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This paper is concerned with the mechanical response of a single-walled carbon nanotube.
Euler-Bernoulli’s beam theory and Hamilton’s principle are employed to derive the set of
governing differential equations. An efficient variational method is used to determine the
solution of the problem and Legendre’s polynomials are used to define basis functions. Si-
gnificance of using these polynomials is their orthonormal property as these shape functions
convert mass and stiffness matrices either to zero or one. The impact of various parameters
such as length, temperature and elastic medium on the buckling load is observed and the
results are furnished in a uniform manner. The degree of accuracy of the obtained results
is verified with the available literature, hence illustrates the validity of the applied method.
Current findings show the usage of nanostructures in vast range of engineering applications.
It is worth mentioning that completely new results are obtained that are in validation with
the existing results reported in literature.
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1. Introduction

Nanotechnology has been continuously booming in the world wide research community for the
last two decades as it offers numerous applications in the diversified field of biomaterials, com-
munications, medicines and designing of efficient devices. Nanotubes, nanowires, nanotube re-
sonators and nanoparticles are some nanomaterials in which beams and plates are widely used
as main components at nano or micro length scale. One of the most fascinating elements in the
periodic table is carbon that has several allotropes (diamond, fullerene, graphite, carbon nano-
tubes and graphene) according to its hybridization states. Carbon nanotubes were discovered
by Iijima (1991) and formed by curling a graphitic sheet in a way which produced a class of
materials that possess extraordinary mechanical and electrical properties (Dai et al., 1996) and
(Kim and Lieber, 1999). These nanotubes are used as nanobeams in microelectromechanical and
nanoelectromechanical systems (Li et al., 2003). These nanotubes are stronger and stiffer than
any other materials because of high elastic modulus of graphite sheets. Minuscule size plays a
considerable role in the analysis of mechanical nature of these nanotubes and, thus, it is hard
to ignore.

Atomistic modeling, nanoscale continuum mechanics and continuum mechanics are three
main methods used to define mechanical properties of carbon nanotubes. In atomistic modeling,
the position of atoms are computed based on their interactive forces and end conditions (Lu and
Bhattacharya, 2005). Atomistic modeling is very costly and time consuming. However, nano-
-scale continuum mechanics approach replaces the C-C bond by a continuum element and can be
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used at nano-scale (Rafiee and Moghadam, 2014). Continuum mechanics states that the stress
at each point of the body is a function of strain at the same point only. At nanoscale, size effects
play a vital role in investigating the mechanical behavior as compared to that in macroscopic
scale. But it is a well known fact that continuum beam theories are scale free, that is why these
theories are not suitable for predicting small-scale effects of single walled carbon nanotubes.
Therefore, to study the buckling behavior of carbon nanotubes the need for nonlocal continuum
mechanics (Eringen, 1972, 1983) takes place. Non-classical (Nonlocal) elasticity theory has more
information on forces between atoms than the classical elasticity theory. Thus it has been widely
used for accurate and fast analysis of carbon nanotubes.

Initially, Peddieson et al. (2003) implemented nonlocal theory to nanotechnology. To inve-
stigate buckling behavior of carbon nanotubes, nonlocal continuum models were developed and
used for general edge conditions by Wang Q. et al. (2006). Murmu and Pradhan (2009) employed
a differential quadrature method alongwith the nonlocal Timoshenko beam theory. Challamel
(2011) applied higher-order shear beam theories for buckling of nanobeams. Differential model
of Eringen’s theory is applied to formulate elastic beam theories by Reddy and El-Borgi (2014).
Pradhan and Reddy (2011) used a differential transform technique to determine the buckling
load of CNTs using different boundary conditions. Nagar and Tiwari (2017) applied successive
differentiation approach to study characteristics of carbon nanobeams. Ansari et al. (2011) re-
ported thermal buckling analysis of embedded single-walled carbon nanotube modeled through
the Timoshenko beam model. Chirality effect was studied by Semmah et al. (2015) for zig-zag
single walled carbon nanotubes. Chakraverty and Behera (2015) proposed a numerical technique
to study vibration and buckling behavior of nanobeams using two types of elastic medium. Nejad
and Hadi (2016) used theory of nonlocal elasticity to analyse bending behavior of bi-directional
functionally graded beams. Norouzzadeh and Ansari (2017) predict the mechanical nature of
nanobeams using the integral model of Eringen’s theory. A review has been done for the mo-
deling of carbon nanotubes using different models by Sakharova et al. (2017). Although several
methods are used in literature to analyse the buckling behavior, authors find the importance of
using the Rayleigh-Ritz method with Legendre’s polynomials.

