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1. Introduction

The analytical solutions to boundary value problems typical of mechanics of continuous
media are as a rule possible for simple geometries only, such as circular or rectangular
regions. Thus, numerical methods are often the only means for solving boundary value
problems of engineering significance. The most widely used methods are the finite difference
(FDM) and the finite element (FEM) methods. However, in the recent years we have
also witnessed the fast development of the so-called boundary methods, [1 -4]. Thus,
in view if the different approaches now available, it seerms necessary to work out procedures
for effective comparison of them in order to facilitate their optimal choice in a given
situation. ’

A special case of the boundary methods which will be referred to in the present paper
is the boundary collocation method (BCM). The method is not very popular in comparison
with other boundary methods (such as the boundary integral method) as it is applicable
only to linear sets of differential equations for which some general solutions satisfying
the equations inside the region considered are known. An extensive review of BCM
as used in linear continuous mechanics is given in [5]. .

_ There exist a number of papers which attempt to compare the accuracy of results
obtained by BCM against the exact solutions obtained analytically, see [6- 11], for in-
stance. On the other hand, the performance comparisons of BCM and other approximate
methods are not numerous. Shuleshko [12] made comparisons for three different versions
of the collocation procedure: (a) the BCM in which the equations are exactly satisfied
inside the region but only approximately on its boundary, (b) the internal collocation
method in which we satisfy exactly the boundary conditions whereas the equations inside
the region are fulfilled approximately, and (c) the mixed collocation method in which all
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the equations are satisfied in an approximate way only. The comparison was carried out
for a torsion problem of a prismatic beam with a rectangular cross-section. The conclusion
was that the method (a) was superior to the other approaches.

A comparison of nine approximate methods including BCM was presented in [13)
for some thin plate bending problems for which exact solutions were available. Unfortuna-
tely, FEM and FDM were not included. As a conclusion the authors classified each of the
methods as good, fair or poor depending on eleven selected technical criteria. France
[14] compared two versions of BCM in the form of the straightforward boundary colloca-
tion method and the overdetermined boundary collocation method with least squares for
the case of 2D Laplace equation in the rectangular region. The latter version ylelded
slightly better results.

The results reported in [15] may be interpreted in favor of BCM as well. For the case
of the exact solution to the Laplace equation in the square region with discontinuous

boundary conditions five different methods were compared in that paper, including the
- standard FEM approach and the method of “large singular finite elements”, the latter
being just a version of BCM based on large elements. This method yielded the most accurace
results whereas the FEM performance was very poor.

In [16] the application of “large singnlar finite elements” to the solution of a torsion
problem for a quadrangle, for which no exact solution existed, was proposed. The results
were again superior with respect to those obtained by using FEM.

The comparison of BEM and BCM with a special choise of trial functions called by the
authors the superposition method was performed in [17]. Nine exact solutions to some
plane elasto-static problem were used for comparison. BCM turned out again to yield
better results. In [18] some objections as to the results of the paper [17] were raised, but
no definite conclusions were formulated. '

To the best of authors’ knowledge, no paper specifically devoted to the comparison
of FEM and BCM. has ever been published. Taking into account the popularity of the
former method and the simplicity of the latter one, such a comparison seems to desirable,
The more so that the current tendency to combine different methods by exploiting their
virtues and eliminating the faults, cf. [3 - 4], [19 - 20], may in this way be given an additional
perspective.,

The purpose of this paper is to carry out a through comparison of BCM and FEM.
Some harmonic 2D boundary value problems are considered, for which the exact solutions
are available. The key question to be posed below reads: which of the two methods yields
more accurate results given the same “level of discretization” measured by the number
of assumed degrees of freedom.

2. Test problems and the analytical solutions

The problem chosen for this study are as follows, cf. Fig. 1:
Problem I.

