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The paper is concerned with the plane strain problem of Love wave
propagation through a water-saturated sand layer overlying an elastic
half-space. Dynamic loads, induced by the wave passage, generate ir-
reversible strains in the soil matrix, giving rise to the development of
excess pore water pressures and subsequent reduction of the soil effec-
tive stresses, which in an extreme case can lead to the soil liquefaction.
The process of pore pressure generation is analysed within the frame-
work of compaction theory of saturated granular media. Results of
numerical calculations, carried out by means of the finite element me-
thod, illustrate the evolution of pore pressures and the development
of liquefaction in the subsoil, as well as the changes in the free surface
displacements.
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1. Introduction

The phenomena of pore pressure generation and liquefaction, which can
occur under certain conditions in fluid-saturated soils, are the subject of inte-
rest in several branches of science and engineering, including geophysics, civil
and off-shore engineering, and the oil industry. The research in this field was
initiated in the 1960s, following the Niigata (1964) and Alaska (1964) earthqu-
akes, during which several examples of extensive soil liquefaction, leading to
severe damages to buildings, were observed. The studies on the subject were

'On leave from the Institute of Hydroengineering of the Polish Academy of Sciences
in Gdanisk



724 R.STAROSZCZYK

intensified in the 1970s, when large-scale marine structures subjected to water
wave action were constructed in shelf regions on soils susceptible to liquefac-
tion. It is also believed that the phenomena of pore pressure generation and
liquefaction are the main reasons initiating underwater landslides, observed in
several parts of the world (Syvitski and Schafer, 1990). On a smaller scale, soil
liquefaction can develop in saturated sands during pile driving, or following
the use of explosives (Studer and Kok, 1980).

Due to the complexity of the problem, associated with the two-phase na-
ture of the medium, it seems that, despite considerable research efforts, there
is still no well established theory, which could adequately describe the me-
chanical response of saturated soils to dynamic loads. So far, a number of
theoretical models have been proposed (cf Martin et al., 1975; Seed et al.,
1976; Finn et al., 1977; Ghaboussi and Dikmen, 1978; Martin and Seed, 1979;
Nemat-Nasser and Shokooh, 1979; Zienkiewicz et al., 1982; Berrill and Da-
vis, 1985; Law et al., 1990), which differ in the constitutive laws adopted for
the modelling of the saturated soil, and include non-linear elasticity, elasto-
plasticity, viscoplasticity and plasticity. Plasticity theory has been the major
approach, and various formulations regarding the soil response inside a yield
surface, a yield condition, and a flow rule have been explored — many such
examples can be found in the book by Pande and Zienkiewicz (1982). The
classical plasticity models have been successfully applied to reproducion of
the soil behaviour observed in experiments carried out in simple deformation
configurations. In general, however, plasticity models give rise to very complex
numerical problems, particularly in wave propagation analyses, in which mo-
ving interfaces that separate regions of distinct constitutive response occur.
Another disadvantage of plasticity models is due to the use of non-associated
flow rules, which leads to ill-posed problems, as it was pointed out by Schaeffer
(1990).

In order to avoid the mathematical and numerical difficulties associated
with the application of plasticity models to dynamic problems, other appro-
aches, which do not require the concept of a yield surface, have been proposed.
In these theories it is assumed that irreversible strains develop gradually and
continuously during all loading, as opposed to classical plasticity in which pla-
stic flow is started abruptly after a yield point has been reached. An example
of such an approach is the endochronic theory formulated by Valanis (1971),
and then extended by Bazant and Krizek (1976), Valanis and Read (1982),
Bazant et al. (1983), Valanis and Peters (1991). Another alternative model,
which avoids the notion of a yield surface, is the theory of compaction propo-
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sed by Morland and Sawicki (1983, 1985), with a more rigorous generalisation
by Morland (1993). In this theory, saturated sand is treated as a mixture of
two immiscible constituents, skeleton grains and pore liquid, whose motion is
coupled by diffusive forces of Darcy’s type. In the model, reversible (elastic)
and irreversible (inelastic) deformations are distinguished. The former are de-
scribed by means of hypoelastic relations, while the latter, irreversible strains,
are governed by evolutionary laws. These laws relate permanent volume com-
paction and shear settlement rates to the total strain history and the current
deviatoric state.

