MECHANIKA TEORETYCZNA
1 STOSOWANA

Journal of Theoretical

and Applied Mechanics

1, 30, 1992

DEVELOPMENT OF THE OBLIQUE INCIDENCE METHOD
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General relationships for photoelastic investigations in the form of a system
of equations containing components of a stress tensor and parameters of a
light field running through the tested medium have been formulated in this

paper. .
Investigations are carried out on the basis of the oblique incidence method
together with the observation of scattered light.

A description of a plane electromagnetic wave in anisotropic medium is pre-
sented in appendix 1. This analysis has been adopted for photoelastic needs
and combined with the concept of stresses optically active (secondary prin-
cipal stresses).

Appendix 2 contains the experimental part of the work. Results of the expe-
rimental and the analysis of the error prove the assumed relationships cor-
rectness and the generality of the method.

This paper is the starting point for the analysis of the compound states of
stress.

1. Introduction

Components of the stress tensor

Oz Ty Tos
Tyz Oy Tyz . (11 )
Tzz Tzy O

in photoelastic medium are determined on the basis of the birefringence phenome-
non. Tensor (1.1) is symmetrical and thus the number of unknowns is reduced to
six. :
The majority of works on photoelasticity present solutions to particular pro-
blems of strength of materials.

The aim of this paper is to show the system of six independent equations
containing complete components of the stress tensor (1.1) and coefficients of a
light field running through the tested medium. Such investigations can serve as
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a starting point for the experimental solution of complex cases of strength -of
materiais. The oblique incidence method [1] and observation of scattered light [2]
have been combined in this work.

2. Optical and mechanical properties of photoelastic medium

Fig. 1. Optical ellipsoid. (£;,&3,£s) — coordinate system of optical ellipsoid; (1),(2),(3) -
principal axes of the tensor «;; 1), 28), 3()) _ quasi-principal directions; x{*, x{*) —*
quasi-principal coefficients of dielectric permittivity; £(¥) — direction of the course of light

Properties of a photoelastic medium can be described with the aid of a qua-
dratic surface, the so—called optical indicatrix (Fig.1). This surface referrs to the
coordinate system (£;,&3,£3) connected with the permittivity dielectric tensor &;;
principal axes (1.1), (2.1), (2.2) in the form of equation

g8.68.8_

P + P + i 1 (2.1)
where: k), k2, K3 — permittivity dielectric coefficients in (1.1), (2.1) and (2.2)
directions respectively.

Generally an indicatrix is an ellipsoid with its axes directed along (1.1}, (2.1),
(2.2) and lengths of semi-axes equal to Ky, k3, k3 (Fig.1).
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In the tested medium two lineary polarized waves propagate at different velo-
cities v’, v” in an optional direction z(¥) (index k denotes the successive direction
of the course of light). These waves vibrate on the plane perpendicular to z(¥) in
quasiprincipal directions (1(¥)), (2(¥)) (appendix 1).

To determine directions (1%)), (2(¥)} we have to out the indicatrix with the
plane running through the origin of the coordinate system (£),£2,&3) and normal
to (A, As a result we get an ellipse semi-axes of which are directed in (1¢%)),
(2(R), and with the lengths equal to quasi-principal permittivity dielectric coeffi-
cients (Fig.1). (Direction (3(*) overlaps z(¥), permittivity coefficient along (3(*))
is denoted ngk)).

Photoelastic medium satisfies assumptions of material continuum and its me-
chanical properties are described by the stress tensor.

Tensor components ¢;; and K;; in linear range are bounded by the law which,
for quasi-principal directions, can be presented in the followng way

ng) =Ko+ Clafk) + Cg(dék) + agk))
ng) =Ko+ Clagk) + Cg(afk) + agk)) (2.2)
x:(,k) =Ko+ Cla:(,k) + Cg(d{k) + agk))

where
Ko — permittivity dielectric coefficient in stressed free me-
dium,
Ci, C, - optical cconstants,
aik), agk), agk) - stress components in directions (1(F)), (2(%), (3(¥),
respectively.
Stresses a{k), agk), 'a:(,k), satysfying the law (2.2) are known in photoelasticity

as stresses optically active or as secondary principal stresses.
Electric field waves vibrating in the following directions

Y = Gk coswit
(2.3)

wi = by cos(wt + )

where
w - frequency of light,
ar, b - amplitudes of electric field intensity vectors vibrating in di-
rections (1(¥), (2("),
t - time,

U ~ vphase of the w, wave with respect 10 ug,
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become relatively retarded on the elementary path éz; by the value of

2e(n) 00

Up = a coswt

(2.4)
27
wr = bi cos[wt + Yr + T(ngk) - n.(zk))&:k] '
where .
ngk), ngk) - refraction coefficients in directions (1(F)) and (2(*)) respec-
tively,
A - length of the wave light running through the tested medium.