V29 =0 in 0<0<f—, 0<R< 05,
3 0s®
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with the boundary conditions:

22 _ o o {0, 0< R<O0S5
o =0 for =15 0<r<1"
= —0.5R* for X=05 0<Y<)y32

Problem II.
V2p=0 in 0<O®<xnf4, 0<R<]ljcos®

with the boundary conditions:

odb
—a@‘ZO for @==

Problem III.
V2¢=0 in O<x<l, 0<Y<E,

D 0 f 0 0, 0<Rx1
6 =7 " YT a2, 0< R E
®=-05R> for X=1, 0K Y<KE,
®=—-05R* for Y=E, 0<X<gl.
The values of E = 0.5, E = 0.25, E = 0.125 correspond to subproblems Illa, IIIb, IIic
respectively.
Problem 1V.

V2@ =0 in O0<X<l1, 0<Y<l1

with the boundary conditions:
L)

o0

=0 for X=1, 0<g<Y<I1,

o o <R<
=0 for ={%/2,0<R<

9 | Bi@—1)=0 for Y=1, 0<X<I.

Y
The values of Bi = 1, Bi = 5, Bi = 10 correspond to subproblems IVa, IVb, IVc respec-

tively.
Problem V.
V=0 in —-1<X<1l, 0<Y¥Y<l1

with the boundary conditions:
®=0 for O=mn, O0<g

06

R
% _ 0 for ©=0, 0<R<I,
D=1 for X=1, 0<Y
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oD
W—O for Y=1, —1<X<1,
oD
W_O for X= -1, 0<Y<I.

Problem VI
VO=0 in 0<X<l1l, 0<¥Y<l1

with the boundary conditions:

E.—_o for @_{O, 0<R<1
o0 w4, 0 <R
D=0 for X=1, 0<Y<]1,
P=1-X for Y=1, 0<Xx]l

667

Problems I, IT and III may be referred to some solutions of the Saint-Venant torsion
problem, cf. [21], problem IV to some steady state temperature problem, cf. [22], problem
V is the so called Motz problem,[23], and problem VI was employed in [25] for comparing
FEM and BEM. The exact solutions to all the above problems are given in Tabl. 1. The
derivatives d®/0X and 0®P/JY may easily be obtained, if necessary.

Table I. Exact solutions of Problem I- VI

Problem Function @

VI | g N Seosl@ntDmx[dcoshi2nt 1 ¥]2)
- ,g; 2n+1)*n2cosh[(2n+1) 7/2]

Reference
1 1
1 ® = — X=XV~ = [21]
- : -
1 32 1 n-t coshnnY/2] 7. s
11 O = — —(X*+¥H)~ (1) 2 |1 -——— Leos(unX/2 21
2 X*+Y5 73 '% n =1 [ coshinn/2] ]CO (rnX[2) 21]
N n=4,3,
[=e]
1 32 1 r—1 coshnzY/2]
m D= —— (X+YH)—- — (=12 [ 1-—— " lcos(mX]/2 [21]
7 XHYI-35 n;; i [ cosh[;mE/Z]] X 12)
E = 0.5; 0.25; 0,125
- o S (— D" 12Bicos(u, X [exp(u, Y)+ exp(-,u,. )] 021
Ld pnlexp(pan) (n + Bi) + exp(— i) (Bi— pan)]) b. 317
Bi=1;5; 10; .
o 20
v D= > a,R®~blcos[(2n—1) 6[2) [24]
n=1
coefficients a, are given in Table Ia
[25]

T+
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Table Ta. Coefficients a, in solution of Problem V

n an
1 0.80232490749016884047
2 0.17531184039017583405
3 0.0344758301588936187
4 —0.0161424305193962637
5 0.002880545434045715
6 0.000662109771814473
7 0.00055087468901836
8 —0.00017386598905107
9 0.0000672097568531

10 0.0000307687489651

11 0.000014604603348

12 —0.000006368227833

13 0.00000244129222

14 0.00000106193096

15 0.0000005430244

16 —0.0000002400927

17 0.000000101080

18 0.000000046334

19 0.00000002307

20 —0.00000001059

3. The boundary collocation method

The BCM can be summarized as consisting in using the exact solutions to the governing
differential equation(s) of the problem and satisfying the given boundary conditions at
a finite number of discrete points along the boundary. The solutions to boundary value
problems are used by assuming:

.
? = D X,0(R, 0),
k=1

where ¢,(R,®) are trial functions exactly satisfying the 2D Laplace equation and X,
are unknown parameters to be determined from the boundary conditions.