In the present paper, the compaction theory of granular materials is utilised
in order to analyse the pore pressure generation and liquefaction phenomena
in a saturated sand layer subjected to seismic loads induced by Love surface
waves. To date, when analysing the effects of earthquakes on saturated soils,
the attention has been confined to either shear waves propagating upwards
or Rayleigh surface waves, and a number of papers have been devoted to
this subject, cf Seed et-al. (1976), Gazetas and Yegian (1979), Zienkiewicz
et al. (1982), Sawicki and Morland (1985), Sawicki and Staroszczyk (1995),
Staroszczyk (1996). Despite an apparent similarity of the Rayleigh and Love
surface wave propagation problems, there is a significant difference in particle
motions and stress patterns induced by the two types of waves. While the
former, Rayleigh waves, generate elliptic motions and both normal and shear
stresses in the medium, the latter, Love waves, generate linear (horizontal)
motions and shear stresses only. Since the phenomena of sand compaction,
and hence pore pressure generation and liquefaction, strongly depend on the
soil shear strains, these differences in stress patterns can affect, as already
indicated by Gazetas and Yegian (1979), the soil liquefaction potential. It
follows, therefore, that the problem of Love wave propagation in saturated
sands deserves more attention than it has been given so far.

Relatively few papers, compared to the Rayleigh waves analyses, have de-
alt with Love wave propagation in two-phase media (cf Deresiewicz, 1961;
Chakraborty and Dey, 1982; Chattopadhyay et al., 1986; Koriczak, 1989), and
none of them was concerned with the pore pressure generation and liquefac-
tion phenomena. The present work attempts to fill this gap. Considerations
are restricted to the plane strain problem of small and harmonic in time defor-
mations. Numerical results, obtained by the use of the finite element method,
show the time history of the excess pore pressure build-up, the liquefaction
development within the sand layer profile, and changes in the free surface
displacements.

13 — Mechanika Teoretyczna
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2. Governing equations

We consider the propagation of SH waves travelling along a free surface of
a semi-infinite medium. These waves consist of horizontally polarized distur-
bances perpendicular to the direction of propagation, decaying exponentially
with distance from the free surface. It is well known that such waves can-
not occur in a homogeneous elastic half-space (Achenbach, 1973). However,
strong transverse motions are usually observed during earthquakes, and the
existence of SH waves has been one of the first established facts of seismo-
logy. A theoretical explanation of these waves was provided by Love in 1911
(Ewing et al., 1957), who analysed the propagation of simple harmonic waves
in a homogeneous elastic layer of uniform thickness, overlying a homogeneous
and isotropic elastic half-space of a different material. Love showed that SH
waves can occur only if the shear wave velocity in the upper stratum is less
than that in the half-space, and that these waves are dispersive (in contrast
to Rayleigh waves which are not dispersive). In the present analysis the upper
layer is assumed to be inhomogeneous and transversely isotropic about the
vertical, and consists of a liquid-saturated sand deposit, whose inhomogeneity
varies with depth (Fig.1).

water-saturated sand
H

——
A3

elastic half-space

Yo

Fig. 1. Water-saturated sand layer underlain by an elastic half-space

We deal with the problem in which the dynamic loads are excited by
earthquakes, i.e. the phenomena of a relatively short duration, usually not
exceeding one minute. Since the soil liquefaction process can develop only in
saturated sands of low permeability, it can be supposed that no significant
drainage of the pore liquid takes place over such short time scales. There-
fore one can assume that there is no motion of the pore fluid relative to the
soil matrix, and hence the medium can be regarded as a single-phase solid
whose displacement field is described by means of a single, common for the
two phases, displacement vector wu.
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In the adopted Cartesian coordinates Oz zoz3 (Fig.1), with the zj-axis
directed downward and the free surface at z3 = —H), it is assumed that the
time harmonic Love wave propagates in the positive z,-direction, and the
associated displacement field is described by

u(z1,23,t) = up(zs) expli(wt — kz1)] (2.1)
where
u — particle displacement in the z-axis direction
k - wavenumber
w — angular frequency
t - time.
The function wug(z3), the amplitude of oscillations, is required to satisfy
the boundary conditions of zero shear stress o3y at the free surface z3 = —H;

and zero displacement u as z3 — 0o. Accordingly,

o32(z1, —Hi,t) =0 zgl_r)noou(:vl,xg,t) =0 (2.2)
furthermore, displacement and stress continuity at the interface z3 = 0 are
required.