Taking into consideration the rotation of directions (1(*)), (2(¥)) through the
value §);, and the modification of both the amplitude and the phase of component
waves by the value ay, 6by, 69F, 695 on the path §z; we can write

) = (ag + ba) cos(wt + §¥)
(2.5)
wj, = (b + 8bi) cos(wt + 89%).
Values day, 6b; and the increase of the phases difference év = 61/);‘ —69F is

calculated by combining (2.4) and (2.5). Within the limits of the expressions we
look for, we finally get [2]

day = by cos Yrday (2.6)

dbk = —aj Cos wkdak (27)
_ 2 (k) ok bey

dipy = T(nl -n, )dzk + (E - :z:) sin Yrdag. (2.8)

For electromagnetic waves, frequencies of which are smaller compared to the
interatomic ones and the material they go through is a dielectric of a negligibly
small electrical conductivity, we can write

n® = /ng)

(2.9)
nl®) = / pe)
Combining relations (2.2), (2.8), (2.9) we finally get a formula [2]
A qd¢e e by L dagy ) (k)
o, dzy (bk - -a—k—) sin 1/);;-‘2;;] =(oy —03") (2.10)
where
Cc = Cl — Cz

2/
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binding the state of stress with parameters of a light field running through the
photoelastic medium of the point.

A description of examined objeccts is referred to a infinitesimally small, cube
element, cut out of the interior of the tested medium, considering this element as
the measuring point of the photoelastic medium.

3. Scattering of light in photoelastic medium

Photoelastic medium becomes anisotropic when influenced by the loading field.
The theory of anisotropic centres is applied to the description of the phenomena
of light scattering in photoelastic media.

The photoelastic medium is assumed to be a set of electric dipoles of polariza-
bility p. A variable electric field falling on this medium induces forced vibrations
in it. The electric dipoles become a source of self-radiation frequency of which
corresponds with the frequency of falling light (elastic scattering) and for which
phase relations between falling and scattered light wave are strictly hold (coherent
scattering). ’

Scattering light coefficient over a volume unit or a mass of photoelastic medium
determines the size of the part of energy of a light beam taken by scattered light

81, orwn4
n==5’(3) (3.1)
where
w -~ frequency of the falling and scaterred light,
¢ - speed of light in a vacuum.

For the electron elastically bounded we can write

2
e .
p = —(wi - w? 4 2yw) (3.2)
me
where
e, m. - electron mass and charge,
wo - electron natural frequency,
v -~ damping decrement,
i — imaginary unit.

For w different much from wyp, dependency of p on w can be neglected and the
relation )
n~wl~ Y (3.3)

is defined by the Rayleigh’s law.
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Scattered light intensity J at ¢ angle with respect to the falling beam is de-
scribed by the Rayleigh's formula

- )3 2
J(@) = Jos2o( 4W) 71+ cos’ ) (3.4)
where
Jo - intensity of the falling light beam,
2 - angle of divergence of the falling light beam,
¢ - scattering angle.

Degree of polarization of the light scattered by a dipole is calculated according
to the following formula
gin?
P(p) = ———. 3.5
() = T cow? (3.5)
The analysis of the scattered light on the plane perpendicular to the direction
z(¥) of the light beam (scattering plane), gives the most favourable conditions of
observation of polarizing-phasic effects of the tested photoelastic medium.

4. Oblique incidence method for determining coefficients of the stress
tensor

A classical experiment by means of the oblique incidence method is carried
out in a transmission polariscope. If we want to achieve the interpretation of the
photoelastic effects observed in the transmission polariscope, formula (2.10) must
be presented in the following form

By
- c / [ - (3 - —)slw,,da,,] = / (0 - oz, (41)
Ak

where: Aj, By - points of entry and exit of light in the model, respectively.
Practically this method is limited to solving a particular case, that is a problem
of plane stress state (unknowns oz, gy, T2y (1.1)).

Measurement of the light field coefficients running normally and obliquely (k =
1,2) to the flat model was suggested for the first time by Drucker D.C. {1]. Two
obtained equations (4.1), for k£ = 1,2, completed with isoclinic line parameters
give the possibility of calculating the unknown variables. In works developing the
metod (cf [3],[5]) the authors suggest taking measurements for three light courses
(k = 1,2,3) to complete data for writing three independent equations (4.1). It
allows us to solve the plane problem without recording isoclinic lines.
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In the transmission polariscope we get the integrated value of birefringence on
the geometrical path of light, what may be a source of errors, estimation of which
can be difficult because of unacquaintance with the distribution of birefringence
function in the direction of the light course.

