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Classical panel methods need some modifications in order to account
for important features of real flow fields. The st of these features in-
cludes a wide spectrum of effects (appearing in many fluid dynamics
problems), and their mathematical description is non-standard in some
cases. Fundamental relationships and boundary conditions can have dif-
ferent, although equivalent forms. The paper presents foundation of
potential Hows and is prepared as a common foundation for any next
papers devoted to the review of selected modified panel methods and
their application to complex flow field calculations.
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1. Introduction

Among all methods of the computational fluid dynamics (CFD) perhaps
most known are the panel methods. It is truth that the Euler and even Navier-
Stokes models can be today solved with the aid of supercomputers. Never-
theless, applying the Navier-Stokes model to flight mechanics problems. e.g.
stability and control of elastic airplanes. is not only impractical today, but may
not satisfy other necessary criteria such as high speed and low costs of com-
putations which are most important. Therefore, the panel methods based on
potential flow models are still most popular tool in numerical aircraft-oriented
aerodynamics., especially in preliminary design of complex configurations.

However. the potential flow models need some modifications in order to
account for important features of non-poteutial flow. The list of needed modi-
fications was pointed out by Goraj and Pietrucha (1995b). The present paper
gives mathematical relations for modified panel methods in the area of three.
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rather homogeneous problems: (1) compressibility effects: (2) unsteady effects:
{(3) phenomena at high angles of attack.

Subjects related to these problems are numerous. and in many cases are
also complex. Mathematical description sometimes need a non-standard [or-
mulation, very often applied in original and review papers. We want to em-
phasize that the paper is not a review of the panel methods that have been
published since a Jong time on several occasions. Qur main purpose is to
present a rather complete set of the popular frequently used descriptions.

2. Main features of classical panel methods

2.1. Classical and modified panel methods

When one writes about the panel methods, one has to bear in mind that the
main feature of classical panel methods consist in their capability to predict
reliably aerodynamics in linear approach only. because they are numerical
schemes [or solviug the Laplace equation

Cor + Pyy T W2 = Vie=0 (2.1)

where {z.y.z} denotes a movable (body-fixed) frame of reference and ¢ is
the perturbation velocity potential.
In order to complete the problem we need to formulate the proper boundary
conditions on the body surface. at the trailing edge. and at infinity.
T'he first boundary condition requires zero normal velocity across the body
solid boundaries
Vo-n=10 (2.2)

where m is a unit vector normal to the body surface.
Along the wing trailing edges the velocity has to be limited in order to fix
the rear staguation lie and thercfore

Vo< x (2.3)

The third boundary condition requires that the flow disturbance due to the
body motion through the fluid should diminish far from the aircraft

Ve — 0 (2.4)
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Therefore, from the Navier-Stokes model point of view, Eq (2.1) demands
for the following assumptions to be accepted: no viscosity terins; no compres-
sibility effects; no unsteady effects. However. in practice numerous existing
panel methods incorporate processes which allow some account to be taken of
compressibility and unsteady effects, phenomena at high angles of attack, and
even finite Reynolds numbers. Such panel methods we are calling the modified
panel methods.

Thus, in our opinion the following assumptions constitute the classical pa-
nel methods: (1) linearity of the governing equations and boundary conditions:
(2) Aatness of the vortex surface: (3) shedding-up of the wake from the trailing
edge only; (4) incompressible and steady flow.

In the panel method approach. differential Eq (2.1) is converted to an
integral one over the configuration surlace by means of the third identity of
Green (Kellog, 1967) which here is named simply Green's Theoren.

2.2. Boundary integral formulation

There are two main formis of the boundary-value problems, namely the
Dirichlet form and the Newmann form. Both forms can be formulated using
internal or external approaches. In aircraft aerodynamics the external Neu-
mann conditions are usually considered, because in most cases we do not know
the potential distribution, whereas we know the potential derivatives, normal
to the surface and equal to the velocity components. Therefore, we limit our
considerations to the external Neumann conditions.