Cyclic shear stresses, induced by the Love wave passage, give rise to irre-
versible rearrangemencs in ¢he sand granular structure, which leads to pore
volume decrease. The latter results in an increase in the pore fluid pressure,
which in turn leads to a decrease in the mean effective pressure in the sand
skeleton and subsequent loss of the subsoil shear strength. Tn the extreme case
of near-zero effective pressures, the sand becomes a mobile suspension of loose
grains and is said to have liquefied. Following Morland and Sawicki (1983), it
is convenient to decompose the soil matrix strain € into the reversible (elastic)
and irreversible (compaction) parts, €¢ and €, respectively

e=¢€°+¢€° (2.3)

and also to divide the strain tensor into a deviatoric part £ and an isotropic
part €

.1
6:E+§6| €= tre =¢e%+¢° (2.4)

where | is the unit tensor. The analogous partitions for the elastic and com-
paction strains are

1
€8 = 8%+ ¢l 6 =& + e (2.5)

L —
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The total stress ¢ is decomposed into a deviatoric stress & and a mean
pressure p

1
o=a+ypl ngtra (2.6)

Here, the soil mechanics convention that strains and stresses are defined po-
sitive in compression is adopted. The total pressure p is a sum of partial
pressures p° in the solid matrix and p/ in the pore fluid

p=p'+p (2.7)

The partial pressures are, in turn, related to the corresponding intrinsic (ac-
tual) pressures p** and p’* in the two phases of the medium by means of the

formula
p’=(1—n)p™ pf = np’* (2.8)

where n is the volume porositil of the medium. It is assumed that the pore
fluid does not support shear stresses, and hence the partial stress in the fluid is
an isotropic pressure, and the partial deviatoric stress in the matrix is the total
deviatoric stress. The intrinsic pressures p** and pf* in both constituents of
the medium are related to the corresponding intrinsic strains (dilatations) **
in the sand skeleton and ef* in the pore liquid by

S*

e = k;p™ ef* = nfpf* (2.9)

where kg and k; are, respectively, the intrinsic matrix and pore fluid com-
pressibilities. In fully undrained conditions, under which there is no fluid flux
from the matrix, and hence the pore fluid mass is locally conserved, the total
compression is a sum of the partial compressions €* and ¢/ in both phases,
thus

e=¢"+¢ef = (1 —n)e** + nel* (2.10)

which, in view of (2.9), and then (2.8), yields
€= Kkgp® + prf (2.11)

The elastic isotropic response of the two-phase medium is assumed to depend
linearly on the partial pressures in both constituents, which can be expressed
by the relation

£ = aup® + agp’ (2.12)

with o) and a being elastic constants. These constants can be determined in
terms of the free draining and undrained compressibilities, x and &k, respecti-
vely, by conducting measurements in isotropic pressure when compaction does
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not occur, in a way analogous to that described by Biot and Willis (1957). In
a free drained (jacketed) test the intrinsic pore fluid pressure is held zero, and
the applied pressure p is supported by the solid matrix only, thus

=0 p’=p £=¢%=kp (2.13)

In an undrained test there is no pore liquid flux from the matrix, and by
definition

€ =€°=Kyp (2.14)
Now, on substituting Egs (2.13) and (2.14) into Eq (2.12), and then using Eqgs
(2.7) and (2.11) with € = 0, one can express the elastic constants «; and
ap in terms of the four compressibilities &, ky, ks and & as follows

Kf — Ky

ay = K 0y = Kf — (K — KS) (2.15)

