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In this paper, sliding mode control (SMC) algorithms are tested for their use in an active
car suspension system. Using the quarter model of the car as an example, the comparison
of the efficiency of the algorithms is made. A continuous and two discrete versions of the
sliding mode control are taken into consideration. The study is limited to finding the rela-
tion between the control parameters and the comfort factor. This is done by analyzing the
response of the model to the harmonic and impulse excitation.
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1. Introduction

The most common types of suspension systems used in automobiles are passives ones. Their
construction is based on several spring and damping elements with constant, linear or nonlinear
characteristics. When designing a passive car suspension, it is necessary to choose the optimal
damping coefficient that would allow both the comfort and safety to be on a high enough level
(Łuczko and Ferdek, 2012). An alternative option is to use suspension which can modify its
properties during ride of the vehicle – namely an active or a semi-active system. In the case of
active suspension, the spring and damping elements are replaced with servomotors. This way
the force generated in the suspension can be used to influence both the comfort and safety of
the ride. Although active suspension systems are more complex and require more energy, they
are more and more often considered and included in designs of modern vehicles.
One of the possible options for the active suspension control is to use a sliding mode control

(SMC) algorithm (Yoshimura et al., 2001; Sam et al., 2004; Lin et al., 2009). The idea of the
algorithm is to guide the model in the state-space, to a specific plane called “the sliding plane”
and to keep it as close to this plane as possible. Therefore, two separate phases of this control
can be listed: the “approach” phase, which lasts until the point describing the dynamics of
the system reaches the switching hyperplane, and the “sliding” phase. In the second phase, the
system is forced to “slide” along a slinging plane up to the desired point by using a discontinuous
control signal. Most often, it is assumed that the sliding plane equation is linear and related to
the regulation error.
The application of the sliding mode control to a physical system is accompanied by the

so-called “chattering” effect (Lee and Utkin, 2007) – high-frequency oscillations which might
cause wear or damage to the actuator. It is therefore essential to eliminate this effect from the
regulation process.
As most of modern control systems are implemented as digital, below a procedure for de-

signing a discrete sliding mode controller (DSMC) for control of a car suspension is presented.
The most important advantages of the digital control are reduction of device cost, possibility to
implement complicated control rules and higher control precision.
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In this study, a quarter model of the car is used for the purpose of testing the efficiency
of damping the vibration by application of different control strategies. The performance factor
includes parameters related to comfort of the ride.

2. Model of the system

The analysis has been performed on a quarter model of the car (Huang and Chen, 2006; Rajeswari
and Lakshmi, 2008; Snamina et al., 2011) consisting of a non-spring-supported mass mw (mass
of the wheel, axle and some elements of the drive transmission) and a spring-supported mass mb
(1/4 of the other mass, mostly the car body). It has been assumed that the road influence on
the wheel can be descibed using a harmonic or impulse kinematic excitation w(t). The analysis
included the influence of the control and disturbance on the behavior of the system. Both the
control and disturbance forces have been assumed to act at the point connecting the car body
and the suspension.
The oscillation of the system around the static equilibrium point can be given by a set of

the two second-order differential equations

mwÿw = −cw(ẏw − ẇ)− kw(yw − w) + cb(ẏb − ẏw) + kb(yb − yw)− u− z
mbÿb = −cb(ẏb − ẏw)− kb(yb − yw) + u+ z

(2.1)

where yw and yb are the displacement of the non-spring-supported and spring-supported mass,
respectively. The parameters kw and cw define the stiffness and damping of the wheel, while kb
and cb are the same for the passive vibro-isolation system.
By configuring the velocities and displacements of both masses to be included in the sta-

te vector x = [yw, yb, ẏw, ẏb]T, Eqs. (2.1) can be written in the form of a first-order matrix
differential equation

ẋ = Ax+B(u+ z) + Fw (2.2)

where

A =




0 0 1 0
0 0 0 1

−(kw + kb)/mw kb/mw −(cw + cb)/mw cb/mw
kb/mb −kb/mb cb/mb −cb/mb




B =




0
0

−1/mw
1/mb


 F =




0
0

kw/mw
0




(2.3)

3. SMC continuous regulation algorithm

Figure 1 shows a block diagram of the system with the sliding mode control (Sam and Osman,
2005; Chen and Huang, 2005; Sam et al., 2008).
In order to increase the ride comfort, the parameters of the regulator are adjusted using the

minimization condition for the variables that describe the movement of the spring-supported
mass. The reduction of the car body vibration can be accomplished by introducing the following
sliding plane

S = Dx (3.1)
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Fig. 1. Block diagram of a continuous SMC

where the transposed vector D is defined as follows

D = [0, κ, 0, 1] (3.2)

This definition of the vector D should provide the minimal displacement x2 = yb and velocity
x4 = ẏb of the spring-supported mass. From the dynamical condition of the ideal sliding motion

Ṡ = Dẋ = D[Ax+B(u+ z) + Fw] = 0 (3.3)

the equivalent (compensation) control ueq(t) is obtained, which after the omission of the excita-
tion and disturbance influence can be written using the formula

ueq(t) = −(DB)−1DAx (3.4)

An additional switching control usw(t) is also included in order to guarantee the stability of the
system. The control usw is discontinuous with the sliding plane set as the switching line. This
control can be calculated from the equation

usw(t) = −Ksw(DB)−1 sgn (Dx) (3.5)

The sliding mode control is the sum of both of these components

u(t) = ueq(t) + usw(t) (3.6)

The sliding control realized in accordance to the algorithm presented above operates by
dynamical compensation of the suspension stiffness and the introduction of additional damping.
The switching component of control keeps the system close to the sliding plane. If the constant
Ksw is large enough, then the system becomes resistant to inaccuracies of the model. In practice,
in order to limit the excessive switching (”chattering” effect) the signum function present in Eq.
(3.5) is substituted by its approximation, e.g. “saturation” function. For the purpose of numerical
calculations performed in this study, an arctangent approximation function has been used.