In the present paper, the buckling characteristics of single walled carbon nanotubes resting on
a two-parameter elastic medium are analyzed using the Rayleigh-Ritz method, and Legendre’s
polynomials are used as shape functions. Nonlocal elasticity theory in conjunction with the
Euler-Bernoulli beam theory (EBT) is used to obtain the governing equation of motion. A
solution to the governing equation is obtained in the form of an eigen value problem for which a
simple code is generated. Outputs of the problem are plotted graphically, and the interpretation
of results is validated with those reported in literature (Wang C.M. et al., 2006). The effect of
change in temperature is also observed for different room environments. The impact of distinct
parameters on the lowest buckling load is examined and graphs are used to draw conclusions.

2. Problem formulation

According to nonlocal elasticity theory (Eringen, 2002), the stress at a specific point in the system
is considered as a function of the strain state at all points of the system. The nonclassical stress
tensor σ at a point x over the volume V is determined by the following relation

σ(x) =

∫

V

K(D, ξ)τ dV (x∗) (2.1)

where τ is the local stress tensor, K is a nonclassical modulus of two parameters D and ξ.
The nonlocal parameter is ξ = (e0a)

2 in which e0 is the material specific constant, a is internal
length parameter, l is length of the tube and D is Euclidean distance given as |x∗− x|. To solve
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integral constitutive relation (2.1), its simplified differential form is given by Eringen (1972) in
the following form

(1− ξl2∇2)σ(x) = τ (x) (2.2)

where ∇2 is the Laplace operator and τ (x) is the local stress tensor defined by Hooke’s law as
follows

τ (x) = C(x) : ε(x) (2.3)

where C(x) and ε(x) is the elasticity tensor of the order four and the local strain tensor,
respectively, and “:” denotes the double dot product. It is to be noted that in absence of a,
equation (2.2) reduces to the constitutive equation of classical elasticity. Governing equations
are formulated using the Eringen (1972, 1983) theory and EBT nonlocal theory of elasticity. For
the exceptional strength and stiffness of carbon nanotubes, they are constructed with a very
high length to diameter ratio, approximately 1, 32 000 000 : 1.

Hamilton’s principle is expressed by the following relation

t∫

0

[(δUs + δUp)− δUk] dt = 0 (2.4)

where δUs, δUp and δUk are the variations in strain, potential energy and kinetic energy, respec-
tively.

The displacement components as stated in the Euler-Bernoulli beam theory are such that
the transverse shear stress at the boundaries of the surface of the beam is zero and nonzero at
other places. The displacement field is defined as

ux(x, z, t) = −z
∂u

∂x
uy(x, z, t) = 0 uz(x, z, t) = u(x, t) (2.5)

where u is the transverse deflection of a point of the beam in the mid plane. The non-zero strain
displacement or bending strain is defined as

εxx = −z
∂2u

∂x2
(2.6)

and the strain energy is

Us =
1

2

l∫

0

∫

A

σxxεxx dAdx (2.7)

where σxx is the normal stress, l is the size of the beam and A is the cross-sectional area.

Using (2.6) into (2.7), the strain energy is given as

Us = −
1

2

l∫

0

∫

A

zσxx
∂2u

∂x2
dAdx = −

1

2

l∫

0

M
∂2u

∂x2
dx (2.8)

whereM =
∫
A zσxx dA is defined as the bending moment. For free harmonic motion, the natural

frequency ω of vibration is given by u = u0(x) sin(ωt).
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Therefore, the strain and kinetic energy of the beam are expressed as

Us = −
1

2

l∫

0

M
d2u0
dx2

dx Uk =
1

2

l∫

0

ρAu2u20 dx (2.9)

where ρ is mass density of the beam.
The work done by external forces (potential energy) is defined as