It is possible to avoid errors of the method when we observe the scattered light.

Combination of the oblique incidence method with the observation of scattered
light was performed by Bateson and all [6] for solving plane problems. These so-
lutions demand for completing data with the measurement of isoclinic parameters
in terms of a conventional method.

The analysis of the stress state with the aid of the oblique incidence method
using only a difference of phases of component waves together with the scattered
light recording is worth notice. This trend of research allows for more general
analysis of the stress state in photoelastic media. ’

5. Oblique incidence method in three—dimensional conditions

medium

Fig. 2. Geometry of the temporary birefringence measurement. %(;) — directions of the

light runing throught the model, (z,y, z) - co-coordinate system related to examined
point, Py, Py, Ps,... — loading system, O} — angles refering directions Z(;) to the z,y,2
system

Let us assume the system (z,y, z) at the measuring point in an optional pho-
toelastic medium, on the geometrical path of light. The oblique incidence will be
considered with respect to the assumed coordinate system (z,y, z), (Fig.2). Geo-
metry of the measurement of birefringence is a more general principle of oblique
incidence than the one suggested previously [5].
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We induce the course of light in the direction zx (k = 1,...,6), (Fig.2).

K scattered light
/ plane

polaroid

Fig. 3. Mutual position of systems connected with the polarization of falling light
(&, 21), directions of stresses aptically active (1(#),2(¥)) and directions of observations
ks Qi)

At the measuring point, basing on the plane ¢ = 90° (3.5), three rectangular
coordinate systems will be defined:
the system (zj, yx, zx) connected with the direction of the course and polarizatipn
of light, the system (1), 2(¥) 3()) connected with the direction of stresses optically
active and the system (px,qx) connected with the directions of observations. Let
us assume the angle a) between the systems (yx, zx) and (1(¥),2(F)) and the angle
Bx between the systems (p,qx), (Fig.3).

Let the resultant of the electric field intensity vector reaching the measuring
point overlap the axis yi. The light field in the measuring point will be described
by the expression {4,15,16]

1 0 cosap —sidag -
[ 0 eivx ] { sinay  COsQy } ) (5.1)

Passing to the system (pg, gx) we will use the matrix

[ cos(ax — Bi) sin(ax — i) ] , (5.2)

- sin(ak - ,Bk) Cos(ak - ﬂk)
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Components of electric field intensity vector in the system (pk,qx) will be de-
termined by the product

[ cos(ar — Bx) sin(ag — Bi) ] [ 1 0 ] )

—sin(ar — Br) cos(ag ~ Bi) 0 e~
| cosar —sinay E, | _ [ E,,
[ sina;  cosag ] [ 6 ] | Ea ] (5-3)

Multiplying matrices occuring in the formula (3.4) step by step we will get

E,, cos(ax — fBx)cosax  Ey, sin(ag — fi)sin ake‘?“”‘ ] _ | Ex (5.4)
E,, sin(ax — Br)cosax  —E,, cos(ak — i) sin age E, |’ ’
After multiplying components E,, and Eg, by their complex conjugate values
E;, and Ej, we will get formulas for the scattered light intensity for observations
along the directions p; and ¢x

Jor = KE,, E;, = KE? [sin® B¢ + sin 20 sin 2(ax — Bi)(1 — cos ¢k)](5

.5)
Jo = KE,E; = KE:k [cos? Bk — sin 2a sin 2(ak — B )(1 - cos ¥ )]

where K - constant depending on scattering properties of the medium. In equa-
tions (5.5) values of o and v, are measured. We started the observation of the
scattered light on the ridge of the model where the direction of the falling light
beam polarization fixes also the direction of the resultant vector of the light field.
When S = 0 (Fig.3), the equations (5.5) have the form

Jp, = KE2 sin® 204(1 — cos )
™ "" (5.6)

Jo = KE:k[l — sin? 204 (1 ~ cos ¥i)).

Rotating then the model about the z(¥) axis we will determine its position in
which
Jp, = 0, Jor = Jmax (5.7)

independently from 1.