The boundary-value problem for the Laplace equation consists in finding
. satisfving this equation in some region, and such that

o o 5 K
5|, = otrv.2) (2.5)

where g is a function given « prior:.
In order to formulate the Neumann problem in terms of boundary integral
equations, we use GGreen’s theorem in accord with, the potential at a point P

1 10¢ .
/m// A R (2.6)

If the values of ¢ ot dy/dn on the boundary surface S are known,
Eq (2.6) may be used to obtain the values of p al any point in the flow field.

exterior to 9 Is

I — Mocchanika Teoretyczna



50 Z.GoRrAJ. J.PIETRUCHA

However. only dy/dn is prescribed on S (see Eq (2.5)). Thus, we need an
equation for evaluating @ on 5. Such an equation is obtained by noting that,
as the point P approaches a point @ on the surface 5, the value of ¢(P)
approaches the value of ¢ at this point Q on §. This yields

1 L dy . -
27{'5‘9 // d/y — 77”“} (1.5 (Zl}

This integral equation and its extensions are crucial for the panel methods
methodology: once ¢ is known on 5, we may evaluate (anyway, on the
outside of 5) the potential » from Eq (2.6). the velocity V (see Eq (3.6)).
and the pressure p (using the Bernoulli equation. see Section 4.6).

Solution to the problem is based on the distribution of singularities on the
boundary surface 5. The most general approach consists in using sources and
doublets as singularities, which are interrelated by the formulae

- (—3—5) (gf) = —leu = i) (2.8)
where {7 and L denote upper and lower sides of the surface, respectively.
with respect to the outward versor n.

The most known formulation of Hess and Smith (see Section 4.2.2 in Gora]

and Pietrucha. 1995a) consists in choosing o = 0, that yields

!
——1// —odS (2.9)
= JJ r
f

Therefore. the corresponding integral equa‘tion in ois

2o () // 0~~ - (i5—47'g (2.10)

From the mathematical point of view this is the Fredholm equation of the
second kind. Once o is known, Eq (2.9) gives the potential .

An implementation of a procedure for obtaining a numerical solution of
Eq (2.10) and the like is called a panel method (for details see Goraj and
Pietrucha. 1995a: Kubrynaski, 1993; Morino, 1993},

3. Governing equations

3.1. Euler model and its simplification

The starting point for the various potential formulations is the Euler model
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- il is generally accepted as the basic model governing most fluid dynamics
phenomena of interest in flight mechanics. The fuudamental assumptions for
a physical model of potential flows are that the fluid is inviscid and non-
conducting. External forces and heat sources are not taken into account. The
governing equations in the conservation form (written either in unmovable
or movable inertial frame of reference) for such a model arc as follows (cf
Anderson. 1990; Ward, 1955):
continuity equation

%?+pdi»‘V:0 (3.1)
~- molnentum equation
DV q
T —gradp (3.2)
— energy equation
—/]% ((J + %VZ) +div(pV) =0 (3.3)
where
P density
V velocity vector
P pressure
€ mternal energy per uuit mass. and
L):E+V-V (3.4)
Dt al '

The local flow velocity vector V should correspond to the frame of refe-
rence (i.e. is ohserved either {from unmovable or movable frame of reference).

The set of Egs (3.1) + (3.3) is called the Fuler model and it will represent
inviscid rotational flow within the whole speed range. This model consists
of five scalar equations in six scalar unknowns: p, p, e, and three scalar
components of velocity V.

The most impressive simplification of this model is obtained on the as-
sumption that the fluid is isentropic, i.e. isentropy equation

PPN N
Zz a <p.x,> (3.5)

where ~ Js the ratio of specific heats, and the subscript oc denotes the free
stream conditions.

From the momentum equation in Crocco’s form (Hirsch, 1988) it can be
concluded that there exists the relation between vorticity and entropy. I'his
relation shows that entropy variations generate vorticity and. inversely. vorti-
city creates entropy gradients. So, the assumption that fluid is iscutropic leads
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to the conclusion that a single scalar function, ¢(z.y, z,t) exists and can be
defined by
Vo =gradg =V (3.6)

which is equivalent to the irrationality condition
rotV =0 (3.7)

Function ¢(z,y, z,t) is named the full (or total) velocity potential,

3.2. Unsteady Bernoulli equation

Combining Eq (3.2) with the definition {3.6) one obtains the least restricted
form of Bernoulli equation, called sometimes the Bernoulli-Kelvin equation
written either in a movable frame ol reference

g@ %(gladd) + / dp = % l(gradgb)Q N (3.8)
P
or in an unmovable frame of reference
; . p
%—f + é(grad»o)"z + / % dp =0 (3.9)