4. SMC discrete regulation algorithm

Due to the fact that the modern control systems are more often realized using digital devices,
the sliding algorithm presented above needs to be modified. In order to choose the parameters
for the discrete sliding mode controller, the following discrete equations are used (Yu et al., 2004;
Yan and Fan, 2012)

xk+1 = Adxk +Bd(uk + zk) + Fdwk (4.1)

where

Ad = Φ(Ts) Bd = ΨB Fd = ΨF (4.2)
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with Ts being the sampling time. The matrix functions Φ and Φ are defined as

Φ(τ) = exp(Aτ) Ψ = [Φ(Ts)− I]A−1 (4.3)

The sliding plane can be chosen in the similar form as before (3.1)

Sk = Dxk (4.4)

By introducing

fk = Bdzk + Fdwk (4.5)

from the condition

Sk+1 = Dxk+1 = D(Adxk +Bduk + fk) = 0 (4.6)

the equivalent control can be found

ueqk = −(DBd)−1D(Adxk + fk) (4.7)

Usually, fk component, whose value changes depending on the unknown excitation and di-
sturbance, can be omitted, and the equivalent control component can be calculated from the
equation

ueqk = −(DBd)−1DAdxk (4.8)

In order to eliminate the component fk from Eq. (4.7), an assumption is made that its value
varies only slightly from the value in the previous step, giving fk ≈ fk−1. By using additionally
discrete state equation (4.1), it can be shown that

fk ≈ fk−1 = xk −Adxk−1 −Bduk−1 (4.9)

After transformation, the final form of the equation describing the equivalent control can be
written

ueqk = uk−1 − (DBd)−1[(DAd +D)xk −DAdxk−1] (4.10)

The switching component usw is defined by a similar equation as Eq. (3.5)

uswk = −Ksw(DBd)−1 sgn (Ddxk) (4.11)

where the final control is the sum of both components.

Fig. 2. Block diagrams of the discrete system (AD – analog/digital converter, DA – digital/analog
converter): (a) DSMC, (b) DMSMC

Using numerical calculations, the efficiency of the DSMC regulator (Fig. 2a) with the equ-
ivalent control obtained using formula (4.8) is compared with the efficiency of the modified
DMSMC regulator (Fig. 2b) related to equation (4.10).
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5. Results of numerical calculations

The emphasis of the numerical simulation is placed on finding the influence of the disturbance
on the behavior and efficiency of the continuous SMC, discrete DSMC and DMSMC control-
lers. The following parameter values are chosen for matrices (2.3): mw = 28 kg, mb = 510 kg,
kw = 180000 N/m, kb = 20000 N/m, cb = 1000Ns/m. The analysis is limited to the response
of the system under the harmonic excitation of amplitude a0 = 0.005m and angular frequency
ω = 8.396 rad/s (first vibration mode of the passive system without control) and to the impulse
excitation described in detail later on.
Several dimensionless parameters are introduced: βx, βv, γ, τs and defined using equations:

βx = κxKx, βv = κvKv, γ = Ksw/ω0 and τs = Ts/T0, where: Kx = a0, Kv = ω0a0, T0 = 2π/ω0,
and ω0 =

√
kb/mb correspond to the first vibration mode of the system. The function sgn (S)

present in Eqs. (3.5) and (4.11) is substituted by continuous 2/π arctan(ηS) with η = 100 used
for the calculations.
It is assumed that the disturbance is in the form of a Gaussian white noise of zero average

value and variance of value 25N2 (standard deviation s0 = 5N). An exemplary realization of
this disturbance for the sampling time Ts = 0.05T0 is shown in Fig. 3.

Fig. 3. An example of the disturbance signal

Figure 4 shows the displacement of the spring-supported mass for the continuous SMC,
discrete DSMC, Eq. (4.8), and modified discrete DMSMC regulator, Eq. (4.10). For the discrete
control, the sampling time was Ts = 0.02T0 (τs = 0.02). By comparing the results, one can
notice that in the case of discrete control, the response looks periodic in contrast to the aperiodic
continuous control SMC. On the assumed control parameters, the efficiency of SMC and DMSMC
regulator is comparable.

Fig. 4. Displacement plot: SMC (βx = βv = 1, γ = 0.1), DSMC (βx = βv = 1, γ = 0.001),
DMSMC (βx = βv = 1, γ = 0.001)

The irregularity seen in the response to the SMC regulator is caused by the high sensitivity
of the system to the external disturbance. This fact is supported by Fig. 5 in which the response
to three disturbance signals of different standard deviations s = 5, 10 and 15N is shown (for
s = ns0, n = 1, 2, 3, s0 = 5N). The change in the response to these disturbances is nearly linear
(with linear rise of the disturbance). Although the amplitude of vibration can be attenuated by
increasing the value of parameters βx and γ, setting them too high is undesirable due to the
effect of “chattering”, and also due to the time delay present between the regulator and the
actuator.
In the case of the modified DMSMC digital controller, the response to the disturbance

is definitely lower. When using the same values of n that define the disturbance as before,
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Fig. 5. Influence of the disturbance on the displacements – SMC (βx = βv = 1, γ = 0.1)

the difference between the responses is practically undetectable. Therefore, Fig. 6 shows the
displacement for n = 1 and n = 20 (with τs = 0.02). Even with twenty times higher value of s
(s = 5N and 100N), the differences are still minor, which means that the DMSMC system is
resistant to the disturbance.