This condition will be satisfied when ax = 0 and thus the quasi-principal
directions, we are looking for, will overlap the directions of observations of the
scattered light. Each change in J,, and J,, for the model placed in such a way
with respect to the extreme values on the path of the light beam is associated with
the change of direction (1(¥, (2(")). This quasi-principal directions in successive
points on the path of the light beam will be determined by turning the model till
the conditions (5.7) are fulfilled.
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The values 1 are measured next. The model is turned from the fixed position
in such a way that

Jp, =0 Jo. = Jmaz When ¢ = 27my;
ij = Jmaz qu =0 when 9 = mmy (58)
mgp = 0,1,2,...

These conditions will be satisfied when the angle aj between the vector of
electric field intensity and the quasi-principle direction (1(*)) to will be equal to
45° (Fig.3). Jy, and J,, will be then only the function of ¥

Jop = KE,,(l — cos Py ) (5.9)

qu = KEM cos ¢k

and that is why we can reveal the points in which values (5.8) are known.

Putting the compensator at the entrace of light to the model allows us to state
whether the acquired extreme values of the light intensity depend or not on values
of ¢, and whether at the same time the quasi—principal stresses (5.7) or the phase
difference of component waves (5.8) have been revealed.

Values of ay, ¥, denote measuring data appearing on the left side of the formula
(2.10).

The system (z, y&, zk ), in which the parameters of the light fields are measured,
is the initial system in the analysis of the right-hand side of the equation (2.10).

Tensor o;; satisfies the law of transformation and the quasi—principal stresses a{k),

agk), o‘:(,k) (2.2} can be calculated from the formula
0i; = GirGj50r, (5.10)

using the function extremum conditions

— =0, =0 .
o o (5.11)
where
Ora ~ stresses in the system (zx, yx, 2x ),
a;r, 85, - transformation coefficients described by the table
Tk Yk 2k
3% =211 0 0
v 0 | cosy |siny
z 0 | —siny | cosy

where x - angle between the systems {(zj, yi, 2) and (z', v/, ).
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Performing the above operations, after elimination of the angle x we finally get

1 1 J
ng) = E(Uw +0.)+ 2 [(UVA - al")2 + 4T3k‘k] '

1 1 3
ng) = E(Uw. +05) - ) [(Uw —05)+ 41-!/&‘&] ’ (5.12)
(k)

03 =0z,

On the basis of (5.12) we calculate

1
(0 — o) = [(04 — 02)? + 474 ] (5.13)

Combining (2.10) and (5.13) for k = 6 we get a system of six equations expres-
sing the relation between the stress tensor coefficients (1.1) and coefficients of the
light field running through the tested medium in directions z(), ... 2(®) (Fig.2)

A diy (ak by

. dog 3 ‘
5cs g~ (o~ )] = [ow —onl +ar ] Ga9)

Limiting the analysis to the points in which J,, = 0, Jg, = Jmaz we find the
values of ¥y = 2rmy, %f = 27r"'1';‘—"‘!L formulas (5.14) are simplified then to the form

dmy

Sa d:c;c

1
= [(a,, - a,k)2 + 41'3”‘] : (5.15)
where S, = C’v\; - material photoelastic constant.

Transforming stresses o,,, ¢,,, Ty,: to the system (z,y,2) and taking into
account angles 8; = 0, 63, 63, 84 = 0, O35, B¢ (Fig.2), when the axis = overlaps
the direction £(!) and the axis y overlaps the direction z(4), we-finally get for the
succesive directions 2(1), ..., z(6)

St = [oy— o +ari)*
Sa%% - [(az: sin’ O3 + 0y cos’ O3 — 27y 5in Oz c0s 6 — 0;)” +
+ 4(ry:co8 B2 — Torsin 92)2] g
So ‘fi':: T [(U,, — 0, sin’ O3 — 0, cos? B3 ~ 21;; cos B3 sin O3)? +
+ 4(—Tzysin O3 + 1y, cos 93)2] :
S,‘Z—ZT = [(a, -o;)’ + 47-12:::]% (5-16)
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dms
i d:cs

= [(ay sin2 @y + o, cos? @5 — 27, sin O5 cos O — 02)% +

i
+ 4(—Tzy8inBs + Ty cOS 65)2] :

dms
So Tre

. . 2
[(a, — 6, cos’ Gg ~ gy sin? Qg — 27,y cos O 5in B¢ )" +

1
2

+ 4(1y; sin O + 75 cOS 96)2]

On the geometrical path z(¥) of the light running through the photoelastic
medium, from the point of entry of light into the model, to the point in which
the light leaves the model, values of my (my = 0,1,2,...) must be assigned to
successively appearing places in which Jp, = 0, Jy, = Jmaz. It will let us to
determine the relation between m(z;) and %:il and the sought—after system
of quations. .

