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We consider the problem of blood flow in a catheterized artery and in the presence of
atherosclerosis, which is chosen based on the available experimental data. The atherosclerosis
is a condition where an artery wall thickens as a result of fatty materials such as cholesterol.
The use of catheter is of immense importance as a standard tool for diagnosis and treatment
in a patience whose artery is affected adversely by the presence of atherosclerosis within the
artery. The blood flow in the arterial tube is represented by a two-phase model composing
a suspension of erythrocytes (red cells) in plasma. The coupled differential equations for
both fluid (plasma) and particles (red cells) are solved theoretically subjected to reasonable
modeling and approximations. The important quantities such as plasma speed, velocity of
red cells, blood pressure force, impedance (blood flow resistance) and the wall shear stress
are computed for different values of the catheter size, axial location of atherosclerosis and
the hematocrit due to the red cells-plasma combination of the blood flow system.
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1. Introduction

Diseases in the blood vessels and in the heart, such as heart attack and stroke, are the major
causes of mortality worldwide. The underlying cause for these events is the formation of lesions,
known as atherosclerosis. These lesions and plaques can grow and occlude the artery and hence
prevent blood supply to the distal bed. Plaques with calcium in them can also rupture and
initiate the formation of blood clots (thrombus). The clots can form as emboli and occlude the
smaller vessels that can also result in interruption of blood supply to the distal bed. Plaques for-
med in coronary arteries can lead to heart attacks and clots in the cerebral circulation can result
in the stroke. There are a number of risk factors for the presence of atherosclerotic lesions. The
common sites for the formation and development of atherosclerosis include the coronary arteries,
the branching of the subclavian and common carotids in the aortic arch, the bifurcation of the
common carotid to internal and external carotids especially in the carotid sinus region distal
to the bifurcation, the renal arterial branching in the descending aorta and in the ileofemoral
bifurcations of the descending aorta. The common feature in the location for the development
of the lesion is the presence of curvature, branching, and bifurcation present in these sites. The
fluid dynamics at these sites can be anticipated to be vastly different from other segments of
the arteries that are relatively straight and devoid of any branching segments. Hence, several
investigators have attempted to link the fluid dynamically induced stress with the formation
of atherosclerotic lesion in the human circulation. By assuming the artery to be circularly cy-
lindrical in shape, Mishra and Panda (2005) studied the flow of blood in stenosed artery for
the Casson type fluid. Young and Tsai (1973) discussed some characteristics of flow of blood in
stented arteries. The blood vessels carry blood from the heart to all the organs and tissues of
the body including brain, kidneys, gut, muscles, and the heart itself. Venkateswarlu and Rao
(2004) studied an assumed oscillatory form of the blood flow through an indented tube in the
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presence of steady single stenosis with a very simple shape. They used the so-called Einstein
model for the viscosity of the blood but for a variable volume flow rate and the prescribed value
for the magnitude of the pressure gradient. Srivastava et al. (2010) studied arterial blood flow
through an overlapping stenosis (Mishra and Panda, 2005) by using a Casson type fluid flow.
They calculated the impedance and shear stress for different stenosis height. Riahi et al. (2011)
investigated arterial blood flow in the presence of an overlapping stenosis using the variable
viscosity model due to Einstein for the blood flow. All the investigations described above were
for the cases where no catheter was inserted into the artery, although there have also been a
number of studies of the blood flow systems in catheterized arteries (Kanai et al., 1970; Back,
1994; Back et al., 1996; Srivastava and Rastogi, 2010).
In all the studies that have been carried out so far and investigated arterial blood flow system,

and some of which were listed in the previous paragraph, the shape of stenosis was based on the
assumed analytical description due to some forms of certain functions. In the present study, we
apply for the first time an experimentally based form (Back et al., 1984) for the atherosclerosis
shape in the artery (Fig. 1), where the blood is represented by a two-phase macroscopic model.
In Fig. 1, we provide a dimensional shape function R(z) versus the dimensional value of the axial
variable of an artery based on the actual dimensional data determined from the experimentally
values of the cross-sectional area of the artery of a human (Back et al., 1984). Here, as in more
realistic cases, the blood flow is composed of a suspension of erythrocytes (red cells) in plasma.