The selection of the trial functions is a crusial factor in using the method. For each
b.v. problem we may find trial functions in the literature of differential equations. In this
paper, the selection is made on the basis of the general solutions to the Laplace equation
expressed in polar coordinates, so that we take: .

[20]

® = do+Boln R+ ) [(4; R+ B, R-)cos(4,0)+ (C. R+ D R-#)sin(4O)], (1

k=1

where Ay, By, Ak, By, Ck, Dy and A, are unknown constants. Some of the constans will
be determined from the boundary conditions.
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After introducing the polar coordinate system for each of the problems, there holds

the condition:
3%50 for. O =0.
This condition is satisfied for: _
CGo=D,=0 for k=1,2,.. |
In all the problems the solution at the origin of the coordinate system has a finite value.
Thus:
B,—0 for k=0,1,2..

The value of the coefficients 4, may be found from the boundary condition at @ = const
providéd ® # 0, which reads each for particular problems as:

Problem I
oo s
=5 = 0 for = O = =x/3 which yields 4, == 3k.
Problem II
oo . .
0 = 0 for O = =n/4 which yields 4, = 4k.
Problems III, IV and VI
9 o
0 = 0 for .0 = n/2 which yields 4, = 2k.
Problem V !

®=0 for O == whichyields 2, = (2k—1)/2.

Using the above results in eq. (1) and confining ourselves to a certain number N of the
expansion terms in the solution (1), we proceed by assuming the solution in each particular

problem as:
Problem I
: N
B = D X, R Doos[3(k—1)6).
k=1
Problem I

N
® = ) X, R¥Doos[4(k—1)6].
k=1 .

Problems III, IV and VI
N )
@ = > X, R~ eos[2(k—1)6).
k=1
Problem V

N :
@ = D X, R#*DI20s[(2k~1)0/2)]

k=1 )
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with X' , £ = 1, ..., NV being parameters to be determined from the collocation conditions
imposed on that part of the boundary, along which the boundary conditions are not yet
exactly satisfied. We assume that the collocations points are equally spaced along the
boundary, cf. Fig. 2. Imposing the collocation results in a set of linear algebraic equations

R
| g
problems I £ ¥ problem I
N=4 N=7
R R
g _—T8
problems ¥ § ¥ problem X
N=8 N=lt
Fig. 2.
Problem [l]c £=0.125 Problem V

L1~ -]

N={ NE=8 NN=I0

N AN A0

N=8 NE=16 NN=18 N=0 NE=16 NN=15

AT AT

N=16 NE=32 NN=27

?!‘ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂn
AAANAANAAANAAANA]

N=32 NE=BL NN=51 N=20 NE=36 NN=28

N=35 NE=64{ NN=45




Problem 11T a £=0.5 Problem IlIb £=0.25
N=4 NE=8 NN=9 N=8 NE=12 NN={2 N={ NE=8 NN=10

N=8 NE=16 NNa15 N=12 NE=24 NN=20 N=8 iNE=16 NN =15
‘ N=15 NE=30 NN=2{ N=18 NE=36 NN=28 Nat§ NE=32 NN=27

N=32 NE=64 NN=45 N=36 NE=72 NN=52

Protlems I & 11

N=3 NE={ N=6 NE=9 N=10 NE=16 N=15 NE=25 N=21 NE=36
NN=6 NN=10 NN=152 NN=21 NN=c8

Problems 1Y & VI

N=6 for IV NE=8  N:=12 for IV NE=18 N=20 for IV NE=32 N=30for IV NE=S0 N=42 for I¥ NE=72
N=4 for VI NNB N=9 /'or'V! NN=16 N=16 for VI NN=25 N =25 for VI NN<36 N=36 for VI NN=49

Fig. 3.