Ky — Kg
As irreversible compaction (e¢ > 0) develops under undrained conditions, then
Egs (2.11), (2.12) with the definitions (2.15) and (2.7) provide the formulae
which relate the elastic compression €° and the pore fluid partial pressure pf
to the total pressure p and the irreversible compression &€

C

K—K Ky — K £
€ = Kyp — Lec pf =22 ¢ (p+ ) (2.16)
K — Kg Kf— Kg K — Kg

and the total compression & = ¢ + €€ is given by

Ky — Kg

€= KyD + e* (2.17)

U
K — Kg

The effective pressure P, which is a measure of intergranular contact forces
and considerably influences the shear response of the medium, is defined by

7
_ . P
p=p—plr=p-*— (2.18)

where use of Eq (2.8)2 has been made. On substituting Eq (2.16), into Eq
(2.18), the effective pressure is given by the relation

D=DPe — Dy (219)

_ Ky — Kg Ky — Kg
=1 - — = ¢ 2.2
Pe [ n ]p Pg n(nf—ns)(n—ns)e (2.20)
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In the above formulae p, is related to the mean total pressure p, which can
either increase or decrease as densification takes place, while pg, related to the
irreversible (increasing) compaction ¢, describes the excess pore fluid pressure
developing in the medium as permanent granular rearrangement caused by
shearing progresses. As follows from Eq (2.19), the excess pore pressure p,
gradually reduces the effective pressure 7 from its initial magnitude, P, say,
in the pre-compacted state, until the effective pressure state in the medium
reaches the liquefaction condition 7 = 0.

In soil mechanics it is commonly assumed that the four compressibilities
satisfy the inequality x; < ky < Ky < k. Usually k, < K, for saturated
sands, and therefore the approximation k, = 0 is often applied, with which

Eq (2.20); simplifies to
Ky

_ c
Pg = nnfng (2.21)
Sometimes it is also assumed that the undrained compressibility k, is related
to the intrinsic pore fluid compressibility ks through k, = nks, which leads
to a further simplification

c

Pg = £ (2.22)

K
The above formula is the relation proposed by Martin et al. (1975), and has
usually been applied in engineering applications, particularly in cases in which
the undrained compressibility k, is not known.

The constitutive response of a saturated sand is described within the fra-
mework of the compaction theory for granular media (Morland, 1993). In this
model the evolution of both irreversible compaction and shear strains is de-
scribed in terms of a time-independent loading parameter £, which increases
monotonically as shearing takes place, but remains constant when purely iso-
tropic strains occur. This parameter, representing an accurnulating deviatoric
strain, is defined by

e =L () =\ Lz aEy) (223)

Here the summation convention over repeated subscripts is applied. The cur-
rent strain state in the medium is described with the help of the following
scalar measure

1 . 1. .
1/} = 5 tr (5)2 = 561']'61']' (224)

which is the second deviatoric strain invariant. The elastic strains are deter-
mined by hypoelastic relations. The elastic compression £¢ is governed by Eq
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(2.16), which in differential form becomes

de® dp (n — nu) de‘ (2.25)

a &
although the rate form cannot be used during purely isotropic deformation
when ¢ remains constant. The elastic shear strains obey the hypoelastic shear

law
26(5) % = %
¢ d¢
where the shear modulus G is assumed here to depend on the current state
through the effective pressure 7 only, but in general G could also depend on
other scalar measures such as the current deformation ¢, or the deviatoric
strain or stress tensor invariants.

The volume compaction ¢ and irreversible deviatoric shear strains &°
are governed by evolutionary laws, which describe the progress of irreversible
strains with the increasing loading parameter ¢ by means of the following
differential equations

C
(fii& = D(e% ) % = T(e, ¢)e (2.27)
D and T are material functions which incorporate the dependence of the
evolution rates on the current compaction &° and the current strain state
measure 1. In separable forms these functions are defined by

D = aR(e°)H(¢) T = bR(eVH($)S(p)p~>  (2.28)

where the functions R, H and S are dimensionless, positive and normalised
by

K—'K/‘g

(2.26)

R(0) = H(0) = S(0) = 1 (2.29)

and a and b are positive constants. The four functions G(p), R(e¢), H(¢) and
S() along with the constants a and b can be determined experimentally.
In the present work we use the material functions which were obtained by
correlating the selected model (B) from Morland et al. (1993) with data from
tests carried out on the loose Leighton Buzzard sand. These functions are as
follows
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where
H(y) = H(/39) S() = 5(/39)
(2.31)
90) = 55G(7) 90 =30
and the normalising stress and strain units are
p* =10% Pa e* =0.01 (2.32)

The coefficients of the functions (2.30) are shown in Table 1 {c¢f Morland and
Staroszczyk, 1998).