10.

11.
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Streszczenie

W pracy sformulowano ogdlne zwiazki dla badain elastooptycznych, w formie
ukladu réwnan zawierajacych skladowe tensora naprezenia i parametry pola swietlnego
przebiegajacego przez badany oérodek. .

Rozwazania przeprowadzone sz w oparciu o metode skosnego przeswietlania, w
polaczeniu z obserwacja éwiatla rozproszonego.

W dodatku 1 zawarty jest opis plaskiej fali elektromagnetycznej w oérodku anizotro-
powym. Analize ta zaadoptowano dla potrzeb elastooptyki oraz powiazano z koncepcja
naprezer optycznie czynnych (wtdrnych naprezen gldwnych).

Dodatek 2 zawiera czes¢ doswiadczalna pracy. Wyniki przeprowadzonego ekspery-
mentg oraz analiza bledu dowodzg slusznoéci wyprowadzonych zwiazkéw i uniwersalnosci
metody.

Praca stanowi punkt wyjscia w analizie zlozonych stanéw naprezenia.

8. Appendix 1

6.1. Plane electromagnetic wave in photoelastic medium

Maxwell’s equations of the electromagnetic theory of light for transparent ani-
sotropic media without any electric charge and without the passage of current have
the following form

rotH = l%
¢ (6.1)
rotE = -—lg

c Ot
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where
H - magnetic intensity,
E - electric field intensity,
D -~ electric induction,
¢ - speed of light in a vacuum.

Plane monochromatic wave can be presented in the form
6
E = Eoexp[lw(t - ﬂ + 0)] (6.2)

where
-~ amplitude,

- circular wave frequency,

~  time,

unit vector normal to the wave front,
- present radius—vector of the point,

< % ¥ g
|

— phase velocity of the wave,

=

- initial phase,
i - imaginary unit, {2 = —1.
Replacing (6.1); with (6.2) we get

- _i_é_ = rot{Eoexp [xw(t - + 60)]} (6.3)

For the vector Eo and the scalar u = exp iw(t -y %)] in which (r») is a
variable, the course will be carried out according to the formula

rot(uEg) = V x (uEg) = w(V x Eg) + (Vu) x E (6.4)
where
-[2,22)
~ oz’ 8y’ 8zl
For a homogenous vector field
V x Eo =0 (65)
and
Vu(ry) = ——V(rp 6.
(™) = 25 V() (6.6)

and.the equation (6.3) will be presented in the following form

-i-%tH— = i%{V(ry) x E}. (6.7)
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Since
Virv)=Vr-v4+Vr.py=v (6.8)
we finally get
10 iw
= E). 6.9
o = v X B) (69)
Integrating the expression (6.9) with respect to time
1 oH iw R ry 60
we will get
1 1
;H = ;(V X E). (611)

Similarly as in the case of the vector E (6.2), the change of the vector can be
defined by the formula

¢ _ g rv &

H= (vxE)expliw(t- —+ )] (6.12)
what means that for the plane wave vector H changes also when w frequency varies
and is perpendicular to vectors E and v. When we put (6.12) into the formula
(6.1)1 taking into consideration operations (6.4), (6.5), (6.6), (6.7) and integrating:
thus obtained expressions with respect to time we finally get an expression

-:‘:—D - —%(v x H). (6.13)

H calculated according to the formula (6.11) will be placed in the formula (6.13)
and now '

D= —2—:[1' x (v x E)). (6.14)
Performing an opera.tioél
vx(vx E)=v(vE)- E (6.15)
we get the expression
%Z'D —-E+v(vE)=0. (6.16)

Now we apply the formula
D =kE (6.17)

where K — tensor of permittivity coefficients.
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Dielectric tensor & is symmetrical and it can be represented in the principal
axes along which diagonal elements have the values Ky, K2, K3, respectively

K1 0 0
k=0 s 0| (6.18)
0 0 K3

For principal directions formula (6.17) has the form
D; = ki E;, i=1,23. (6.19)
Combining (6.19) and (6.16) we can write for principal axes of the tensor &

D = 4) (6.20)

Ki

It follows from (6.11) and (6.13) that (Dv) = 0 and (Ev) # 0, so on the basis
of (6.20) we can write a formula

Z Div; 9 2
(Dv) _ v v 2
(Ev) (EV) L . P trt g =0 (6.21)

Expression (6.21) is a quadratic equation and it generally has two solutions.
Let us denote the roots of the equation (6.21) by v and v”. In anisotropic media,
in optional direction », two lineary polarized waves, will propagate at different
velocities v’ and v”. Let us introduce three principal velocities, vy, ve, v3 accordmg
to the formula

v T (6.22)

and corresponding principal refractive indices ny, ng, n3
n; = /K. (6.23)

If v’ and v" are velocities corresponding to v direction, then on the basis of
(6.20) and (6.22), directions cosines of corresponding values D' and D” will be

proportional to the expressions
vy

m (6.24)
;?___ﬂ(v,—,) (6.25)

respectively.