Fig. 6. Influence of the disturbance on the displacements – DMSMC (βx = βv = 1, γ = 0.001)

The efficiency of the discrete regulator is decreased when the sampling time increases
(Fig. 7). The presented displacements are obtained for the DMSMC with different sampling times
τs = 0.01, 0.02, 0.03 and βx = βv = 1, γ = 0.001 and s = 5N. The relation of the amplitude
of vibration with the sampling time is nonlinear, e.g. a change in τs from 0.01 to 0.02 leads
to the amplitude rise by ten times. When rise of τs is continued, the amplitude of vibration is
changed by a smaller factor. On the other hand, too small sampling time is undesirable due to
computation time taken for the realization of digital control.

Fig. 7. Relation between the sampling time and displacements – DMSMC (βx = βv = 1, γ = 0.001)

Figure 8 shows the displacements (Fig. 8a – for βx = 0.1, 1, 2) and velocities (Fig. 8b – for
βx = 1 only) of the spring-supported mass in the DMSMC system (βv = 1, γ = 0.001, τs = 0.02).
With the rise of value βx, the maximal displacements are decreased but the maximal velocities

and accelerations are increased. In addition to that, the character of vibration is changed, with
more influence of high-frequency component present in the system. For high enough values of βx,
the chattering effect starts to occur.
In order to test the behavior of the vibroisolation system, when crossing an obstacle, analysis

of the response to the impulse excitation has been performed.
To describe the excitation in simulations, the bump “rounded pulse” function has been used.

It is defined as follows (Shekhar et al., 1999)

w(t) =
1
4
h[eη(t − t0)]2 exp[−η(t− t0)]H(t− t0) (5.1)
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Fig. 8. Effect of the parameter βx – DMSMC system (βv = 1, γ = 0.001, τs = 0.02): (a) displacements,
(b) velocities (βx = 1)

whereH(t−t0) is the Heaviside function. Equation (5.1) has continuous first and second derivates
and the maximal value equal to h (Fig. 9). The parameter η defines the sharpness of the impulse.
At η = ωn1 = 8.396 rad/s, the impulse duration is equal to the half of the first vibration mode
period. In numerical calculations, the value h has been chosen to be equal to 0.05m.

Fig. 9. Impulse excitation (γ = 8.396 rad/s, h = 0.05m)

Figure 10 shows the response of the SMC (βx = βv = 1, γ = 0.1) and DMSMC (βx = βv = 1,
γ = 0.001) system to impulse excitation (5.1). In both cases, the rate of displacement reduction
is similar. In the case of the SMC, the damping of the disturbance (Fig. 10a) is slower when
considered in relation to DMSMC, but it is also less steep, see the velocity plot in Fig. 10b.

Fig. 10. Response to the impulse excitation – regulators: SMC (βx = βv = 1, γ = 0.1) and DMSMC
(βx = βv = 1, γ = 0.001): (a) displacements, (b) velocities

In the considered example, if the value of γ is too high (for γ > 0.01, βx = 1), the “chattering”
effect occurs (Fig. 11). Apart from the additional high-frequency oscillations, the changes in the
value are twice as high as for the system with optimally chosen parameters of control (Fig. 10a).
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In addition to that, an increase in the value of βx, causes the possibility of occurring of the
chatter to be higher (at βx > 10, the chattering can be observed for γ = 0.001).

Fig. 11. Displacement plot with chattering (βx = βv = 1, γ = 0.05, 0.1, τs = 0.02)

6. Summary

The analysis of the results allows formulating of the following conclusions:

• In all the considered active systems, the reduction of vibration is well enough, at least
within the range that includes the first vibration mode. As this mode is significant, when
considering vibration of the car body, it should be noted that making use of the presented
regulators greatly increases the driving comfort.

• The continuous SMC regulator, for very high values of parameters βx and γ, is theoretically
more effective than discrete regulators. However, it is more susceptible to disturbances as
well as the time delay present during control.

• From the two presented discrete regulators, the better one is definitely DMSMC. It is
much more resistant to disturbances, and for small sampling times, its performance is
comparable to SMC.

• When adjusting the parameters of sliding mode regulators, the possibility of the “chatte-
ring” effect to occur should be taken into consideration. Values of the regulator parameters
should allow the optimal and regular operation of the regulator without undesirable high-
frequency oscillations.
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The paper presents algorithms of automatic control of an intelligent anti-tank guided missile
(ATGM) with possibility of attacking the target from the upper ceiling and with possibility
of the missile flight through indicated points in space. The polynomial functions are used to
designate the program trajectories. Numerical analysis of the operation of chosen algorithms
is performed. The results are presented in a graphical form. As it results from the conducted
tests, the proposed algorithms of automatic control of ATGM with the use of polynomial
functions work properly during attack on the target from the upper ceiling, for both mobile
and immobile targets.

Keywords: homing, direction algorithm, anti-tank guided missile

1. Introduction

This paper presents a medium-range anti-tank guided missile (ATGM) which is characterized
by high maneuverability of flight, ability to attack a target from the upper hemisphere with the
possibility to apply the feint. The passive guidance limits its tracking possibilities and the target
can be selected from the battlefield during its flight.
High maneuverability of ATGM flight is directly used to bypass obstacles that appear on the