Table 1. Compaction model coefficients

m] tm | hw [ sm [ g
1 10.9850 | 0.2711 0.5667 0.7169
0.8938 | 0.5731 | —4.9571 @ —0.1924
1.3061 | 0.4299 | "~ 3.7706 0.0564
1.1841 | 0.7044 3.3436 | —0.0004
0.8597 | 0.8735 | —2.7056 0.0014 |

ST W N

3. Compaction and pore pressure generation due to Love wave
propagation

As a Love wave propagates in the z,-direction through the sand layer (see
Fig.1), shearing in the Oz;z7 and Oz9x3 planes takes place. There are no
normal strains in the horizontal z,- and z-directions, since only shear elastic
deformations are induced by the SH wave. The only non-zero normal strain is
that in the vertical direction z3 due to the permanent settlement of the sand.
Thus, the strain tensor € and the associated deviatoric strain tensor € are

0 €12 0 1 —E&33 3612 0
€ = €91 0 £93 £=— 3621 —E£33 3623 (3.1)
0 €32 €33 0  3e3z 233

It should be noted, however, that the elastic and compaction strain tensors
e® and €° do have non-zero lateral components, but they balance one another
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to maintain zero total strains. Hence, the elastic strain tensor €€ and its
deviatoric part £° have the forms

€l €fp 0 1| Eli—es 3 0
£°=| €5 €5y €53 e = 3 35, €f1 — €33 353
0 €5 €3 0 35, 2(e83 — €f1)
(3.2)
and the compaction strain tensors ¢ and £° have analogous forms to £¢ and
£°, respectively.

The stress field consists of cyclic shear stresses generated by the wave
passage and normal stresses due to the soil’s own weight and the lateral con-
straints. While the vertical normal stress o33 has a static character and does
not change with time, the lateral normal stresses ¢;; and o929 vary with time
as the material compacts. Accordingly, the components of the stress tensor o
and the associated deviatoric stress tensor ¢ are given by

ot o2 0 o1y — 033 3012 0
o= | o0 O 093 o=3 3091 o1 — 033 3093
0 Jg32 033 0 30’32 2(0’33 — O’H)

(3.3)
In the above strain and stress tensor forms (3.1) + (3.3) it has been assumed
that there is lateral symmetry in the sand response throughout the densifica-
tion process, expressed by €§; = €5, €], = €55, and o1; = 092. However, the
latter relations hold only if such symmetry exists in the initial, pre-compacted
state, cf Morland (1993). Here it is assumed that prior to the soil shaking the
sand is in its natural state, i.e. all the stresses are entirely due to gravity, and
therefore the above-postulated symmetry is the case in the present analysis.
In view of the deviatoric strain tensor components (3.1)s, Eq (2.23) defining
the loading parameter ¢ yields

1
(dé)? = (de§, + defy)? + (desy + desy)? + g(dﬁaa)2 (3.4)
and the state parameter 1, defined by (2.24), becomes

1
) =€y +e5y + 3553 (3.5)
The strain rate relations (2.25) + (2.27), governing the elastic and irreversible
response of the saturated granular medium, provide the following incremental
forms
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. 2
Qdffl + dE§3 + B(Qdf(il + dfg:;) = é‘liud(fu

dé‘fl - d653 = 'ydou

2deS, + deSy = Dde deSy = Te1pde (3.6)
desq = TeoadE deSy — def) = Tegzdé
with )
K — Ky _
B = = — 3.7
pa— 1(P) = 55 (3.7)

and the lateral constraint is

From Egs (2.19) and (2.20), the effective pore pressure increment is determined
by

Ky — Ks Ky — Kg
=1 — — c .
B = e e (3:9)

where the mean pressure increment is
1 2
dp = §(2d011 + dogz) = gdou (3.10)

since do3zz = 0 due to the assumed static character of the vertical stress o33.