1671]
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for the coefficients X. To illustrate this let us just give the explicit form of this equation
set for Problem II:

- N
D (RE*=Deos[d(k—1)0]}X, = ~O05RZ, i=1,2,..,N,
=1

where:

/1L G _ -1

R, = ]/1 + =1 0, = arctg =l

The number NV (i.e. the number of linear equations to be solved) is reffered to for the
purpose of comparison with the FEM solutions as the number of degrees of freedom.

The linear equation solver used in this study was taken from [26], p. 398 in the form of the
Gauss elimination routine.

4. The finite element method

The constant strain triangular elements are used as the basis for the FEM program
taken from [26]. The discretization patterns are shown in Fig. 3. The number of degrees
of freedom in each case is equal to the number of nodes at which the function @ is unknown.

5. Error criteria

Two different error criteria have been employed. The first one is based on “global”
error measures for @ and its derivatives which are given by:

1 .
_ER]_ = —N—P—Zl@e(X[, j’,‘)_d)a(-xfi’ I’UN)J’

1
ERZ—W

i=1

a¢e(X,, Y)  8Pu(X,, Yl,M\
ERS = NPZ\ |

P
adse(Xi H Yl) aqja(Xl’ Yi’ N)
ox X

>

The subscripts “e” and “a™ above refer to the exact and approximate by means of either
BCM or FEM solutions respectively. The points (X}, ¥;) at which the errors are evaluated
are uniformly distributed over the domains considered, cf. Fig. 4. The parameter NP used
below stands for the number of such points in specyfic problem.

The second error criterion has a local character and is defined by:

PR = max|®,— &,(N)|.
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To simplify the FEM computations, the maximum is taken over the nodes in the finite
element mesh. In BCM the local criterion was applied in the exact way by looking for the
maximum of the point error along the boundary.

6. Results and conclusions

As noted before, the way of selecting the trial functions in BCM makes it possible
to satisfy exactly not only the differential equation but also the boundary condition on
a part of the domain boundary. Moreover, in Problem I we satisfy the boundary condition
at the entire boundary by taking N = 2. In other words the two first trial functions mul-
tiplied by scalar coefFicients form the exact solution to this problem. Thus ERl = ER2 =
= ER3 = 0, cf. Tabl. 2. It is interesting to note that a further increase in the number of
expansion terms for this case implies the worsening of the results which is due to the deter-
rioration of the equation set conditioning.
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Table II. Global errors and condition number for BCM; Probiem I

N ERI1 ER2 ER3 »
2 0.0 0.0 0.0 0.134 E+
3 0.931 E~1J0 0.124E-9 0.155E-9 0.457E+1
4 0.970 E—-10 0.206 E-9 0.425E-9 0.153 E+2
5 0.128E—9 0.539E-9 0.135E—8 0.536 E+2
6 0.145 E—9 0.501 E-9 0.845E—9 0.196 E+3
7 0.124 E-9 0.542E-9 0.938 E—9 0.756 E+3
8 0970 E-10 0.654 E—8 0.125 E-7 0.291 E+4
9 0.186 E—9 0.861 E~9 0.167TE—8 0.116 E+5
10 0.186 E—-9 0.685E~17 0.120E—6 0.472E+5
11 0.109 E~-9 0911 E-8 0.159 E-7 0.194E+6
12 0.299 E-9 0.521E—6 0913E—6 0.807E+6
13 0.101 E-9 0.434E-6 0.756 E—6 0.340 E+7
14 0.489 E—9 0374 E-5 0.648 E—5 0.242E+38
15 0.640E-9 0.578 E—35 0.100E—4 0.612 E+8
20 0.183E—-6 0.138E—1 0.240E~1 0.934 E+11

The problem of conditioning for the equation set matrix A for BCM requires special
attention. Depending on the relative distribution of the collocation points the matrix may
become ill-conditioned or ever singular. For the equally distributed collocation points
assumed in this study, the increase in & is always followed by the increase in the condition
number defined as [27]:

1
x = N ”AHE“A—1||E

This clearly means that the conditioning of the governing set of equation becomes worse,
cf. Tabls. II and III. This effect allows to formulate a general property of the BCM solu-
tions as obtained in the present study: the increase in N pays off to a certain critical value
of the number of collocation points only, beyond which the overall performance of BCM

Table 1. Global errors of function @ and condition numbers; Problem I

N ERI ®
2 0.110399E~1 0.190000 E+1
3 0.863781 E—3 0.533193 E+1
4 0.178118 E—3 0.151460 E+ 1
5 0245563 E—4 0.467881 E+2
6 0.175982E—-4 0.151932 E+3
7 0.791734E-5 0.507495 E+3
8 "0.365082 E~5 0.174014 E+4
9 0.179495E—35 0.606870°E+ 4
10 0.195945E—~5 0.217053 E+5
15 0.189282 E—5 0.148221 E+6
20 0.194735E—-5 0.849611 E+8
25 0.303794E-5 0.182446 E+ 10
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becomes worse, cf. Tabl. 3 in which the best results are underlined. We may therefore say
that despite the success of using BCM for solving Problem I, the way of selecting trial
function and imposing the boundary conditions employed in this paper (which may be
called the straightforward boundary collocation method) has its inherent weaknesses,

Table V. Comparison of global errors for FEM and BCM; Problem I

ER1 ER2 ER3
N
FEM BCM FEM BCM FEM . BCM
2 0.0 0.0 _ 0.0
3 0.116E—1 0.931 E—-10 0.124 E-9 0.155E-9
6 0.564 E—2 0.144E—9 0.630 E—1 0.501 E—9 | 0.831E—1 | 0.845E-9
10 0.868 E~—3 0.186 E—9
15 0.209 E—-2 0.640E—9 0488 E—1 | O0.578E—5 | 0.428E-1 0.100E—4
21 0.129E—2 0.232E—6 0.138E—-1| 0.7383E—2 | 0.381 E—1 0.128 E—1
Table VI. Comparison of global errors for FEM and BCM; Problem 1T
ER1 ER2 ) ER3
N )
FEM BCM FEM BCM FEM BCM
3 0.225E~3 0.864 E—3
6 0.164 E—1 0.176 E—4 0.J08E+0 | 0238E-2| 0106 E+0 | 0.245E—2
10 0.332E—-2 0.180E—4 '
15 0.325E—2 0.189 E—5 0.893 E—1 0.759 E—3 | 0.473E-1 | 0.757E-3
21 0.252E-2 0.195E—5 0.392E—1 0.537E-3 | 0419E—1 | 0.535E-3
36 0.178E—2 0351 E~1 0406 E—1
Table VII. Comparison of global errors for FEM and BCM; Problem Ila, E = 0.5
ER1 ER2 ER3
N
FEM BCM FEM BCM FEM BCM
4 0.903 E—2 0.132E—2 0444 E—-1| 0480E-2| O0.102E+0 | 0.138E-1
6 0.441 E—2 0.390E—1 0.849 E—1
7 0.313E—-4 0146 E—2 0.623 E—-2
8 0.194 E-2 0368 E—1 0933 E—1
10 0.192E—4 0.832E-—-3 0.367E—2
12 0212 E—2 0308 E—1 0.654 E—1
13 0.154E-5 0.540 E—3 0.279 E—-2
15 0.192 E=2 0.307E-1 0949E—-1 | :
16 0.251 E—-5 0392E-3 0.230 E—2
18 0.189 E—2 0309 E~1 0.889 E—1 .
19 0136 E-5 0301 E-3 0.186 E—-2
31 , 0.239E—4 0.541 E-2 0.875E—-2
32 0.483 E—3 0253 E—1 0.557TE—1
34 0.802E—~5 0.130E-2 0.361 E-3
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As indicated above these are due to sometimes encountered difficulties in making the errors
sufficiently small. For Problem VI, for instance, we were not able to obtain the solution
better then that having the error of 109, cf. Tabl. IV. The only way to improve this result