Do

where ¢ is the velocity potential in an unmovable [ramne of reference.
The practical value of Bernoulli equation is that it allows to relate p to o.
Usiug I°q (3.5) one may compute from kEq (3.8)

P Px P~ P

(' = fo =
g %prx/ L%—, %"/p(x, M2,
(3.10)
2 vl VP25
where 7 l
M, = L PRI (3.11)
Qo dp P

and U, denotes the free stream velocity observed from a movable frame of
reference.
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A very popular form of Bernoulli equation can be obtained if we assume
the incompressible flow (p = const). Then, from Eq (3.8) we have

Poo — P 1, ,  0¢ 1

— =(V¢)'+ - - U 3.12

= Ver gy~ 5k (3.12)

The same can be obtained from Eq (3.9) employing the relations

% wnmovable ~Vot 2xrVet % movable
Veo=Vo-— U1 (3.13)
do| a0
Ot lmovable 9t lmovable
what gives
? = Vo +2x7|[Vé— Usi] + dd—(f n %[ng)— Unoi]? (3.14)

where Vg and {2 are the velocity and rate of rotation, respectively, (note
that Vo = —Uxt). It is easy to show that for 2 = 0, Eqs (3.14) and (3.12)
are equivalent.

The pressure coefficient computed on the base of Eq (3.12) is given by

_ PP (VN 2 09 315
C,= D" 1 <UOQ> - UL 3 (3.15)

The same result can be obtained from Eq (3.9) with the aid of relations (3.13),
nainely
o9 VE-UL 0¢

T g, (316)

w-p 1 o .
P p L il = V6)? +iU,(V — iU:) +

which can be easy converted into Eq (3.15).

3.3. Full potential equation

The equation describing the potential function ¢ is obtained from Eq (3.1)
employing the definition (3.6) and has the form

Dp 2
£ Vép = 3.17
Dt+p ¢ =0 (3.17)
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After modification the first term of Eq (3.17) by virtue of Iq (3.8), the diffe-
rential equation satisfied by the velocity potential can be obtained (see Ashlev
and Landahl, 1965 for detaills)

a*V20 = ¢y + 8%1/'2 +V- grad(%l/’z) (3.18)
where a is the local speed of sound given for a perfect gas by Eq (3.11).
Eq (3.18) is a single equation in fwo unknowns, ¢ and «. Therefore.
a second independent relation between ¢ and « is needed. The simplest
method to obtain this relation Is to use the definition of the speed of sound
(3.11) and the isentropic relation (3.5) in the Bernoulli equation (3.8}. Finally,
one obtains
a =a? _ it

o 5

20, + (Vo)? - UL (3.19)

From Eqgs (3.18) and (3.19), we can obtain the equations corresponding to
different vanges of speed.
It is of interest that Garrick (see Ashley and Landahl. 1965} pointed out
that Eq (3.18) can be reorganized into
. 1 /0 0
Vip = <* + VV) (— + VCngp =

1 D?¢
a? Ot ot 2 Dt?

Dt?

(3.20)
a
where the subscript ¢ indicates that V is kept as a constant during the second
differentiation. Eq (3.20) is just a wave equation (with the propagation speed
equal to the local value of a given by Eq (3.19)} when the process is observed
relative to a coordinate svstem moving at the local fluid velocity V. Eq (3.20)
is known in aeroelasticity as Garrick’s equation.

It is worth notiug that the continuity equation {3.1) with condition (3.6)
and on the assumption dp/0t = 0, may be written as

V(pVe) =0 (3.21)
which may be expressed as the Poisson equation

. 1
Vip = _;(va) (3.22)

where the density is given by
1

o= luy %Mf\, 1 - ((Vl’ﬂ}j (3.23)

P 00
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3.4. Perturbation models

[t is a usual procedure to prolongate the simplification assuming additio-
nally that
O = Qo t (3.24)
where i is the perturbation potential.
From Eq (3.18) one obtains the transonic small-perturbation model
. Iy, 0 0\2
2 (A 2 (U, — + —) v 3.2¢
Vi = (1 + MEpapes + L7 (Usg=+ 57) % (3.25)
From Eq (3.25) after the neglecting the nonlinear term we obtain the equ-
ation

o Loy d  0N2 o
v Q‘@(“@%*E) v (3.26)

which holds in the subsonic and supersonic flows.
From Eq (3.26) on the assumption d¢/dt = 0 one can obtain the Prandtl-
Glauert equation
52991'3: + Py + P = 0 (3.27)

3=/l - M=z (3.28)
is the Prandtl-Glauert factor.