Egs (3.6) and (3.8) constitute a system of seven equations in seven in-
crements de§), de§, de§,, des, de§,, de§3 and doy . These equations can
be rearranged to express the individual components in terms of the loading
parameter increment d¢, thus

deSy — m{,\[(m _1)D — 2Teys) + 2g(Tess — D)}dé
deSy = %(D - 2Tegs)de deSy = Te1pdt (3.11)
deSy — Tegydé dovi = QKfi ~(Tegs ~ AD)d
where
A= Tu Tl A= (3.12)

K — Kg Ky
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and g(P) is defined by Eq (2.31)3. The total strain increment dess is given by

(AAD + 2gTe33)d¢ (3.13)

1
e = oG
Eqs (8.11), however, cannot be directly applied to determine the strain and
stress increments, since the loading parameter increment d¢, defined by Eq
(3.4), involves the strain increments de$,, deS; and dess yet to be found;
i.e. we have a system of non-linear algebraic equations to solve. i1 order to
solve this system, Eqs (3.11)4, (3.11)5 and (3.13) are substituted into Eq (3.4),
which transforms the problem to the solution of a single non-linear algebraic
equation for d¢ of the form

(d)? (1-a? a3 ~ £ a3) ~24t (o1 1y +andess) — [(def)? +(de)?] = 0 (3.14)

where

1
A+2g

a; = Tejq as = Teog a3 = (MAD + 2§T£33) (3.15)
and the elastic shear strain increments de§, and de§; are prescribed qu-
antities, determined by the assumed wave field. In order to describe a valid
constitutive response, Eq (3.14) has to yield a positive d¢ for any strain and
stress configuration. This imposes restrictions on a;, ag and a3, and hence
on the compaction model response functions R, H, S and G and the con-
stants a and b. Having determined d¢ from Eq (3.14), all the strain and
stress increments are given by Eq (3.11), and then the effective pore pressure
increment dp is defined by Eqs (3.9) and (3.10).

4. Illustrations

The problem under consideration has been solved approximately by me-
ans of the finite element method; the main points of the applied numerical
scheme are presented in the Appendix. Calculations have been carried out for
a layer of water saturated sand of thickness H; = 20m, overlying an ela-
stic and impermeable bedrock. The following data, corresponding to the loose
Leighton Buzzard sand, were used in the simulations: intrinsic sand density
ps = 2.6 - 103kgm™3, initial porosity m = 0.4, earth pressure coeffi-
clent Ky = 0.5 (needed to calculate the static mean pressure due to the
soil own weight). The adopted compressibilities were: x = 0.62 - 1078 Pa~!,
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ky = 0.2-107°Pa!, k =0.5-1072Pa~!, k, = 0. The sand shear modulus
at 7 = 0 was Go = 8.25 MPa (which corresponds to go = 0.0341) and,
with the coefficients listed in Table 1, G varied approximately linearly within
the range 0 < 7 < 0.5MPa to reach the magnitude 85 MPa at the upper li-
mit. In the compaction model, apart from the coeflicients included in Table 1,
the constants a = b = 0.1 were used. A ground water table was assumed
to lie 2m below the free surface of the sand deposit. The bulk density and
shear modulus of the bedrock were, respectively, p, = 2.2 - 103kgm~3 and
G, = 100 MPa. For numerical reasons, the underlying half-space was model-
led as layer of the finite thickness Hy = 200 m, which was about 3.4 times the
initial Love wavelength. The simulations were conducted for a wave of angular
frequency w = 12.57rad/s, and it was assumed for simplicity that the wave
energy was constant during an earthquake.

W.T.