Table VIII. Comparisor of global errors for FEM and BCM; Problem INb, E = 0.25

ERI1 ER2 ER3
N -
FEM BCM FEM BCM FEM BCM
2 0.122E—-1 0.195E+0 0.109E+40
4 0298 E—2 0.120E+0 0.942E—1
6 0.210E—~3 0.666 E—3 0.839E—-2
8 0449E-3 0.105E+0 0.923E~1
11 0.280E—5 0,182E-3 0.402 E—2
16 0.195 E~-3 0.653E—5 0.646 E—1 0.863 E—4 0.834 E—1 0.250E—1
21 0.163 E—5 0.101E~3 0.237E~2
31 0.159E—2 0.256 E+0 0.917E~1
36 0.291 E-3 0.552E—2 0.476 E-1 | 0.103E+0 | 0.527E—1 | 0.223E—1
Table IX. Comparison of global errors for FEM and BCM; Problem Ilc, E = 0.125
ER1 ER2 ER3
N
FEM BCM FEM BCM FEM BCM
4 0.140E-2 0.113 E+0 0.416E—1
8 0.801 E—3 0.627E—1 0.395E—1
10 0.464E—4 0.672E—4 0.449E—2
16 0.340E—4 0.593 E—1 0.301 E—1
18 0.187E—5 0.436E—4 0.219E-2
28 0.231 E—-4 0.963E—4 0.17S E-2
32 0220 E—4 . 0.350 E—~1 0.307E—1
37 0517E-2 0.565 E—1 0.707E—1
Table X. Comparison of global errors for FEM and BCM; Problem IVa, Bi =1
ER1 ER2 ER3
N
FEM BCM FEM BCM FEM BCM
3 0.399 E—1 0.117E+0 0.498 E—1
4 0.141 E—-1 0.208 E+0 v » 0.791E+0
5 0973 E-2. 0.711E—1 0213 E-1
9 0631 E-2 0211 E—-2 0919E—~1 | 0459E—~1| 0.680E—1| 0.107E-—1
15 0.636 E—3 0.297E—1 0909 E~—1
16 0.191 E-2 0493E~1 0.325E—1
17 0.482 E—3 0.260 E—1 0.872E—2
25 0.146 E~-2 0.208E—3 0.104E+0 | 0.151E—1 | 0.982E~1 | 0.842E—2
35 0.168 E—~3 0.865E—2 0.623 E—2
36 0303 E-3 ) 0.113E~1 0.357 E—1
37 0.214E—-3 0.878E—2 0.562E—2
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is to employ the collocation for the unknown function together with its derivatives, which
yields the relative error ER3 as small as 3%.
Before formulating final conclusions summarizing the findings of this work we note