Up =
1

2

[ l∫

0

F
(du0
dx

)2
dx+

l∫

0

ρeu0 dx
]

(2.10)

where F = Fm + Fθ is the compressive force applied to the beam. Here, Fm and Fθ both are
axial forces due to change in mechanical load and temperature, respectively, and Fθ is related
with temperature θ as

Fθ = −
EAγxθ

1− 2ν
(2.11)

where ρe = k1u0 − k2(d
2u0/dx

2) is the elastic medium density and EA is tensile rigidity. He-
re, k1 and k2 are Winkler elastic modulus and Pasternak shear elastic modulus, respectively.
According to the Winkler elastic modulus, the force on the foundation is directly proportional
to deflection while the Pasternak model assumes the existence of shear interaction between the
spring elements.
Using equations (2.9) and (2.10) in (2.4) and equating the coefficient of δu0 to zero, equation

(2.4) reduces to

d2M

dx2
+
(
F
d2

dx2
− k1 + k2

d2

dx2
+ ρAω2

)
u0 = 0 (2.12)

The constitutive equations of the nonclassical Euler-Bernoulli beam is given as

−EI
d2u0
dx2
=M − ξ

d2M

dx2
(2.13)

where EI is defined as bending rigidity.
Using (2.12) and (2.13), the bending moment for nonlocal elasticity theory is written as

M = −EI
d2u0
dx2
+ ξ
(
−ρAω2u0 − F

d2u0
dx2
+ k1u0 − k2

d2u0
dx2

)
(2.14)

Equating the maximum kinetic and potential energy, the dimensionless equation of motion for
nonlocal EBT nanobeams is expressed as

EI

l2
(1 + F̂ β2 +K2β

2)
( d2U
dX2

)2
+
EI

l2
(−K1β

2U −K2U + α
2β2U)

d2U

dX2

+
EI

l2
F̂
( d2U
dX2

)2
+
EI

l2
(K1 − α

2)U2 = 0

(2.15)

The dimensionless form of parameters is as follows

X =
x

l
U =

u0
l

β =
e0a

l
K1 =

k1l
4

EI
K2 =

k2l
2

EI

F̂ =
Fl2

EI
F̂m =

Fml
2

EI
F̂θ =

Fθl
2

EI
α2 =

ρAω2l4

EI

(2.16)
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3. Solution procedure

To solve equation (2.15), Rayleigh-Ritz method (R-R) is employed with a Legendre’s polynomial
as a shape function. This method is generally used for finding an approximate solution for
different types of mechanical engineering problems and is often used to determine first eigen
frequencies and eigenfunctions of continuous linear elastic systems. The approximate solution of
eigenvalues and eigenfunctions of the continuous system is improved by using a large number
of terms in the Ritz expansion and the error in the approximation of the eigenfunction being
measured in a certain norm. The boundary function is chosen in such a way so that it satisfies
the essential end conditions of the beam.

According to R-R method, the displacement function can be written as a sum of polynomials
as

U(X) =
N∑

n=1

bnψn (3.1)

where bn are unknowns to be determined, ψn are orthonormal polynomials and N is the number
of terms needed to find the results up to desired level of accuracy. Here we used a Legendre’s
polynomial as an orthonormal polynomial.

The Legendre polynomials are chosen in such a way that they bijectively map the interval
[0, 1] to [1,−1]. This is to show that the polynomials are orthogonal on [0, 1] to satisfy the end
conditions ψn(0) = ψn(1) = 0, n  1. To fulfill the conditions of orthogonality in the interval
[0, 1], modified form of the Legendre polynomial is used and is defined as

ψn(X) =
[ 1
n!

dn

dXn
(X2 −X)n − (−1)n

]
(X − 1) (3.2)

Some of the modified Legendre polynomials over the interval [0, 1] are as follows

ψ1(X) = −2X + 2X
2 ψ2(X) = 6X − 12X

2 + 6X3

ψ3(X) = −12X + 42X
2 − 50X3 + 20X4

ψ4(X) = 20X − 110X
2 + 230X3 − 210X4 + 70X5

ψ5(X) = −30X + 240X
2 − 770X3 + 1190X4 − 882X5 + 252X6

These modified Legendre polynomials can be used as a set of basis functions and satisfy the
special properties ψn(0) = ψn(1) = 0, n  1 at the boundaries. Putting F̂m = −P and the
inertia term α2 to zero in equation (2.15), the following governing equations are obtained to
analyze the critical buckling load

