of Wires, Strands and Cables. In IABSE proceedings (pp. pp. 1–40).

Castillo, E., Fernández-Canteli, A. 2009. A Unified Statistical Methodology for Modeling Fatigue Damage. http://doi.org/10.1007/978-1-4020-9182-7

Fouchereau, R., Celeux, G., Pamphile, P. 2014. Probabilistic modeling of S-N curves. International Journal of Fatigue, 68, pp. 217–223. http://doi.org/10.1016/j.ijfatigue.2014.04.015

ISO-12107. 2012. Metallic materials - fatigue testing - statistical planning and analysis of data. Geneva.

Jing Ling, J. P. 1997. A Maximum Likelihood Method for Estimating Genome Leng.pdf, pp. 415–419.

Kohout, J., Vechet, S. 2001. A new function for fatigue curves characterization and its multiple merits. International Journal of Fatigue, 23(2), pp. 175–183. http://doi.org/10.1016/S0142-1123(00)00082-7

Kurek, M., Lagoda, T., Katzy, D. 2014. Comparison of Fatigue Characteristics of some Selected Materials. Materials Testing, 56(2), pp. 92–95. http://doi.org/10.3139/120.110529

Leonetti, D., Maljaars, J., Snijder, H. H. (Bert). 2017. Fitting fatigue test data with a novel S-N curve using frequentist and Bayesian inference. International Journal of Fatigue, 105, pp. 128–143. http://doi.org/10.1016/j.ijfatigue.2017.08.024

Pascual, F. G., Meeker, W. Q. 1999. Estimating Fatigue Curves with the Random Fatigue-Limit Model. Technometrics, 41(4), pp. 277–290. http://doi.org/10.2307/1271342

Pollak, R. D., Palazotto, A. N. 2009. A comparison of maximum likelihood models for fatigue strength characterization in materials exhibiting a fatigue limit. Probabilistic Engineering Mechanics, 24(2), pp. 236–241. http://doi.org/10.1016/j.probengmech.2008.06.006

Sarkani, S., Mazzuchi, T. a., Lewandowski, D., Kihl, D. P. 2007. Runout analysis in fatigue investigation. Engineering Fracture Mechanics, 74, pp. 2971–2980. http://doi.org/10.1016/j.engfracmech.2006.08.026

Schütz, W. 1996. A history of fatigue. Engineering Fracture Mechanics, 54(2), pp. 263–300. http://doi.org/10.1016/0013-7944(95)00178-6

Skibicki, D. 2007. Experimental verification of fatigue loading nonproportionality model. Journal Of Theoretical And Applied Mechanics, 45(2), pp. 337–348.

Strzelecki, P., Sempruch, J. 2012. Experimental Verification of the Analytical Method for Estimated S-N Curve in Limited Fatigue Life. Materials Science Forum, 726, pp. 11–16. http://doi.org/10.4028/www.scientific.net/MSF.726.11

Strzelecki, P., Sempruch, J. 2016. Verification of analytical models of the S-N curve within limited fatigue life. Journal of Theoretical and Applied Mechanics, 54(1), pp. 63. http://doi.org/10.15632/jtam-pl.54.1.63

Strzelecki, P., Tomaszewski, T. 2016. Application of Weibull distribution to describe S-N curve with using small number specimens. In AIP Conference Proceedings (Vol. 1780, p. pp. 20007). AIP Publishing. http://doi.org/10.1063/1.4965939

Strzelecki, P., Tomaszewski, T., Sempruch, J. 2016. A method for determining a complete S-N curve using maximum likelihood. In I. Zolotarev & V. Radolf (Eds.), 22nd International Conference on Engineering Mechanics (pp. pp. 530–533). Svratka, Czech Republic: ACAD SCI CZECH REPUBLIC, INST THERMOMECHANICS, DOLEJSKOVA 5, PRAGUE 8, 182 00, CZECH REPUBLIC.

Szala, G., Ligaj, B. 2011. Two-parameter fatigue characteristics of construction steels and their experimental verification (in Polisch). (J. Szala, Ed.). Bydgoszcz: Uniwersytet Technologiczno-Przyrodniczy im. J. J. Śniadeckich - Instytut Technologii Eksploatacji - PIB.

Szala, G., Ligaj, B. 2012. Description of Cyclic Properties of Steel in Variability Conditions of Mean Values and Amplitudes of Loading Cycles. Materials Science Forum, 726, pp. 69–76. http://doi.org/10.4028/www.scientific.net/MSF.726.69

Tomaszewski, T., Sempruch, J. 2017. Fatigue life prediction of aluminium profiles for mechanical engineering. Journal of Theoretical and Applied Mechanics, 55(2), pp. 497. http://doi.org/10.15632/jtam-pl.55.2.497

Weibull, W. 1961. Fatigue Testing and analysis of results. Oxford: Pergamon Press LTD.