DEVELOPMENT OF THE OBLIQUE... 223

Calculating the scalar product D’ and D" taking into consideration (6.24),
(6.25) and (6.21) we can state that

(D'D") = 0. (6.26)

It means that in the given direction ¥ two lineary polarized waves will propagate
at v’ and v” velocities in mutually perpendicular directions of vectors D' and D"
(and mutually perpendicular E' and E”).

In optically anisotropic media vectors E and D generally do not overlap. But
in the one, examined in this work, birefringence anisotrcpy is small and it can be
assumed that the angle between E and D vectors is equal to zero and, further on,
it can be assumed that the normal to the light wave front overlaps the direction
of the course of light z(¥). Thus, in photoelastic media vectors D' and D" will
correspond to the direction of the course of beams 28}, To determine vectors D'
and D" optical indicatrix is used. The equation (6.2) given above describes this
surface. Directions of vectors D’ and D" (called quasiprincipal directions) overlap
semi—~axes of the ellipse which was formed as a result of indicatrix cross—section
with the plane going through its geometrical centre and a normal to 2(¥), Stresses
calculated in directions D’ and D" are called stresses optically active or secondary
principal stresses.

Since photoelastic medium satisfies the assumptions of material continuum,
stresses optically active satisfy the law (6.3) given above (6.3), and coefficients
ng) and K..(zk) reach the extreme values in quasi-principal directions (1(*)), (2(*))
stresses a£k), agk) are determined as extreme normal stresses in the cross-section
perpendicular to z(¥),
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7. Appendix 2

In the first step the mathematical relations being obtained (eq (5.16)) were
experimentally tested for a known case of a flat disk under the action of two
concentrated forces. Knowing the stress state distribution in a chosen model makes
it possible to evaluate the state of correctness of the suggested method.
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In the case of the flat stress state and the course of light through the model in
directions 21, (3, 2(3) (Fig.2), equations (5.16) simplify to the following form

dm,
SJE‘_ =0y
So :i;:: = 0.8in?6; + 0, cos? O3 — Ty 5in 260, (7.1)
S, dms = [(ay — o8 63)? + 41';, sin? 93] %

dz3

The plane stress state is realized on a disk made of exposide resin (S, =
6.5 -10~* [MN/order]) of a diameter d = 0.062 [m] and thickness g = 0.0318 [m],
under concentrated forces P = 80 [N].

Under the forces action, constant optical anisotropy of the model was introdu-
ced by means of the stress freezing technique.

Since the birefringence measurement are limited to the points lying on a dia-
meter perpendicular to the direction of the force, where g, = 02, 75y = 0 (o1, o2
~ principal stresses), equations (7.1) simplifity to the following form

dm1 —g
o d.’t] 2
. “1;:2 = g, 5102 05 + 05 cos? G, (1.2)
2
Sa dm3 =07 - 01 sin’ 93.
d.’t3

From the system (7.2) we get

00 = dm1
2 = Yo d.’t]
) _ _Se (dmy dm 29 7.3
61 - sin’ 92 (d.’tg d.’t) cos 2) ( ) )
(3) - S, (dm, _ dm3)
%1 sin"' 93 d:c1 d$3
where a§2), aial denotes stresses determined when light goes in directions z(?)

and 2(3).

A diagram of measuring position is shown in Fig.4. The source of light (laser
He-Ne 0.1 [mw] power) moves in a horizontal plane. This movement is possible
through a feed screw driven by an electric motor. Belt transmission put between
the motor and the feed screw causes the speed of laser movement equal to 10
[mm/min}]. Oun the path of the light beam, on the outrigger fixed to the laser
casing a polaroid and a compensator are placed. The light goes then to a vessel.
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7 Ak)

vesel with immersion
Pk liquid .

compensator

polaroid

mechanism of the movement
of the laser

Fig. 4. Diagram of the measuring position

A camera recording birefringence effect is fixed to the stand on the scattering
plane.