(
1−K2β

2+
F̂θl
2

EI
+
Fθl
2

EI
β2
)( d2U
dX2

)2
−(K1β

2U+K2U)
d2U

dX2
K1U

2 = P̂
[( dU
dX

)2
+β2
( d2U
dX2

)2]

(3.3)

where P̂ = Pl2/(EI).

Incorporating equation (3.1) into equation (3.2), solution of equation (3.3) is obtained by
minimizing the buckling load with respect to unknown coefficients bj, j = 1, 2, . . . , n. Thus, by
putting ∂P̂ /∂bj = 0, the solution of equation (3.3) in matrix form is

SY = P̂BY (3.4)
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where Y = [b1, b2, . . . , bn]
T is the transpose matrix of the unknown coefficients bj , j = 1, 2, . . . , n

and the stiffness and buckling matrices are given by

S(i, j) =

1∫

0

[
(1 + 2K2β

2 + 2F̂ β2)ψ̈iψ̈j + 2F̂ β
2ψ̇iψ̇j

+ 2K1ψiψj − (K2 +K1)ψ̈iψj − (K2 +K1)ψiψ̈j
]
dX

B(i, j) =

1∫

0

(2ψ̇iψ̇j + 2β
2ψ̈iψ̈j) dX

(3.5)

where i, j = 1, . . . , n, ψ̇i and ψ̈i represents derivatives of the first and second order of ψi(X) with
respect to X for all i and j. Equation (3.4) is an eigen value problem in which the smallest eigen
value will provide the critical buckling load which is to be obtained by equating the determinant
of the coefficient matrix to zero. Corresponding eigenvectors are used as shape functions and for
finding the critical buckling loads and post buckling behavior of beams and columns.

4. Results and discussions

To obtain the numerical results, values of different parameters for a single-walled carbon nano-
tube according to (Benzair et al., 2008) and (Murmu and Pradhan, 2009) are given in Table 1.

Table 1. Values of different parameters to determine buckling load (Benzair et al., 2008) and
(Murmu and Pradhan, 2009)

Parameter Value

Modulus of elasticity 1TPa

Thermal expansion −1.4 · 10−6 for low temperature environment
coefficient 1.0 · 10−6 for high temperature environment

Poisson’s ratio 0.19

Values in Table 2 show the critical buckling load for clamped-clamped end conditions for
varying values of the aspect ratio and nonlocal scale parameter.

Table 2. Critical buckling load using the present approach and (Pradhan and Reddy, 2011) for
the clamped-clamped (C-C) case

Aspect Nonlocal parameter [nm2] Nonlocal parameter [nm2]
ratio Pradhan and Reddy (2011) Present approach
(l/d) ξ = 0 ξ = 1.0 ξ = 1.5 ξ = 2.0 ξ = 0 ξ = 1.0 ξ = 1.5 ξ = 2.0

10 9.6311 8.2298 6.3549 3.2367 9.6318 8.2314 6.3512 3.2369

12 5.3601 4.3316 3.3686 2.1855 5.3617 4.3325 3.3698 2.1865

14 3.1114 2.6010 2.1238 1.6296 3.1134 2.6025 2.1230 1.6362

16 2.1183 1.7992 1.5629 1.2102 2.1193 1.8001 1.5632 1.2050

18 1.7741 1.5201 1.2251 1.0135 1.7721 1.5124 1.2253 1.0090

20 1.6125 1.3459 1.1248 0.9905 1.6134 1.3462 1.1253 0.9963

It is observed from the numerical results that the critical buckling load decreases as the
length to diameter ratio increases, and this effect is more significant for higher values of the
nonclassical scale parameter. Figure 1a shows variation in the critical buckling strain (or load)



Mechanical nature of a single walled carbon nanotube... 1159

with the length-to-diameter ratio for C-C end conditions. Multiple graphs are plotted for different
nonclassical parameter values.
It is to be noted that if the nonclassical parameter is neglected, the obtained results corre-

spond to those that are obtained from the local theory. It is also observed from the graph that
in order to set a lower buckling load, the value of the scale coefficient is to be increased. These
observations are verified with (Pradhan and Reddy, 2011).