flight trajectory of the missile. A special head is used to detect those obstacles. It is mounted on
the deck of the ATGM, scanning the space in front of the ATGM (Nocoń, 2013). Detecting an
obstacle is done in real time. It allows for a suitable adjustment of the flight trajectory depending
on the appearing obstacles. In the case of occurring terrain obstacles (natural such as hills, and
artificial such as buildings), it is possible to determine permanent points in space which delineate
a safe flight path of ATGM between those obstacles. Introducing a map of the battlefield area
to the on-deck computer of the missile will allow the auto-pilot to autonomously delineate the
optimum flight trajectory to the target. Moreover, thanks to the possibilities of determining the
points of flight, the flight of the missile may be designed in such a way that it reaches the target
along a circular trajectory, for example along a circle and, as a result, attack it from the least
expected direction. During the programmed flight the missile realizes the trajectory set before
the start with simultaneous consideration of bypassing the obstacles. In the last flight stage, the
missile detects and identifies the target and fulfils the process of self-guidance in accordance with
the implemented algorithm. Depending on the situation on the battlefield, two ways of guiding
the missile can be selected. The first is self-guidance (the missile type “fire and forget”). It is
fully automatic. After firing, the shooter has no control over the ATGM flight. The second way
is “fire-observe-correct”. In this case, the operator observes the actions on the battlefield in real
time on the control panel. They operator can correct the flight path and choose targets. The
image in real time is sent via a fiber-optic cable unwound behind the missile.
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Thanks to the use of the Observation and Seeker Head coupled with the combat head EFP,
the missile can very accurately determine the location of the target and hit it in the least armo-
ured place. In the paper, it is assumed that the ATGM is equipped with the modified scanning
and tracking seeker which is presently undergoing intensive theoretical and experimental tests
(Gapiński and Stefański, 2014; Krzysztofik, 2012).
During the attack, the flight of the missile is exposed to external disruptions in form of

gusts of wind. Crosswinds surround the missile as a result of which the helm, flight stabilizers
and the body of the missile are subject to additional, undesired carrying off forces and the
moment of those forces. That results in flight trajectory errors. The auto-pilot with the proposed
algorithm effectively compensates the occurring errors what was described in a separate paper
by Nocoń and Stefański (2014). Even large gusts of wind of 17m/s do not impact significantly
the effectiveness of the programmed flight, not to mention the attack itself. That is why external
disruptions were not considered in flight dynamics equations.
This paper presents a much simplified physical model and flight dynamics equations which by

no means affect the preliminary analysis of correctness and effectiveness of the control algorithm.
It should be emphasized that the developed algorithm of controlling the hypothetical anti-tank
guided missile is the essence of the paper. On the other hand, the equations of flight dynamics
of the missile are the tool to verify the correctness of its operation. They have been derived and
analysed in more detail in other papers (Koruba and Osiecki, 2006; Baranowski, 2013).
It seems that it is not an overstatement to claim that the missile described herein is a part

of the most recent trend of the fourth generation of anti-tank missiles.

2. Description of the tracking

Contemporary military actions more and more often take place in urban areas with high density
of civilian objects. With regard to civil security, the fact that the attack on hostile armored units
should take place with simultaneous consideration of avoidance of all obstacles: buildings and
civilian vehicles, allied units and permanent natural objects is important, see Fig. 1 (Koruba
and Nocoń, 2012). Military actions are also common on wooded, mountainous and desert areas
– there are also a lot of obstacles interfering with the trajectory of the flight of ATGM.

Fig. 1. General view of self-guidance of the third generation close-range ATGM in urban areas

The effectiveness of attack performance is influenced by the element of surprise, ability to
avoid obstacles during the flight and the quality of armor of enemy’s vehicles. It is commonly
known that the weakest armor is the upper surface of the tank and its back, so it is best to
direct the attack there. Based on the conditions presented above, the ATGM is required to
enable efficient maneuvering between obstacles and precise hit on the selected target point.
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Given that the tactical withdrawal of tanks is done in reverse gear, it is possible to set the
flight trajectory with a surprise maneuver, which involves flying around the tank and attacking
it from behind.

2.1. The modelling of ATGM motion

The equations of dynamics of flight of an anti-tank guided missile are derived in accordance
with the adopted assumption that the ATGM performs maneuvers mainly in the horizontal
plane. The consequence is the order of rotations in the transformation the ground-fixed system
Sxgygzg to the body-fixed system Sxyz (Koruba and Osiecki, 2006; Siouris, 2004). The first
rotation is performed in accordance with the plane of change of the direction of the flight of the
ATGM. The second is in accordance with the plane of change of altitude of flight of the ATGM.

Fig. 2. The system of forces acting on the ATGM moving in the gravitational field and the Earth’s
atmosphere, together with the adopted coordinate systems

In Fig. 2, the following quantities and denotations are introduced: RA – vector of total
aerodynamic forces; TR – total missile engine thrust; G – vector of the gravity force; Qy,Qz –
controlling forces; V – missile velocity vector; Sxyz – system of coordinates connected with the
missile (body-fixed system); Sxgygzg – ground-fixed system; Sxvyvzv – system of coordinates
connected with the flow; α – missile angle of attack, α = arctan(w/u); β – missile angle of sideslip,
β = arcsin(v/V ); αt – missile total angle of attack; p, q, r – angular velocity components in the
body reference frame; u, v,w – velocity components in the body-fixed system; γ, χ – flight-path
angle in the vertical and horizontal plane (inclination and azimuth angles of the missile velocity
vector); ẋg, ẏg, żg – components of the velocity vector in the ground-fixed system.
The dynamical equations of motion can be presented in different coordinate systems. In this

paper, the mathematical model is developed according to Polish and International Standard
ISO 1151. A transformation matrix between the ground-fixed system Sxgygzg and the body-
fixed system Sxyz is required to derive the equations of motion. The angular velocity is the sum
of the rotation velocity with respect to the successive axes Ω = Θ̇+ Ψ̇+ Φ̇. The first rotation is
around the vertical axis of the ground-fixed system Ozg by the angle of azimuth Ψ , the second
rotation is around the instantaneous horizontal axis Oy′g by the angle of inclination Θ, and the
third rotation is around the axis Ox by the angle of bank Φ.
In Fig. 3, the following quantities LΨ , LΘ and LΦ represent the transformation matrix: LΨ is

the matrix of transformation of the rotation by the angle of azimuth Ψ , LΘ is the matrix of
transformation of the rotation by the angle of inclination Θ, LΦ is the matrix of transformation
of the rotation by the angle of bank Φ.
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Fig. 3. Transformation the ground-fixed system Sxgygzg to the body-fixed system Sxyz