Fig. 1. Experimentally collected data for the atherosclerosis (Back et al., 1984)

2. Formulation and analysis

We consider the problem of axisymmetric flow of blood in a catheterized artery in the form
of a circular cylindrical annulus tube with the outer radius R0 (radius of the artery) and the
inner radius r1 (radius of the catheter) and in the presence of an atherosclerosis whose shape
(Fig. 1) is determined from the experimentally collected data (Back et al., 1984). The artery
length is assumed to be sufficiently large in comparison to its radius so that the end effects can
be neglected.
The two-phase flow system in a catheterized artery is based on the original governing equ-

ations for the mass conservation and momentum (Batchelor, 1970) for both fluid plasma and the
suspended particles (red cells) as their steady axisymmetric form in the cylindrical coordinate
system with the axial direction along the co-axial direction of the catheterized artery are given
by (Srivastava and Rastogi, 2010)
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Here ∇2 ≡ [(1/r)(∂/∂r)(r∂/∂r) + ∂2/∂z2] is the Laplacian operator, r (r1 ¬ r ¬ R0) and
z are the cylindrical coordinates with the axial variable z along the tube axis and the radial
variable r along the direction perpendicular to the tube axis, subscripts f and p refer to fluid
(plasma) and particle (erythrocyte) quantities, respectively, u and v are the axial and radial
velocity components, respectively, ρ is density, P is pressure, C is the volume fraction density of
the particles, refers here as the hematocrit % in the blood, and the expressions for the viscosity
of suspension ?s and the drag coefficient of interaction S′ have been chosen to be (Srivastava,
1996; Srivastava and Srivastava, 2009)

µs =
µ0
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[
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1107
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a20
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(2.3)

where µ0 is the plasma viscosity, a0 is the radius of a red cell and T is absolute temperature
measured in Kelvin. Based on the reasonable suggestion by Charm and Kurland (1974), the
expression for plasma viscosity given by (2.3)1,2 is accurate up to 60% hematocrit (C = 0.6),
and expression (2.3)1,2 was derived first by Tam (1969) representing classical Stokes drag valid
for a small particle Reynolds number.

We consider governing equations (2.1)-(2.3) for the blood flow in the axisymmetric form and
use the cylindrical coordinate system with r as the radial variable, z as the axial variable and
with the z-axis along the axis of cylindrical artery tube, where a catheter in the form of a tube
with a small radius but along the axis of artery is placed in the artery. The inside boundary
of the artery is partially structured along a distance L0 due to the presence of atherosclerosis
(Fig. 2). In Fig. 2, where the flow system and the geometry is shown in the cylindrical annulus,
the catheterized arterial tube is given over a distance L = 2d + L0 in the axial direction, δ is
the maximum height of atherosclerosis into the lumen, which appears at a particular location
in the axial direction. In particular, we refer to a location corresponding to a value very close
to the maximum height δ of the atherosclerosis as the critical height such as the location at a
distance z = d+ L0/2 from the origin of the coordinate system.

Fig. 2. Flow geometry in a catheterized artery with atherosclerosis
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We now first non-dimensionalize governing equations (2.1)-(2.3) using U , L0, R0, δ and
µ0UL0/δ

2 as scales for the velocity, axial length, radial length, rate of radial change and pressure,
respectively, where U is the maximum velocity for the unidirectional flow in a cylindrical annulus
(White, 1991). Next, we simplify the dimensionless forms of governing equations (2.1)-(2.3) under
the reasonable conditions for mild atherosclerosis with δ/R0 ≪ 1, unidirectional flow assumption
(White, 1991) where the axial velocity component dominates over the radial velocity component,
and subjected the assumptions that the inertial terms in governing momentum equations (2.1)1,2,
(2.2)1,2 are small and Re(δ/L0) ≪ 1. Under these conditions and assumptions (Srivastava and
Rastogi, 2010), the pressure is only a function of z and (2.1)-(2.3) lead to simpler equations.
These simpler equations in non-dimensional forms are given below using the same symbols for
the variables as their dimensional ones for simplicity of notations
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(
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(2.4)

where β = δ/a0. Equations (2.4) are subjected to the following no slip boundary conditions

uf = 0 on r = r1 and uf = 0 on r = R(z) (2.5)

Using (2.4)2.3 for (uf −up) in (2.4)1 and integrating twice with respect to r and making use
of the boundary conditions given in (2.5), we find
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dz

[
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ln R
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]

(2.6)

The expression for the axial velocity for the red cells is then found from (2.4)2,3 in terms of the
axial velocity for the plasma in the form

up = uf −
1

Sβ2
dp

dz
(2.7)

Since both expressions for the axial velocity of plasma and red cells given by (2.6) and (2.7) are
in terms of the unknown pressure gradient (dP/dz), we obtain an expression for the pressure
gradient by assuming a prescribed volume flow rate in the annulus given by

Q = 2π

R
∫
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Using (2.6) and (2.7) in (2.8) and solving for the pressure gradient, we find
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The flow resistance, referred to as the impedance λ, is given by

λ =
∆P

Q
(2.10)

where ∆p is the pressure drop across the length 1 + 2b given by

∆P = P (0) − P (1 + 2b) =
1+2b
∫

0

dP

dz
dz (2.11)

and b = d/L0.
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From (2.6), we find the wall shear stress τw to be
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and the shear stress force F over the surface of the artery from z = 0 to z = 1 + 2b is then
given by

F = 2π

1+2b
∫

0

τw dz (2.13)

The value of the wall shear stress at a different location where the atherosclerosis is located can
then be found from (2.12) for a specific z value.