If one assumes that the flow is incompressible (M., = 0) or one performs
the Prandtl-Glauert transformation (see Eq (1.3) in Goraj and Pietrucha,
1995a) then from Eq (3.27) can be derived the Laplace equation

Vip =0 (3.29)

where

It should be noted that a similar equation can be obtained at once {rom
Eq (3.17) setting p = const. That is why the Laplace equation is sometimes
called the continuity equation.

4. Fundamental notions and relationships
4.1. Surface vorticity vector

The potential induced by a surface distribution of doublets with the inten-
sity g is

élﬂp:—//,tm-vyl‘ ds (4.1)
S
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Differentiating Eq (4.1) with respect to n yields

- , 1
47TV:—/,u,V]—X(ll—{—//[npr]xV—([S (4.2)
‘ ,
C S

In this form the velocity can be considered as induced by two vortex distribu-
tions (Cantaloube and Rehbach, 1986):

- the first due to a vortex udl concentrated on the contour C of open surface
S, and

— the second due to a surface distribution of vortices with the intensity

(=nxVu on § (4.3)

4.2. Modified (complex) velocity potential

For a harmonically oscillating body with the circular frequency w, it is
convenient to introduce the complex velocity potential

) Uz )
b = Qekp{—luj [1 + (a,@,'l3)2}} (4.4)
where ¢ is the perturbation potential (see I2q (3.24)), and f is given by Eq

(3.28)).
By virtue of Eq (45) and using the Prandtl-Glauert transformation, Eq
(3.26) can be rewritten as the Helmholtz equation

V2@ + K26 =0 (4.5)
where
I (4.6)
b Qo 132 )

and [ is a characteristic length.

4.3. Acceleration potential

Sometimes a great advantage can be gained using the concept of the acce-
leration potential (instead of the velocity potential), defined as
D¢
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Acceleration potential becomes practically useful when disturbances are small,
so that p:= p., everywhere. and on the base of Eqs (3.2) and (3.6) we have

T - (4.8)

Eq (4.8) is often treated as a definition of the acceleration potential. Anvway.
it differs only by a constant from the local pressure, and such a replacement
is used to avoid the necesity for extending surface integration over the walke.
The acceleration potential and pressure discontinuities exist only across the
lifting surface, whereas the velocity potential discontinuities exist across the
lifting surface and wake vortex sheet. The acceleration potential is often used
in aerodynamic calculations because it is directly proportional to the pressure
perturbation (see Itq (4.8)).

Although a suitable partial differential equation describing the acceleration
potential is not known in a general case, but it satisfies the same equation as
the disturbance velocity potential in linearized theory.

4.4. Biot-Savart law

The Biot-Savart law is used in a majority of methods developed for the
calculations of the induced flow velocities due to vortices in the high angle
of attack flow fields. The basis for the law is the definition of the wvoriicity
vector w

rotV —w (4.9)

and the definition of incompressible flow (see Eq (3.1))

divV =0 (4.10)

where V is the velocity field.
Eqs (4.9) and (4.10) can be solved to give V as a function of w

Vir,t) = 4%/// w(rs) X (T”;”) dr (4.11)

(rp — 7s)
where
r, — point at which the velocity is being calculated
r; — location of the vorticity in the volume

7 —  volume elenent.
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[
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We want to emphasize that Eq (4.11) is a purely kinematic relationship,
s0 1t Is true for inviscid and viscous flow fields. The flow field described by Eq
(4.11) is incompressible everywhere, and it is irrotational in the region where
w=0.

When the vorticity is concentrated in a vortex filament of strength I and
a length of dl. Eq (4.11) reduces to the standard form of the Biot-Savart law

V = Ll F dlxr (4.12)
n
!

where r denotes distance from vortex filament of infinitesimal length dl to a
point of interest.