Fig.5 shows an idea of optical effects recording according to the theory pre-
sented in the paper. (For easier presentation of the position of the model in the
space with respect to the light source and recording system, a plane disk has been
inscribed onto a sphere). Three figures a), b), ¢) present three different positions of
the model for the course of light in the directions z(*, (k = 1,2,3). In these figures
systems (z,y, z), (l(k),z(k)’a(k))’ (zlnylnzk)v (Prs qk) and angIes ai, Bk, Gk, are
denoted according to the marking system introduced in the theoretical part of this
paper. Besides, several elements were marked: E,, — electric field intensity vector,
-Y1+Y;, -Y2+ Y2, —Z3+ Z3 — directions of light source movement at the moment
of measurement recording, P - forces acting on the model, scattering planes and
measuring surfaces. In sections of the model, lined up in Fig.5, optical effects are
recorded on a light-sensitive plate during the movement of the light source at the
-opened camera lens. The direction of the course of light is determined in such a
way that ©@; = 0, @2 = O3 = 45° (Fig.1) and a; = 45° i G = 0°.

Results of experiments, have been gathered in Fig.6. On photos the coordinate
system (z,y) and directions of the course of light z(1), 2(®), 203 are marked.
Figures 6.1a,b,c present optical effects observed in the direction pi, and Fig.6.2a,b,c
optical picture recorded when the axis of the camera is in line with the direction

Gk
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Measuring points are denoted in figures by m = 0, 1,2,... or m = 0.5; 1.5; 2.5, ...
on the places appearing successively on the axis z; for which J,, = 0'or J,, =0
(Fig.6.1a,b,c and 6.2a,b,c). Measuring points become a basis for diagrams my(zx)
(Fig.7,8,9) and on this basis, by means of graphic differentiation dmy(z)/dzs
was determined. Fig.7 contains measuring data m;(z;) and the result of graphic
differentiation dm(z,)/dz; for all measuring points since the axis z; (direction of
the course of light) and the axis z on which measuring points are located, mutually
overlap. If we want to find the values of dmg/dz; and dms/dz; it is necessary to
draw axes z; and z3 through measuring points, draw then the diagrams ms(z;)
and m3(z3) and determine the derivatives dmj/dz3, dms/dz3 in the measuring
points. .

Such operations are performed in Fig.8 and 9 for points of coordinate axes
z = —0.015 [m) and £ = 0.015 [m] as an example. The next phase is the estimation
of derivative characters dm /dzy (k = 1,2,3). If my > 0 than the value of dm;/dz},
depends on function monotony mi(zx). This property can be evaluated by means
of a compensator. At the entrance into the model the compensator introduces
a known fractional value Am;. When Am; > 0 and the function mi(z;) is
monotonically increasing the points J,, = 0 or J,, = 0 will be moved in the
positive direction of the axis z; (dmy /dz; > 0), when the function is monotonically
decreasing then the displacement is perfomed in the negative direction of the axis
zk {dm;/dz; < 0). After the experiment with the use of the compensator values
of dm /dz; were marked and put into the table 1.

Table 1. Results of experiments. oy, gy — stresses obtained according to
the theoretical formulas, @y, g3 — stresses calculated experimentaly, dm,/dz,,
dmy/dz;, dmz/dz3 — values received with the aid of graphic differentiation of
the function m,(z,), ma(z2), ma(z3).

z o1 P %:_'lx 2 i_;".: ?I’T. %:m: ,713).
103 | .1072 | .02 103 10—3 103
ol | [2] | (o] | [oe] | o] | [oe] | [a] | [oe] | ]
m m m m m m m m
1 =30 0.01 -0.34 -5 -0.32 ]
2 225 0.15 -1.40 21 1.37 8.5 0.13
3 -20 0.49 -2.76 41 -2.67 .17 | 055
4 15 1.06 -4.36 67 -4.36 25 1.11
5 -10 1.74 -5.99 93 -6.05 32 1.89
3 -5 2.58 -7.27 112 -7.28 35 2.73
7 0 2.58 7.7 119 7.73 36 3.06 -138 2.47
8 3 2.58 727 -119 7.28 128 2.08
) 10 1.74 -5.99 -93 -6.05 106 1.69
10 15 1.06 23.36 57 -4.36 74 0.91
11 20 0.49 22.76 41 -2.67 -46 0.65
12 25 0.15 -1.40 21 -1.37 ' -22 0.13
13 30 0.01 -0.34 5 -0.32 5.5 0.07

Introduction of the fractional value Amy at the entrance into the model gives
us the possibility of revealing additional points of a known difference of phases
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m, breter] A g%’ [L,%r—dgf]

F 130

>
x,-10°[m]

Fig. 7. Variation of m, versus z; drawn on the basis of pictures (Fig.6) and the
variation of dm;/dz; being result of graphic differentiation of the function my(z;)
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2 z/ = 25 [n]
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Fig. 8. Variation of m, versus z; drawn on the basis of Fig.5
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between component waves. Scattered light intensity has the following form
J? = KE? [1 — cos(¥i + A¢)]
b= KEL[1 - o -
o, = KEg, cos(¥y + Agn)

where A1); — fractional value of relative retardation introduced by the compensa-

tor.