Table XI. Comparison of global errors for FEM and BCM; Problem IVb, Bi = 5

ER1 ER2 ER3
N
FEM BCM FEM BCM FEM BCM
3 ) 0.807E—1 0.382 E+0 0.125E+0
4 0.374 E—1 0.350 E4+0 0.157E+0 _
5 0206 E—1 0.277E+0 0.641 E~1
9 0.151 E—1 0412E~2 0.327E+0 | 0.197E+0 | 0.J26E+0 | 0.432E~-1
15 0118E—-2
16 0.541 E—2
17 0.899E—3
25 0.325E—2 0.384 E—3 0295E+0 | 0.685E-1 | O0.112E+0 | 0.387E-1
35 0233E—-3 0.256 E—1 0.391 E—1
36 0.425E—2 0.287 E+0 0.649 E—1
37 0.220E-3 0.190 E—1 0.387E—1
Table XXX. Comparison of global errors for FEM and BCM; Problem IVc, Bi = 10
ER1 ER2 ER3
N
FEM BCM FEM BCM FEM BCM
3 0.928E—1 0.585E+0 0.152E+0
4 0.491 E—1 0.566 E+0 0.190 E+0
5 0.247E—-1 0.459 E4-0 0.834 E—1
9 0.192 E—1 0461 E—2 0521 E+0 | 0344E+0 | O0.148E+0 | 0.708E-1
15 0.128E—2 :
16 0.862 E—2
17 0.976 E—3
25 0.436 E—2 0.497E—3 0478E+0 | 0.125E+0 | 0.846E—1 0.74E-1
35 0.350E—3 : 0.464 E—1 0.727E-1
36 0379 E-2 | 0.466 E+0 0.708 E—1
37 0.334E—-3 0.337 E—-1 0.726 E—1
Table XIII. Comparison of global errors for FEM and BCM; Problem V
ER1 ER2 ER3
N
FEM BCM FEM BCM FEM BCM
7 0.169E—2 0.277E-2 0.439E-2
9 0.262 E~1
11 0.900E—4 0253 E-3 0.527E-3
19 : 0.356E—3 0.634 E—3 0.267 E—3
20 0.210 E—-1 0.252E—-1 0.357E-1
35 0.130 E—1 0441 E~-3 0.457E-3 0.100 E-2
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that only a limited class of problems has been considered. It seems that the problems
selected for the analysis happened to favor BCM rather than FEM, because all the pro-
blems allowed to pick out such trial functions which assured the exact satisfaction of the
boundary conditions at least on a part of the boundary. In other words, rather than attemp-

. Table XIV. Comparison of global errors for FEM and BCM; Problem VI

ER1 ER2 ER3
N
FEM BCM FEM BCM FEM BCM
4 0227 E-1 . 0.241 E4+0 0.167 E+0
5 0.432E—1 0910E—1 0.132 E+0
9 0.110 E-1 0.138E—1 0.161E+0 | 0310E—1| O0.I59E+0| O0.8ME—1
13 0.668 E—2 0.259E~1 0.550 E—1
16 0.558 E—2
17 0.346 E~2 0.766 E~2 0.518E—1
25 0426 E—2 0423 E-2 0.112E4+0 | 0.224E-—1 0.101 E4+0 | 0499E-—1
33 0516 E—2 0.289 E—~1 0.123 E+0
Table XV. Comparison of global errors and local ones for BCM;
Problem I
N ERI1 PR
2 0.110E-1 0250E—1
3 0.864 E-3 0.627E—-2
4 0.178 E-3 0259 E—2
5 0.246 E—4 0.137E-2
6 0176 E—4 0.834E—3
7 0.792 E-5 0.548 E—3
8 "0.363E-5 0396 E—3
9 0179 E-5 0292E~3
10 0.196 E-5 0217E~3
11 0.193E-5 0.172E-3
12 0.186 E—5 0.143E—-3
13 0.182 E-5 0.124 E~-3
15 0.189 E-5 0.876 E—4
Table XVI. Comparison of global errors and local ones for FEM
Problem X Problem VI
N ER1 PR N ER1 PR
4 0903E~2 | 0.101E-1 4 0227E-1 0.628 E—1
6 0.441BE—2 | 0.595E-2 9. 0.110E—1  0.383E—1
8 0.194E~2 | 0443 E-2 16 0.558E-2 | 0279 E-—1
12 0.212E-2| 0323E-2| 25 0426 E—2 | 0.220E-1
15 0.192E—2| 0250E-2 [
18 0.189E—2 | 0.202E-2
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ting to draw very general conclusions on performance of the both methods we below
characterize class of problems considered specifically in this paper only.

The conclusions:

1. For the same numbers of the degrees of freedom, BCM leads to more exact results
than FEM (see Tabls. V - XIV).

2. For the same numbers of the degrees of freedom, the accuracy of the BCM depends
heavily on the type of the boundary value problem. For instance for the Saint-Venant
torsion problem Tabls. VI- IX accuracy is much higher than in Problems IV and VI
which describe the steady heat conduction Tabls. X - XII, XIV.

3. In both methods the values of functions are more exact than the values of their
derivatives. However, in the BCM the ratio of the function error to the derivative error
is much greater.