Depth [m]

15F

14s

20

1 1 1
0 0.2 0.4 0.6 0.8 1.0
Pore pressure ratio

Fig. 2. Excess pore pressure generation history for different initial free surface
acceleration amplitudes ao (W.T. denotes the ground water table level)

Fig.2 illustrates the variation of excess pore water pressures with time
across the sand layer. The computed pore pressures p, are normalised with
respect to the sum of initial (static) effective pressure P, and the pressure p,
generated during the sand compaction, i.e. the pressure ratios py/(Py + P,)
are plotted. The presented results correspond to a wave which generates at
the start of shaking a maximum ground acceleration ag = 0.1¢ (0.91 ms~2) at
the free surface z3 = —H. It is seen that the pore pressures develop in a very
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Fig. 3. Development of liquefaction for different initial free surface acceleration
amplitudes ag

0.02 ¥ T — T =T T T T =

0.01f
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Fig. 4. Free surface horizontal displacement history for two initial acceleration
amplitudes: (——) ag =0.1g; (- —-) ag = 0.2¢g
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regular manner throughout such an earthquake, and the liquefaction (which
corresponds to the pore pressure ratio equal to unity) starts directly under
the ground water table, where the soil shear strength, related to the effective
pressure magnitude, is much smaller than at greater depths. The regular cha-
racter of the pore pressures build-up differs from that in the Rayleigh wave
case (cf Staroszczyk, 1996), in which the pore pressure development rates vary
more dramatically, both in time and space.

In Fig.3, closely related to the previous one, the development of liquefied
zones with time and depth is shown for different initial free surface acceleration
amplitudes ag. Again, it is observed that the range of liquefied soil increases
monotonically with time. The highest rate of liquefaction occurs immediately
after the onset of liquefaction near the water table, and the rate gradually de-
creases as the liquefaction front moves through the deeper region of increasing
shear strength.

Fig.4 illustrates the free surface horizontal displacement history for diffe-
rent magnitudes of the initial acceleration ag. It can be seen that the predicted
increase in the displacement amplitudes as the ground shaking progresses is
relatively small. It should be noted, however, that in the model applied here
no soil strength loss takes place once the ground liquefaction has occurred,
and the residual (i.e. at 7 = 0) shear moduli are used to model the post-
liquefaction behaviour of the soil.

0.60 T T T T T

0.50

Phase velocity ratio

0.45

0.40

0.35

0.30 1 L L i ;
0

Fig. 5. Variation of Love wave phase velocity with time for different initial free
surface acceleration amplitudes ag
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Finally, Fig.5 shows the variation of the wave phase velocity with time and
demonstrates the progressive weakening of the sand layer as a whole. The Love
wave phase velocity ¢ = w/k is normalised with respect to the shear wave
velocity in the underlying half-space c¢o = /G./p;, i.e. the ratios c¢/co are
plotted in the figure.

5. Conclusions

In this paper the problem of dynamic response of a water-saturated sand
layer to cyclic loading induced by a Love wave passage has been treated. The
analysis of the pore water pressure generation and soil liquefaction phenomena
has been pursued by applying a compaction theory of saturated granular mate-
rials. The results of numerical simulations, carried out for data corresponding
to a loose sand, have shown that strong ground motions of magnitudes typical
for earthquakes can give rise to extensive ground liquefaction in a saturated
sand deposit within several seconds following the start of shaking. Compared
to the related problem of Rayleigh waves propagation, the pore pressure ge-
neration and liquefaction phenomena due to the Love waves action develop
more regularly, without significant changes in time rates during an earthqu-
ake. Owing to the relative simplicity of the adopted constitutive laws, and the
transformation of the plane wave propagation problem into a one-dimensional
space problem, the proposed method avoids many numerical difficulties inhe-
rent in more complex approaches, such as plasticity models. Therefore, the
presented method provides a useful theoretical tool for assessing the liquefac-
tion potential of saturated sand deposits, which can be applied not only in
the case of seismic loading, but also in other engineering problems involving
dynamic loads.
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A. Appendix

The plane wave propagation problem has been solved numerically by the
use of an incremental step-by-step method in time and the finite element
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method in space variables. The problem discussed can be transformed into
a one-dimensional space problem by applying a method proposed by Lysmer
(1970), and followed by Sawicki and Staroszczyk (1995) and Staroszczyk (1996)
to analyse the propagation of Rayleigh waves. In Lysmer’s method the plane
domain is first discretized by using a mesh of rectangular finite elements,
and then, by considering a limit case of zero element horizontal spacings, the
problem is subsequently reduced to a one-dimensional space problem.