Fractional values of phase difference ¥ + Ayr = 2x(mi + Am;) appear in
places on the axis z;, for which J,?* =0and J;’. = Jimaz- Results of measurement
of birefringence with the use of a compensator are given in table 2.

Table 2. Assignement of points of coordinate z2 to the values mg given by
the compensator,

Amg | z,- 10~°
[order] (m]
0.1 8.5
0.2 15
0.3 18
0.4 22.5
0.5 29

Values Amg set by the compensator correspond to the places of z3 coordinates
for which Jp; = 0. The obtained values were as a complementary data used to
draw the diagram m;(z2), (Fig.8). On the basis of the obtained data, using formu-
las (7.4) stresses were determined. The sought—after stresses were also calculated
on the basis of theoretical formulae

4z2R?
o1t = [ (z2 + Rz)z] @ 5)
ou= 21— )

Results are in table 1.
Diagrams of stresses determined experimentally and theoretically are in Fig.10.
Values of stresses calculated on the basis of experimental data reveal an error
which depends, first of all, on the accuracy of calculated derivatives dmy/dz;
(k=1,2, 3), and on the precision of locating the model towards the light source
(angle 6;). Derivatives dm;/dz} are calculated with the aid of the differential
quotient
dm;, _Am;
d::;, AI), ’

(7.6)
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A 6 40"’[%]

x440-}[rv1]

F'IQA 10. Variation 0(2), aﬁ"‘) and o2 versus £ drawn on the basis of the data received
from: A - light running through the model in the direction z;,
X - in the direction z, o —in the direction respectively z3,
— theoretical solution
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Introducing Amg = Mj, Az = X we can calculate an absolute error of

expressions

2
Siz) = C,— = -——(—A{Z - 'A—llcosz 62) (7'7)

A 5n?6;

taking into account quantities My, Xk, 6% (k = 1,2,3) and according to formulas

352 352
(2) (2) (2 2 (2)
@ _ 395,” an a5, S 08" ¢ a5, R
651 8M §M, + oM, M3 + 3X, 6 X + 39X, 6Xo + 96, 66,
(3) {3) {3) {3) (3)
O 050, 050, 5D oS sl

where

My = 6M; = 6M3 = 6M accuracy of reading the parameter m in

the direction z;,
06X, =6X,=6X3 = ézX accuracy of coordinates xj reading,
66, = 663 = 66 - accuracy of locating the model towards
the light source.
Calculzting derivatives appearing in the formula we finally get
M,
§M — }—ax)
S
X X 2 sin2 92
~MX2)X + 2°°89’(M1X2 - M;X1)66) (7.9)

1
X1X3 SXI\2 93

COS 93

Sl

85, = Xl(

652 = [(X1 = Xaco6? 02)6M + 32— (M X cos* 6, -

55 = [(Xs = X1)8M — (M X3 - M3X?)6X —

X x
(M Xs - M3X1)66)|.

Values of §.5,, 651(2), 65&3) were calculated, as an example, for a point of coordi-
nates z = 0 {m] basing on quantities My, k, O, read with the accuracy §M = 0.1
[order], éX = 0.001 {m] aud 66 = 1°. Calculated values are 65, = 37%S,,
55‘%2 = 37%S,, 65§3) = 14%S5,. Increase in measurement accuracy of the quantity
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m to the value M = 0.01 [order] and increase of accuracy in redaing the coordi-
nates z; to éX = 0.0005 [m], causes the decrease in percentage errors to the value
88, = 12%8,, 6552) = 8%5,, 65§3) = 6%J9). Possibility of increasing accuracy of
results can be achieved by reconstruction of the test stand: introducing additio-
nal movement of the model along the direction of the light course, supplyving this
movement with a micrometer screw and determining places J,, =0, J,, =0 by a
phototensor, introducing reading of the value m on the scale of micrometer screw.

Praca wplynela do Redakcji dnia 26 stycznia 1988 roku