4, As expected in both methods the global errors are smaller than the local ones, but
in the BCM this difference is significantly smaller, (see. Tabls. XV - XVI).

5. In the BCM problems may arise while increasing the number of the degrees of
freedom. This may lead to the ill-conditioning of the problem matrix, quite differently
than in the FEM.
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Pesome

CPABHEHUE METOJA TPAHHUYHOY KOJJIOKALIMHM ¥ METOIA KOHEUHBIX
SJIEMEHTOB I HEKOTOPBIX TAPMOHNUYECKHX IBYMEPHLIX TPAHHMYHBIX
3ATAY

ITpenmerom pafoTer smeRfercA npobirema cpaBHeAMA 3hhEKTARHOCTHE M TOUHOCTH BLIYHCIEHRHA
METONOM I'DAaHMUHON KOJUIOKALKK M METOZIOM KOHEUHBIX 3JIEMEHTOB. KICCNEXYHOTCA INBYMEDHLIE Tap-
MOHMYECKRE KpaeBble 3ajaud. Merol TPaHMIHOA KOMIOKAITMH NPUMEHAETCA B NPAMOI BepcHM.

Peimermst mosiydeHHbIE C IOMOLIO BEILUE YIIOMAHYTBIX METONOB OBUIM CPAaBHEHBI JUIA (hyHKUML
U MX TPOH3BOJHBLIX C TOUHBIMH pelueHMAMH. C UYMCICHHBIX HCCAEHOBAHMM MOMXHO BBIBECTH, UTO JJIA
TOTO K& CaMOTO YKCJIA CTENEHEH CBOGOMBI PEIyNbTaThl MONMYUEHHEIE C IIOMOIFO METOMA IPARMYHONA Koil-
JIOKAIMA ABNAOTCA GoJree TOUHLIME UeM IOIYUEHHbIE C IIOMOLO METoJa KOHEUHBIX siemenToB. OmHo-
KO 2Ta HOJIOMHTENBHA YEPTa Mox«¢eT GbITh YMEHBINEHA TOM (hakTOM, UT0 METOH IPAHMYHON KOJUIOKAITA
TpebyeT pemenus CRCTeMbI YPaBHeHWH C XONHOH MaTpMueHd, TaK KaK B METOJE KOHEURBIX 3JIEMEHTOB
IOyuaeM JIEHTOYHYIO M XOPOIIo 00YCHOBIEHRYIO MATPHILY -

. \ )
8 Mech. Teoret. i Stos. 4/88 ’ '
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Streszczenie

POROWNANIE METODY KOLLOKACJI BRZEGOWEJ Z METODA ELEMENTOW
SKONCZONYCH DLA NIEKTORYCH HARMONICZNYCH DWUWYMIAROWYCH
PROBLEMOW BRZEGOWYCH

W pracy poréwnano efektywnoé¢ i dokladnos¢ obliczeniowa metody kollokacji brzegowej i metody
elementow skonczonych. Rozwazano dwuwymiarowe, harmoniczne problemy brzegowe. Metoda kollokacji
brzegowej byla stosowana w tzw. prostej wersji.

Rozwiazania uzyskane przy pomocy wyZej wymienionych metod byly poréwnywane dla funkeji i ich
pochodnych z rozwigzaniami dokladnymi.

Z badan numerycznych mozna wyciagna¢ wniosek, ze dla tej samej liczby stopni swobody wyniki
uzyskane przy pomocy metody kollokacji brzegowej sa dokladniejsze od uzyskanych przy pomocy metody
elementow skoriczonych. Jednakze ta cecha dodatnia moze by¢ pomniejszona przez fakt, ze metoda kollo-
kacji brzegowej wymaga rozwigzania ukladu réwnan liniowych z calkowicie wypelniona macierza wspoél-
czynnikéw gdy tymczasem metoda elementéw skoficzonych daje pasmowa § zwykle lepiej uwarupkowana
macierz.

Praca wplynela do Redakcji dnia 17 lipca 1987 roku.