The angular velocity components in the body-fixed system are calculated as follows


p
q
r


 =



Φ̇
0
0


+ LΦ



0
Θ̇
0


+ LΦLΘ



0
0
Ψ̇


 (2.1)

The final form of the angular velocity is

p = Φ̇− Ψ̇ sinΘ q = Θ̇ cosΦ+ Ψ̇ sinΦ cosΘ

r = −Θ̇ sinΦ+ Ψ̇ cosΦ cosΘ
(2.2)

The dynamical equations of motion based on the principles of classical mechanics are divided
into the progressive part of the missile motion and the spherical part of the motion. The first
part of the dynamical equations is

ma =
∑
F ⇒ m

δV

dt
=
∑
F (2.3)

The total velocity vector is the sum of the velocity components lying in the body-fixed system.
Then, the derivative is computed

V = iu+ jv + kw ⇒ δV

dt
= i

δu

dt
+ j

δv

dt
+ k

δw

dt
+ u

δi

dt
+ v

δj

dt
+ w

δk

dt

or

δV

dt
= iu̇+ jv̇ + kẇ +

∣∣∣∣∣∣∣

i j k
p q r
u v w

∣∣∣∣∣∣∣
(2.4)

The three dynamical equations of motion resulting from the progressive part of the motion are
developed according with the body-fixed system

m(u̇+wq−vr) =
∑

Fx m(v̇+ur−wp) =
∑

Fy m(ẇ+vp−uq) =
∑

Fz (2.5)

The sum of the total forces acting on the missile is
∑
F = TR+G+RA+QS, where:m is mass of

the missile; a – total acceleration; i, j,k – unit vectors of the body-fixed system; QS = [0, Qy , Qz]
– total vector of controlling forces.
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Based on the principle of angular momentum, the other part of dynamical equations is the
spherical part of motion

δK

dt
=
δIΩ

dt
=
∑
M (2.6)

The sum of the angular velocity in the body reference frame is the vector of the missile angular
velocity Ω = pi + qj + rk. The same case is with the angular momentum vector K = Kxi +
Kyj+Kzk. The derivative of the angular momentum vector is

δK

dt
= i

δKx
dt
+ j

δKy
dt
+ k

δKz
dt
+Kx

δi

dt
+Ky

δj

dt
+Kz

δk

dt

or

δK

dt
= iIxṗ+ jIy q̇ + kIz ṙ +

∣∣∣∣∣∣∣

i j k
p q r
Ixp Iyq Izr

∣∣∣∣∣∣∣
(2.7)

The three dynamical equations of motion resulting from the spherical part of the motion are
developed according with the body-fixed system

Ixṗ+ (Iz − Iy)qr =
∑

Mx Iy q̇ + (Ix − Iz)pr =
∑

My

Iz ṙ + (Iy − Ix)pq =
∑

Mz
(2.8)

The sum of the total moments acting on the missile is
∑
M = MA + MQ, where:

K = [Kx,Ky,Kz ] is the vector of the angular momentum components in the body-fixed system;
Ω – vector of the angular velocity; bfI = [Ix, Iy, Iz] – moments of inertia; MA = [L,M,N ] –
components of the total aerodynamic moment in the body-fixed system;MQ – total moment of
the controlling force.

• Forces and moments needed in the equations of motion

The total missile thrust TR is located in the axis Sx of the body-fixed system Sxyz


TXR
T YR
TZR


 =



TR
0
0


 (2.9)

The vector of the gravity force G = [Gxg, Gyg, Gzg] is located in the axis Szg of the ground-fixed
system Sxgygzg, so G = [0, 0, G] and thus it must be transformed to the body-fixed system
Sxyz



GX
GY
GZ


 = LΦLΘLΨ



0
0
G


 =



−G sinΘ

G cosΘ sinΦ
G cosΘ cosΦ


 (2.10)

• Simplified aerodynamic forces and moments

The total aerodynamic force RA is split into two components lying in plane of drag. The
drag force XA = CDρSV 2/2 is the component parallel to the vector of velocity, whereas the lift
force PA = CLρSV 2/2 is the component perpendicular to the vector of velocity.
The components of the total aerodynamic force RA = [X,Y,Z] in the body-fixed system are

X = −XA cosαt + PA sinαt Y = (XA sinαt + PA cosαt) cosϕ

Z = −(XA sinαt + PA cosαt) sinϕ
(2.11)
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Fig. 4. The forces acting on the missile: (a) components and aerodynamic forces acting on the missile
flight; (b) projections of the aerodynamic force vector RA and the velocity vector V in the plane Syz

From obvious equations

v = V sinαt cosϕ ⇒ cosϕ =
v

V sinαt

w = V sinαt sinϕ ⇒ sinϕ =
w

V sinαt

the final form of the components of the total aerodynamic force is

X = −CD cosαt − CL sinαt
2

ρSV 2 Y =
CD + CL cotαt

2
ρSV v

Z = −CD + CL cotαt
2

ρSV w

(2.12)

where: CD, CL are coefficients of drag and lift; ρ – air density; S – cross sectional area of the
missile; αt = arccos(u/V ) – total angle of attack; V =

√
u2 + v2 + w2 – missile velocity vector.