In this paper we apply a more straightforward approach, in which the
problem is transformed to an equation in one space variable before the discre-
tization is carried out. To this end let consider the momentum equation in the
zo-direction

3021 3023 3211

_ 0 A,
5z, oz Por (A1)

where p is the medium density. By virtue of Eq (2.26), the shear stresses are
o9 = G(0u/0z1) and o093 = G(Ou/0z3), and hence Eq (A.1) leads to the
relation

=pos (A.2)

&y H%u
G5+ 5a2) = P

On account of the assumed form of the displacement field (2.1), determining
the Ou/Ox, and Ou/0t derivatives, the latter equation becomes

(k*G — w*p)ug = G%z—;; (A.3)

The function wug(z3) is approximated by means of the formula
up(z3) ~ Pi(z3)w; (A.4)
where @; (i = 1,...,N) are shape (interpolation) functions, w; are nodal

displacement amplitudes, and N is the total number of discrete points. Now,
Eq (A.3) can be transformed into a set of algebraic equations by applying the
weighted residual (Galerkin) method, which allows the adopted approximation
to satisfy Eq (A.3) in an integral mean sense. Accordingly, by premultiplying
Eq (A.3) by @, and integrating over the spatial domain §2, one obtains (after
the use of Green’s theorem and insertion of the boundary conditions (2.2)) the
following matrix relation

(K= w™™)w =0 (A.5)
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where w = [wy,...,w;,...,wy]. The entries in the stiffness and mass ma-
trices, K and M respectively, are defined by

i,40,) ),

Kij :!G(l':s)(k%i@j + T2, 42y M;; :Q/p(:r;,)diidij dz3

(A.6)
In the case of linear shape functions @;, the element stiffness and mass ma-
trices are

k2b 1 k%b;
KC_G. Tl b- Tl Me_pjbj 2 1 A7
3T ka 1 k2b i T 1 2 ( ’ )

1
‘Blb;_?fl+b;

where G; and p; are the shear modulus and density in the jth element, and
b; is the element size. '

Eq (A.5) defines the generalised eigenvalue problem for the real and sym-
metric matrices K and M. Since in the problem considered the angular
frequency w is a prescribed parameter, the eigenvalue problem has to be so-
lved iteratively in order to determine the wavenumber k entering the stiffness
matrix K. From among the real eigenvectors w;, the one related to the lowest
eigenvalue is chosen as that corresponding to the propagating surface wave.
This fundamental wave mode is then normalised with respect to a selected
wave parameter (such as the free surface acceleration amplitude, total wave
energy, etc.), which determines the elastic shear strains, necessary to evaluate
the compaction strain and pore pressure rates in the current strain and stress
state, as described in Section 3.
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Uplynnienie gruntu w warstwie nawodnionego piasku wywotane
propagacja fal Love’a

Streszczenie

Praca po$wiecona jest plaskiemu zagadnieniu propagacji fal Love’a w warstwie
piasku nasyconego woda, znajdujacej sie na polprzestrzeni oérodka sprezystego. Ob-
cigzenia dynamiczne spowodowane przejéciem fali wywoluja nieodwracalne odksztal-
cenia w szkielecie gruntowym, ktére sg przyczyng zwiekszenia ci$nienia w wodzie wy-
pelniajgcej pory odrodka i tym samym zmniejszenia naprezen efektywnych w gruncie,
co w koficowym przypadku moze prowadzi¢ do uplynnienia podloza. Proces generacji
ciénienn porowych jest analizowany na bazie teorii zageszczania nawodnionych oérod-
kéw granulowanych. Wyniki obliczen numerycznych, przeprowadzonych w oparciu
o metode elementéw skonczonych, ilustrujg ewolucje ciSnient porowych, rozwdj strefy
uplynnienia w podlozu oraz zmiany w czasie przemieszczern powierzchni swobodnej
warstwy.
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