In reality the surface is to be covered not with concentrated line vortices
but with a vorticity distributed continuously. So, if instead of discrete filament
the vorticity field exist, then (including additionally the compressibility effects)
the total velocity vector is sometimes (see Lan, 1989) written as

_2 // T1)>< 7‘—7‘1) is (4.13)

where

— (2 =)t P [(y )P (- :1)‘2} (4.14)

T

T

w(ry) is the vorticity vector at r1 = 21t + 117 + =1k, and J is the Prandtl-
Glauert factor given by Eq (3.28).

The other useful form of the Biot-Savart law can be directly obtain {rom
Eq (4.13) in the following form

€ €
Viz,y,z) = // — det wg W we ds (4.15)
=& y-n 2-¢

where {£,7,(} is a local orthogonal frame of reference, and dS = d&dn
denotes an infinitesimal surface element.

Biot-Savart law in the form of Bq (4.15) was used by Kandil et al. (1984)
for parameters J =1 and ¢ =0 where rz was taken as

[T

rg=r= (v —*+(y—n)’+2° (4.16)

84
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4.5. Kelvin and Helmholtz theorems

Assuming an inviscid and incompressible flow we may obtain a verv useful
mathematical tool known as Aelvin’s circulation theorem. As a matter of fact,
consider the circulation around a fluid curve in such a flow and calculate the
time rate of the circulation

Dr D

_ = — = d 4.17

. Dt/le /a l (4.17)
C C

Substituting the acceleration @ obtained from the Fuler equation (3.2) into Liq
(4.17) yields a constant circulation

Dr
= = 4,
or =0 (4.18)

Eq (4.18) expresses the theorem of conservation of circulation. This the-
orem is thus a form of angular momentum conservation and can be used to
determine the streamwise strength of vorticity shed into wake: the circulation
[" around a fluid curve enclosing the wing and its wake is conserved.

Cousider now any infinitesimal surface element ndS which moves with the
fluid, and denote by w the vorticity vector, aud by n the unit vector normal
to the surface 5. Then, by virtue of the Stokes theorem, kEq (4.18) may be
put into the form

%(m-ndS’) =0 (4.19)

which is exactly the Helmholtz theorem. Thus we see that the Kelvin theorem
and the Helmholtz theorem are identical.

4.6. Linearized Bernoulli equation

By binomial expansion of Eq (3.10) (for details see Liepmann and Ro-
shko, 1957) with taking into account Eq (3.24), it is possible to obtain the
approximate (of second order) pressure formula

2
U

[ul‘g, + di + (1 - Aff(fo)ulz 1?4 wz] (4.20)

Cp = o1

in which cubes and higher order powers of perturbation velocities are neglected
and, on the base of Eq (3.13)3 there was taken that d¢/0t = d¢/0t. In the
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formula (4.20) u, v, w denote the components of local flow velocity seen from
the unmovable {rame of reference.

If we retain the first order terms only, Eq (4.20) gives the relation, very
frequently used in the panel method codes, namely

Cp = — o [ule + 2] (4.21)

Eq (4.21) can be easy obtained from Eq (3.15), if we assume that
Vo= U, + u. It is the case of two-dimensional flow with the first-order
perturbation components to be retained only.

The special case of interest is the flow around a thin plate of infinite aspect
ratio. In this case we observe the velocity jump crossing the plate from the
upper to lower side. The local tangential components of velocity disturbances
u at an arbitrary point along the plate chord, marked as ut and ul, respecti-
vely, to the upper and lower sides of the plate. We have ul = L = yand
pV = —pl = . Putting these relations into Eq (4.21) for the streamlines on
upper and lower sides of the plate, and subtracting yields

~U

o Ap phepY 400

P Tl Lo Uz T UE )A@ (4.22)

hence, we have

%, 0
“5u ot
This formula is often used in unsteady flight dynamics and aeroelasticity to
compute the pressure acting upon a vibrating plate (which is used as the wing
model).

Ap =200 (U )4\@ (4.23)

4.7. Formulae for calculating aerodynamic load

An isolated 2D airfoil in an incompressible inviscid flow feels a force per
unit width
F=p,U0.,.xT (4.24)

where I'is the net circulation around the airfoil. Eq (4.24) represents the well
known Kutta-Joukowski theorem. But there are also another useful formulae
for calculating the aerodynamic load.