Fig. 1. (a) Variation in the critical buckling load with different values of the aspect ratio. (b) Impact of
the aspect ratio on the critical buckling load

Figure 1b illustrates the impact of the length-to-diameter ratio on the lowest (critical) buc-
kling load for various boundary conditions. The load value decreases for all boundary conditions
as the aspect ratio increases. Moreover, clamped-simply supported end conditions provide a hi-
gher buckling load as compared to simply supported and cantilever beams. The graph shows
that buckling solutions are highly influenced by the small scale coefficient. Buckling strain is
high for a lower aspect ratio. The obtained results are in agreement with (Wang C.M. et al.,
2006).

Fig. 2. (a) Distribution of the critical buckling load for different Winkler elastic moduli. (b) Impact of
the Pasternak shear elastic modulus on the critical buckling load

Figure 2a represents the impact of the Winkler elastic constant. To study this effect, different
physical values are taken as θ = 20, l/d = 15 and K2 = 0. Variations in the buckling load are
shown for different scale coefficients, and the Winkler modulus is taken between 0-250. It is
shown in the graph that the critical buckling load increases with the increment in the Winkler
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modulus. For higher values of the scale coefficient, nonlinear behavior of the lowest buckling
load for different values of the Winkler elastic medium is observed. The reason behind this effect
is that the nanotube becomes rigid after increasing the value of the Winkler elastic medium
constant.

Figure 2b demonstrates the change in the critical buckling load parameter with respect to
the Pasternak shear modulus parameter for various values of nonlocal parameters. Different
parameters are taken as θ = 20, l/d = 15 and K1 = 0 to study the effect of the elastic medium
on buckling solutions. It is noticed that the increasing of the Pasternak elastic modulus increases
the critical buckling load, and this increment is linear in nature due to the commanding nature of
this foundation. It can be easily seen that the critical buckling loads in the Pasternak model are
larger than in the Winkler model. The critical buckling loads of single walled carbon nanotubes
for higher values of small scale coefficients are small compared to lower values of the scale
coefficient. The obtained results are in validation with (Murmu and Pradhan, 2009).

Figure 3 shows the effect of temperature on the critical buckling load for two different
environments (Murmu and Pradhan, 2010) and K2 = 3. It is observed from the graph that if
the nanobeam is placed in low temperature environment, the critical buckling strain increases as
temperature increases. However, in high temperature environment, the critical buckling strain
decreases with an increase in temperature. This is due to the fact that rigidity of the nanobeam
in low temperature environment increases as temperature increases, and in high temperature
environment the rigidity of a single walled carbon nanotube decreases as temperature increases.
Similar interpretations were also presented in (Murmu and Pradhan, 2010) and (Chakraverty
and Behera, 2015).

Fig. 3. Variation in the critical buckling load due to different temperature environments

5. Conclusion

In the present paper, considering the effect of temperature in conjunction with two foundation
models, the mechanical analysis of single walled carbon nanotubes is studied. Legendre’s poly-
nomial is used as a characteristic polynomial along with the Rayleigh-Ritz method playing a
significant contribution to this study. The orthogonality of these polynomials ensures the results
to be found valid with a reasonable accuracy. For two-parameter models, the influence of phy-
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sical parameters like the elastic coefficients, nonlocal parameter, aspect ratio and temperature
is discussed graphically. Conclusions are drawn with the help of the obtained numerical results
and are in fair agreement with those reported in literature. It is found that the critical buckling
load increases as the nonlocal parameter increases. Moreover, it is also observed that in the case
of the Pasternak foundation, the critical buckling load behaves linearly while for the Winkler
foundation this behavior is nonlinear. Critical buckling loads behave nonlinearly for the Winkler
elastic modulus because single walled carbon nanotubes become stiffer after an increment in the
Winkler elastic modulus. The reason for linearity may be due to the commanding nature of the
Pasternak type elastic foundation.
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