3. Results and discussion

We carried out numerical calculations of various expressions obtained in the previous section
for several different values of the hematocrit parameter C, the radius of the catheter and over
a range of values of the axial and possibly radial variables. For all the calculations, we set the
volume flow rate Q = 1, b = 0.5 and β = δ/0.004, where δ = 1−minR.
Figures 3-5 present results for dP/dz (axial rate change of the blood pressure in the cathe-

terized artery). Figure 3 presents the pressure gradient versus the axial variable for the catheter
radius= 0.2 and for several values of the hematocrit parameter. It can be seen from this figure
that the blood pressure gradient is negative implying that the blood pressure force is in the
direction of the positive z-axis. The blood pressure force does not vary with respect to the
axial variable at the axial locations outside the atherosclerosis zone. However, the magnitude
of the blood pressure force increases with the atherosclerosis effect in the atherosclerosis zone.
The magnitude of the pressure force also increases with the hematocrit effect. These results are
physically and bio-medically reasonable since higher percentage of the blood cells amount in the
plasma as well as more severity of the atherosclerosis can intensify the blood pressure force in
the artery.

Fig. 3. Axial rate of change of blood pressure versus axial variable for catheter radius=0.2 and several
values of hematocrit parameters

In Figs. 4 and 5, similar results to those in Fig. 3 are presented but for higher values of
the catheter radius. It can be seen that the magnitude of the blood pressure force in the artery
increases with the catheter radius, which again makes sense physically since higher catheter
radius implies smaller annulus gap leading to a higher value of such a force.
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Fig. 4. The same as in Fig. 3 but for catheter radius=0.4

Fig. 5. The same as in Fig. 3 but for the catheter radius= 0.5

Figure 6 presents the axial velocity of the blood plasma versus the axial variable for the
hematocrit parameter= 0.4, the radial variable= 0.6 and for two different values of the catheter
radius. It can be seen from this figure that the plasma velocity is positive, which makes sense
since the blood pressure force is in the positive direction of the axis of the catheterized artery
system. The plasma velocity is constant outside the atherosclerosis zone, while it is variable
and its magnitude increases with the atherosclerosis effect. This result is reasonable since higher
atherosclerosis effect increases the strength of the pressure force leading to higher blood plasma
speed. The plasma velocity also increases with the catheter radius, which is reasonable since
higher catheter radius decreases the annulus gap leading to higher plasma speed. Our additional
generated data for the plasma velocity versus different values of the hematocrit percentage
indicated insignificant changes of the plasma speed with respect to the hematocrit effect.

Fig. 6. Axial velocity of plasma versus the axial variable for C = 0.4, r = 0.6 and r1 = 0.4

Figure 7 present the values of the plasma velocity versus the radial variable for the catheter
radius= 0.2, the axial value of z = 1 and the value of 0.4 for the hematocrit parameter. It can
be seen from this figure that the plasma velocity satisfied its zero no-slip conditions at the two



Two-phase flow in a catheterized artery with atherosclerosis 415

boundaries of the catheterized artery system, while it has a maximum value at some location in
the annulus away from the boundary.

Fig. 7. Axial velocity of plasma versus , r (r1 ¬ r ¬ R) for r1 = 0.2, z = 1 and C = 0.4

Figure 8 presents the axial velocity of the red cells versus the axial variable for a fixed radial
location (r = 0.6), for the value of 0.4 for the hematocrit parameter and for two values 0.2 and 0.4
of the catheter radius. As can be seen from this figure, the red cells velocity is higher for higher
value of the catheter radius. The speed of the red cells is constant outside the atherosclerosis
zone, but it varies significantly in the atherosclerosis zone and increases significantly at the
locations where the atherosclerosis is more severe.

Fig. 8. Axial velocity of red cells versus the axial variable for r = 0.6, C = 0.4 and two different r1
values 0.2 and 0.4.