Denoting by w the perturbation mass flur vector

W = poo[fP0n, 0y, 0] (4.25)
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we may obtain the so-called second order pressure formula
1 e
P2 = Pao — (pooU,x‘v + 51)11)) (4.26)

where v denotes the perturbation velocity. Eq (4.26) agrees with the isentropic
formula (3.10) (for ¢, = 0) to the first order in perturbation quantities.
Of great importance is the fact that the Iq (4.26) produces consistent force
calculations for arbitrary configurations when we define the force in a usual
way, l.e.

F = /b/[V(Wn) + pm] dS (4.27)

where W is the total mass flux vector, defined as follows
W=p U..+w (4.28)

whilst w is given by Eq (4.25).

Eq (4.27) implies that F'is zero when the surface .5 encloses the fluid only.
hence, the momentum is conserved exactly and the force on a given surface
may be computed on any euclosing surface.

5. Boundary conditions

5.1. Boundary conditions on the body surface

The body surface 5 is usually assumed to be impermeable. Hence, the
boundary condition (no-penetration condition) at the point § is

(V-V¥Ven=0 or Vn=Vgn (5.1)

where V is the absolute velocity of the fluid particle, and Vg is the absolute
velocity of the point belonging to the body.

Consider now a body surface, each element of which is moving relative to
the fluid (e.g., such a surface is that of a deformable body). This surface may
be described by the equation

S(r,t) =0 (5.2)
where S(r,t)is a scalar function of the position and time. The normal to the
surface at any point is given by

grad,

" lgrads| (5-3)
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Differentiating Eq (5.2) with respect to time, taking into account Eqs (5.1)
and (5.3). the boundary condition on the body surface becomes

DS 95

—— = — +V.grad5 =0 9.4

D ar VR (54)

A definition of impermeability and pressure appropriate to Eq (3.27) is

an open subject. Johnson et al. (1980). made the mathematically natural
choice of zero normal mass flux and the second order pressure formula (see Eq
(4.26)). Assume that W is equal to pV (where W is defined by Iq (4.28)):
therefore. the impermeable surface boundary condition can be expressed by

W-n=20 (5.5)

Iq (3.27). rewritten as
Vw =0 (5.6)

expresses the principle of conservation of mass, and then I5q (5.5) guarantees
that even if the configuration is such that the assumptions used to derive
Eq (3.27) are violated locally, there is still no net production of Auid at the
boundary surfaces.

5.2. Kutta-Joukowski condition

Boundary condition for any unviscid theory is simply in formulation. Fq
(5.1). However, viscosity changes the flow field considerably, and any unviscid
theory. which does not take account of these changes, is completely unrealistic.

At asharp trailing edge the local flow is controlled by the action of viscous
stresses; this determines the circulation around the airfoil and hence the hift.
[n an inviscid flow the behavior at the trailing edge is no longer controlled.
and so a non-unique solution can be found. Therefore, to describe the real
viscous flow accurately, an additional condition is necessary. This condition
is known as the Nutta-Joukowski one which implies that a zero pressure jump
at the trailing edge is imposed to give a physically realistic flow. This was
traditionally formulated by requiring that the circulation density at the trailing
edge (TE) be equal to zero, i.e.

yre =0 (5.7)

The most popular formulation of the Nutta-Joukowski condition follows:
the flow leaves the trailing edge of a sharp-tailed airfoil smoothly, i.e., the
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velocity is finite there. From this postulate one can derive four corollaries (see
Moran. 1984) which are often even more useful. e.g.. the streamline that leaves
a sharp trailing edge is an extension of the bisector of the trailing edge angle.

However, the Nutta-Joukowski condition is limited to sharp-tailed airfoils.
which do not exist in the strict sense. The usual procedure is to assume that
there emanates from the trailing edge a wake so thin that it cannot support a
pressure difference. On sharp edges (leading. side and trailing edge)

AC, =0 (5.8)

For an unsteady flow, a much more careful analysis is required. An exten-
sion of the Kutta-Joukowski condition to such a flow was suggested by Giesing
and Maskell (cf Morino and Tseng, 1990): for varying bound circulation the
stagnation streamline is an extension of one of the two tangents to the airfoil
at the sharp trailing edge.