The vector of moments of the aerodynamic forces is [L,M,N ] = [0,−lZ,−lY ] in the body-
-fixed system, where l is the distance from the center of gravity and the center of pressure of
the aerodynamic forces.
The components of the total missile controlling forces QS are located in the body-fixed

system Sxyz. In the axis Sy is the force of the directional control Qy, in the axis Sz is the force
of flight altitude control Qz. The vector of moments of the controlling forces in the body-fixed
system isMQ = [0, eQz ,−eQy], where e is the distance from the center of gravity and the control
fins.
Based on a simplified physical model shown in Fig. 2 and on the assumption that the missile

is axially symmetric Iy = Iz and does not rotate around the longitudinal axis Sx, equations
(2.13) of the flight dynamics of the missile are derived. The dynamical equations consist of the
progressive part of ATGM motion and its spherical part (Harris and Slegers, 2009; Koruba and
Osiecki, 2006; Siouris, 2004)

m(u̇+ wq − vr) = TR −G sinΘ −
CD cosαt − CL sinαt

2
SρV 2

m(v̇ + ur − wp) = G cosΘ sinΦ+ CD + CL cotαt
2

SρV v +Qy

m(ẇ + vp− uq) = G cosΘ cosΦ− CD + CL cotαt
2

SρV w +Qz

Iy q̇ + (Ix − Iz)pr = −
l

2
(CD + CL cotαt)ρV w + eQz

Iz ṙ + (Iy − Ix)pq = −
l

2
(CD + CL cotαt)ρV v − eQy

(2.13)
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The components of the velocity vector in the ground-fixed system (kinematic differential equ-
ations of motion of the missile center of mass) are as follows



ẋg
ẏg
żg


 = (LΦLΘLΨ )T



u
v
w


 (2.14)

For the missile stabilized around the longitudinal axis Φ = 0, equation (2.14) takes the following
form

ẋg = u cosΘ cosΨ − v sinΨ + w sinΘ cosΨ
ẏg = u cosΘ sinΨ + v cosΨ + w sinΘ sinΨ

żg = −u sinΘ + w cosΘ
(2.15)

The kinematic differential equations of rotational motion about the missile center of mass are
as follows

Φ̇ = p+ q sinΦ tanΘ + r cosΦ tanΘ

Θ̇ = q cosΦ− r sinΦ Ψ̇ = q
sinΦ
cosΘ

+ r
cosΦ
cosΘ

(2.16)

2.2. Algorithm of control of the ATGM

The control algorithm consists of two parts. The first part is a programmed trajectory that
relates to the control in the vertical plane and the other part is a programmed trajectory in the
horizontal plane. After combining both parts, we obtain the programmed trajectory of flight of
the ATGM in space, running through the marked points (Fig. 5).

Fig. 5. A schematic depicting the gluing of the fragments of the trajectory by polynomial curves
running through given points in space

A new fragment of both projections of the trajectory are calculated between the consecu-
tive points. The program flight of the ATGM in each fragment is described by a third degree
polynomial (Grzyb and Koruba, 2011)

y = ax3 + bx2 + cx+ d (2.17)

The program trajectory of flight of the ATGM consists of a finite number of sections – polynomial
curves y(x) and z(x), glued with each other at predetermined points, see Fig. 5. Each curve is
determined by the coordinates of the start and end point as well as angles of flight at these
points. For the first section of the trajectory in the vertical plane, we can use the following data

(x0, y0, γ0) (xk, yk, γk) (2.18)
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From the system of four equations with four unknowns, which are the coefficients with the
variables

ax30 + bx
2
0 + cx0 + d = y0 3ax20 + 2bx0 + c = tan γ0

ax3k + bx
2
k + cxk + d = yk 3ax2k + 2bxk + c = tan γk

(2.19)

we obtain the following linear equation to solve (Grzyb and Koruba, 2011)



x30 x20 x0 1
3x20 2x0 1 0
x3k x2k xk 1
3x2k 2xk 1 0







a
b
c
d


 =




y0
tan γ0
yk
tan γk


 (2.20)

In the attack phase (Fig. 6), when the target is moving, the polynomial coefficients are calculated
at any point in time, as the end point (target) of the curve keeps changing its coordinates.

Fig. 6. View of the final stage of attack of the ATGM flying along a polynomial curve. The missile
flight above the target

Due to the limited processing power of the system, the coefficients are presented in form of
a cascade (next coefficient includes the previous one)

a = −2yk − 2y0 + (x0 − xk)(tan γk + tan γ0)
(xk − x0)3

c = tan γk − 3x2ka− 2xkb

b =
tan γ0 − tan γk − (3x20 − 3x2k)a

2x0 − 2xk
d = yk − x3ka− x2kb− xkc

(2.21)

In the vertical plane, the program trajectory is described by the function y = f(x)

y = ax3 + bx2 + cx+ d (2.22)

The altitude control angle γ◦ is given by the formula

γ◦ = arctan(3ax2 + 2bx+ c) (2.23)

The situation is analogous in the horizontal plane. By replacing the coordinate y with z and γ
with χ, the program trajectory is described by the function z = f(x)

z = ax3 + bx2 + cx+ d (2.24)

and the direction control angle χ◦

χ◦ = arctan(3ax2 + 2bx+ c) (2.25)
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2.3. Selection of a regulator

To control the ATGM on the programmed trajectory in accordance with the implemented
control algorithm, a double PID regulator is used in each plane separately

Qy = ky1ey + ky2
dey
dt
+ ky3

tk∫

t0

ey dt + hy1fy + hy2
dfy
dt
+ hy3

tk∫

t0

fy dt

Qz = kz1ez + kz2
dez
dt
+ kz3

tk∫

t0

ez dt+ hz1fz + hz2
dfz
dt
+ hz3

tk∫

t0

fz dt

(2.26)

where

ey = γ◦ − γ ez = χ◦ − χ

fy = y − yp fz = z − zp

γ = arcsin
żg
V

χ = arctan
ẏg
ẋg

and where yp is the current ceiling of the ATGM at a given moment of time; y – programmed
altitude of ATGM at a given moment of time; zp – factual location of ATGM; z – programmed
location of the ATGM; γ, χ – flight-path angle in the vertical and horizontal plane (inclination
and azimuth angles of the missile velocity vector); ẋg, ẏg, żg – components of the velocity vector
in the ground-fixed system.
The indicated control signals Qy, Qz for the purpose of simplification of the simulation can

be considered as the controlling forces (Evans, 1990).