Fig. 9. Axial velocity of the red cells versus the radial variable for z = 1, C = 0.4 and r1 = 0.2

Figure 9 presents the speed of the red cells versus the radial variable for z = 1, C = 0.4 and
r1 = 0.2. It can be seen from this figure that the highest speed of cells is near mid-region of the
annulus, the rate of increase of the speed with respect to the radial variable is higher near the
catheter, while the rate of decrease of the speed is smaller near the artery wall. Our additional
generated data for the variation of the velocity of the red cells with respect to the hematocrit
parameter indicated that the magnitude of such a velocity increases with C, even though such
increase is not very significant.
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Figure 10 presents the impedance versus the hematocrit parameter for values of 0.2, 0.4
and 0.6 of the catheter radius. It can be seen from this figure that the impedance increases with
respect to the hematocrit parameter especially noticeably for C < 0.2 and C > 0.4. Thus, the
flow resistance an increases with increase in the hematocrit character of the blood especially for
a relatively small percentage of the red cells or a large percentage of such cells in the plasma.
The flow resistance also is higher if the catheter radius is larger.

Fig. 10. Impedance versus C for r1 = 0.2, 0.4 and 0.6

Figure 11 presents the wall shear stress versus the axial variable for the value of 0.4 for the
hematocrit parameter and for two values 0.2 and 0.4 of the other catheter radius. It can be
seen from this figure that the shear stress increases with the catheter radius. The shear stress
is constant outside the atherosclerosis zone, while it varies with respect to the axial variable
and increases significantly in the atherosclerosis zone, and such an increase intensifies if the
atherosclerosis becomes more severe. Although the shear stress was found to increase with the
hematocrit parameter, such an increase was found to be weak.

Fig. 11. Wall shear stress versus z for C = 0.4 and r1 = 0.2, 0.4

Fig. 12. Wall shear stress versus catheter radius for z = 1 and C = 0.4

Figure 12 presents the shear stress versus the radius of the catheter for z = 1 and C = 0.4.
It can be seen from this figure that the shear stress increases with the radius of the catheter, and
its rate of increase with respect to the catheter radius also increases with the catheter radius.
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4. Conclusion

We investigated the catheterized arterial blood flow in the presence of the atherosclerosis effect.
Our formulation was based on a two-phase blood fluid flow model of combination of plasma
and red cells. We calculated steady cases for important quantities, such as the pressure gradient
force, plasma velocity, red cells velocity, impedance and wall shear stress in the presence of the
steady atherosclerosis effect, which is taken into account from the available experimental results
for a human. These quantities were evaluated at several values of the hematocrit parameter C,
the axial variable z or the radial variable r and the catheter radius. We found, in particular,
that the pressure gradient force, plasma velocity, red cells velocity and wall stress are significant
in atherosclerosis zone, and they become stronger if the effect of the atherosclerosis is stronger.
These conditions could be relevant to the corresponding conditions for certain patients, which
can require higher care and attention.

The extension of the present paper to the cases of unsteady arterial flow in the presence of
the pulse frequency, whose calculated results turn out to depend on the results of the present
paper, will be presented in a forthcoming paper. Another important extension of the present
study can be for more medically realistic finite systems with cases conforming to more medically
generated data in order to identify the components of arterial blood flow diseases, which can
improve health conditions of the corresponding patients.
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Dwufazowy przepływ krwi w tętnicy ze zmianami miażdżycowymi po wykonanym

zabiegu koronarografii

Streszczenie

W pracy omówiono problem przepływu krwi w tętnicy po zabiegu koronarografii w obecności zmian
miażdżycowych, opierając się na osiągalnych danych z badań klinicznych. Miażdżycą nazywamy stan,
w którym ściana tętnicy pogrubia się do wewnątrz wskutek odkładania się tłuszczy, głównie cholesterolu.
W standardowej metodzie leczenia miażdżycy stosuje się zabieg koronarografii polegający na wprowa-
dzeniu cewnika do upośledzonej tętnicy. W pracy opisano przepływ krwi w przekroju tętnicy za pomocą
dwufazowego modelu odzwierciedlającego zawiesinę czerwonych ciałek krwi w osoczu. Sprzężone, różnicz-
kowe równania przepływu płynu (osocza) i ruchu cząstek (czerwonych ciałek) rozwiązano analitycznie
w stopniu akceptowalnie przybliżonym. Tak istotne wielkości, jak prędkość przepływu osocza, prędkość
czerwonych ciałek, ciśnienie krwi, impedancja (opory przepływu) oraz naprężenia ścinające w ścianie
tętnicy obliczono dla różnych rozmiarów cewnika, osiowego rozkładu złogów miażdżycowych oraz hema-
tokrytu wywołanego dwufazową kombinacją czerwone ciałka-osocze w badanym układzie krwionośnym.
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