The most severe criticism of the Giesing and Maskell condition centers on
the fact that this unsteady condition does not reduce to the classical steady
one. Nevertheless, for high reduced frequencies, the experimental evidence (cf
Poling and Telionis, 1986) supports the Giesing and Maskell critorion,

5.3. Boundary conditions on the wake

From a physical point of view, the wake is a region where the vorticity ge-
nerated over the body surfaces is transported. Because the Kelvin-Helmholtz
theorem, Eq (4.19), is not applicable in this region, the flow is not necessarily
potential for the points of the wake. Hence, in general, we must assume that
the wake is a surface of velocity discontinuity. In potential aerodynamics this
region is assutned to have zero thickness.

Wakes are defined to be the surfaces of discontinuity on which

A(Va) =0 (5.9)

where A denotes increament (of normal velocity). Applving the principles
of conservation of mass and momentum across a surface of discontinuity {cf
Morino and Tseng, 1990), one obtains

Ap=0 (5.10)

For a flow that is potential on both sides of the wake surface, the condition

(5.9) implies
.y
45%:0 (5.11)
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Detailed discussion on the boundary conditions for the wake was presented
by Morino (1993).

5.4. Boundary conditions far from the body

In a classical approach it is assumed that the flow disturbance, due to
the body motion through the fluid, should diminish at infinity (far from the
aircraft)

Rli_mMVgo =0 (5.12)

where ¢ is the perturbation potential (see Ioq (3.24)), and R is the distance
from the fixed origin in or near the body.

However. the arguments presented by Ward (1955) show that the linearized
theory can not give accurate information about the flow at infinity. In spite
of defficiency of linearized solutions, the knowledge of their general behaviour
at infinity is useful, particularly for the proof of uniqueness. This behaviour
is different for subsonic and supersonic flows.

In a subsonic flow. when there arc no vortex sheets, |R*v| is bounded as
R — o¢ (wis the perturbation velocity). When there are vortex sheets. i »
1s a distance from the nearest point of the body and the vortex sheets, then
[2v] is bounded as r — oo, and |R?U_ v| is bounded as R — o0o.

In a supersonic flow, v = 0 at all points upstream from the characteristic
surface which bounds the influence domain of the body.

6. Conclusion

The paper presents foundatious of potential flows and is prepared as a
common base for any next papers devoted to the review of selected modified
panel methods and their application to complex flow field calculations. [fun-
damental relationships and boundary conditions can have different, although
equivalent forms. Sometimes. going through original papers, one can meet a
non-standard formulation of basic equation and related conditions, which can
make difficult to follow such papers. Authors hope that this paper will be
helpful in such a case.

Summing up, this paper may be a useful guide for the beginners in the
field ol panel methods as well as for the readers who are well familiar with
these methods. as at hand advisor.
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Podstawowe réwnania i zwiazkl matematyczne mechaniki plynéw dla
zmodyfikowanych metod panelowych

Streszczenie

Klasyczne metody panelowe wymagaja pewnych modyfikacji, aby mogly uwz-
gledniac wazne cechy przeplywdw rzeczywistych. Zbiér tych cech obejmuje szerokie
widmo réznych efektow (pojawiajacych sig w wielu 7ag,admemach mechaniki plynow),
a ich opis matematyuny jest w pewnych sytuacjach niestandardowy. Zwiazki mate-
matyczne 1 warunki brzegowe, AaIOWIlO na pow1exzchn1 bryly. jak na sladzie wirowym
i w nieskoriczonosel, moga mie¢ bardzo rézne, cho¢ réwnowazne formy. Praca omawia
podstawy matematyczne przeplywow potencjalnych, zaréwno ustalonych jak 1 nieu-
stalonych. Oprécz sformutowania klasycznego z wykorzystaniem potencjalu predkosci
omawia réwniez sformutowania mcsrandaldowg miedzy innymi zastosowanie poten-
cjalu przyspieszen. Jest napisana przy zalozeniu, ze bedzie stanowi¢ podstawe opisu
matematycznego dla innych prac z dziedziny metod panelowych, zaréwno o charak-
terze przegladowym, jak 1 dla prac oryg inainych w zakresie zastosowari do obliczen
przeplywdw zlozonych.
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