3. Results of simulation tests

Simulations are conducted for a hypothetical anti-tank guided missile whose mathematical model
and equations of flight dynamics are presented in the previous Section. The data adopted for
the missile are: m = 12.9 kg, e = 0.45m, l = 0.231m, Iy, Iz = 1.53 kgm2, Ix = 0.0324 kgm2,
TR = 3700N (launch motor), TR = 400N (flight motor).

3.1. Simulation conducted for the ATGM flying through three points and attacking the
target moving with a velocity of 30m/s

The autopilot regulator parameters are selected as follows: ky1 = 400, ky2 = 320, ky3 = 10,
hy1 = 900, hy2 = 36, hy3 = 2300, kz1 = 400, kz2 = 170, kz3 = 1000, hz1 = 900, hz2 = 8,
hz3 = 1000.

3.2. Simulation conducted for the ATGM flying through four points and attacking the
target moving with a velocity of 30m/s

The autopilot regulator parameters are selected as follows: ky1 = 400, ky2 = 320, ky3 = 10,
hy1 = 900, hy2 = 36, hy3 = 2300, kz1 = 200, kz2 = 250, kz3 = 1000, hz1 = 900, hz2 = 23,
hz3 = 1000.
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Fig. 7. Trajectory of the flight of the ATGM attacking the target moving with a velocity of 30m/s.
The target moves 100 to the left and 50 up

Fig. 8. The flight-path angle γ and the control angle γ◦ in function of time

Fig. 9. The flight angle χ and the control angle χ◦ in function of time

Fig. 10. Control signals of the ATGM: Qy controlling the altitude in the vertical plane, Qz controlling
the direction in the horizontal plane
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Fig. 11. Lateral overloads that affect the ATGM during the guidance

Fig. 12. Trajectory of the flight of the ATGM attacking the target moving with a velocity of 30m/s.
The target moves 150 to the left and 100 up

Fig. 13. The flight-path angle γ and the control angle γ◦ in function of time

Fig. 14. The flight angle χ and the control angle χ◦ in function of time
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Fig. 15. Control signals of the ATGM: Qy controlling the altitude in the vertical plane, Qz controlling
the direction in the horizontal plane

Fig. 16. Lateral overloads that affect the ATGM during the guidance

4. Conclusions and final remarks

From the conducted theoretical deliberations and simulation studies, one can draw the following
conclusions:

• Proper selection of the regulator and its settings significantly affects not only the accuracy
of mapping of the programmed trajectory, but also the optimal values of control signals
as well as congestion during missile flight.

• Regulator settings are chosen in such a way so as to optimize the values of control signals
and the existing congestions. It should be emphasized that the regulator gains assume
values that are technically achievable. Admittedly, the angles of the missile flight do not
coincide exactly with the control angles, and the trajectory does not perfectly map the
trajectory of the program, however, it does not significantly affect the effectiveness of the
attack.

• ATGM flies through designated points with a sufficient accuracy (one meter), and hits the
target with a high accuracy (approx. half a meter). These results are satisfactory because
of the fact that the target is moving at a relatively high velocity (about 30m/s).

• In the points of gluing functions (subsequent parts of the trajectory), one can observe
significant jumps of the control signals. This is due to the discontinuity of angular velocity
functions in these points.
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In the present paper, an experimental setup for structural damping determination arising
from energy dissipations within the material is presented. The experimental setup is deve-
loped in such a way that all unintended damping sources are eliminated. In this connection,
priority is also given to the reproducibility of the experimental data. In addition, a vacuum
chamber is developed to reduce the damping arising from the interaction with the surroun-
ding medium. Furthermore, beam-shaped specimens are clamped in a suspended way, using
screws with an apex to fix the specimens in their nodes of vibration. Then, the influence
of test rig specific parameters on the damping value is analyzed. In this context, an ideal
setup of the test rig is identified to measure structural damping values arising from dissi-
pations within the material. Finally, a common model for material damping description is
parameterized using the experimental data.

Keywords: damping determination, material damping, vacuum chamber, impact excitation,
experimental setup

1. Introduction

In nearly all fields of mechanical engineering, the avoidance of High Cycle Fatigue (HCF) failures
is of great importance. To reduce this risk, prediction and reduction of vibration amplitudes is
a primary objective. One of the most important parameters for amplitude prediction is structu-
ral damping. In turbomachinery blading applications, for example aerodynamic, frictional and
material damping are the most dominant damping mechanisms. In this paper, the latter one is
in the focus of investigation.
During the last decades, the research mainly concentrated on the usage of nonlinear calcu-

lation tools to predict vibration amplitudes. Here, optimization of friction dampers in joints in
dynamic systems is a superior criterion. Such calculations require specification of contact para-
meters as well as structural parameters. From this, many authors use low established material
damping values to calculate transfer functions. Weiwei and Zili (2010) mention the material
damping as low, using it for numerical blade calculation by means of a 3-D numerical contact
model. Laborenz et al. (2010) also use a low material damping ratio ξ with 1.41 · 10−4 for es-
tablishing their eddy current approach. Using the damping ratio ξ and the eigenfrequency ω0,
the differential equation of a single degree of freedom (SDOF) system (displacement x) can be
written as follows

ẍ+ 2ξω0ẋ+ ω20x = 0 (1.1)

Siewert and Stüer (2010) and Krack et al. (2012) only mention material damping as low and
important for their nonlinear calculations. Petrov and Ewins (2006) use a collective loss factor η



28 O.P. Hentschel et al.

for aerodynamic and material damping of 0.001. Regarding a linear SDOF-System it is possible
to formulate the loss factor η in terms of damping ration ξ

η = 2ξ
√
1− ξ2 (1.2)

Resulting from the tendency to utilize blisks (blade integrated disks) to cut assembly costs
and increase engine efficiency, the structural damping arising from the material is the most
reasonable energy dissipation process. Therefore, quantification of mechanical damping (due to
effects inside the material) is of essential relevance to predict and reduce vibration amplitudes
in terms of HCF. Dealing with such low values, precise damping determination requires an
appropriate experimental setup. To quantify material damping, an adequate experimental setup
is elementary. For this purpose, a double reed cantilever beam is recommended as a test specimen
by Gibson and Plunkett (1977), Granick and Stern (1965) as well as by Gudmundson and
Wüthrich (1986). The disadvantage of using such a specimen is the necessity of frequency tuning
with additional masses.
Regarding the adequate experimental setup, all other damping sources like frictional damping

or damping due to the surroundingmedium have to be minimized in order to identify the material
damping only (see Granick and Stern, 1965; Gibert et al., 2012). Therefore, measurements under
vacuum are recommended.
For the identification of damping values, Plunkett (1959) gives an overview of possible me-

thods for single degree of freedom systems, which can be classified in time and in frequency
domain approaches. Concerning multi degree of freedom systems, the Rational Fractional Po-
lynomial method based on a parameter fit in the frequency domain is presented by Richardson
and Formenti (1982). Moreover, the Least-Squares Complex Exponential method is described
by He and Fu (2001). This method is classified using time domain methods. Furthermore, Bert
(1973) offers an overview of methods for modeling, experimental determination and parameter
identification of material damping. Within this work, the method presented by Hentschel et al.
(2015) is used for damping determination.
The objective of the present work is the development of an experimental setup for material

damping determination, which serves the requirements for accuracy especially for expected low
damping values. The reproducibility of the experimental data is a superior criterion within the
development of the experimental setup. The experimental setup including the vacuum chamber
and the specimen clamping mechanism is presented, documenting the constructional effort ta-
ken to minimize sources of unintended damping, as frictional damping within joints. Then the
specimen excitation using a voice coil actuator and the data acquisition process are described.
An automated impact excitation is used to enable the possibility of excitation in the vacuum
chamber and to satisfy the criterion of reproducibility. A method for determining damping valu-
es including a short-term Fourier transform using resampling is briefly presented (see Hentschel
et al., 2015). The used test rig, in combination with the analysis method, offers the possibility to
identify the decay curve of one mode shape in order to calculate the damping values. From this,
decay fitting is used (see Rice et al., 2007 and Siewert et al., 2010). Then further experimental
results are presented, which investigate in addition to the influence of ambient pressure also
the influence of the clamping conditions on the determined specimen specific damping value of
stainless steel. Using the measured data, a common model for material damping description (see
Lazan, 1968 and Szwedowicz et al., 2008) is parameterized. Conclusions are given at the end.

2. Experimental setup

Based on a common frequency range for turbine blades, the experimental setup is developed.
Using a specific specimen length, plate-type specimens are manufactured for the frequency range
of interest, corresponding to the mode shape of interest.
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2.1. Specimen clamping

The specimens which are used for the material damping tests are beams with defined eigen-
frequencies. The sample geometry (width and thickness) is selected in such a way that a wide
gap between the eigenfrequencies of the test specimens is present. To reduce the influence of
parasitic damping (i.e. frictional damping due to clamping), the specimens are clamped in a
suspended way in their nodes of vibration (Fig. 1) corresponding to the mode shape of interest.
Bolts with an apex (Fig. 1) are used to fix the specimens depending on the analyzed mode shape.
This allows an evaluation of “free” modes and prevents rigid body mode shapes. In addition, the
clamping mechanism design leaves a wide frequency gap between the specimen eigenfrequencies
and those of the system consisting of the clamping device and the specimen (Fig. 1).

Fig. 1. Mode shapes of the clamping mechanism and the apex formed clamping screw

This avoids potential interactions between the specimen and clamping and helps one to eli-
minate unintended damping sources in the clamping mechanism. In Table 1, the normalized
frequencies of interest fs,i (representing a common eigenfrequency range of turbine blades) cho-
sen concerning the specimen and the nearest normalized eigenfrequencies of the system fsy,l,i
and fsy,u,i are shown.

Table 1. Normalized frequencies

Next lower Normalized Next upper
Specimen normalized eigenfrequency normalized

eigenfrequency of interest eigenfrequency

1 fsy,l,a = 0.031 fs,a = 0.106 fsy,u,a = 0.182
2 fsy,l,b = 0.087 fs,b = 0.32 fsy,u,b = 0.511
3 fsy,l,c = 0.9 fs,c = 1 fsy,u,c = 1.08

2.2. Excitation and measurement

Specimens are excited by a force impact generated by a voice coil actuator. In this connection,
an automated test sequence with a high reproducibility of the excitation force is realized. Based
on this, a mechanical coupling of the structure and the excitation mechanism is avoided, which
eliminates a potential source for data distortion. The voice coil actuator is operating in current
mode. In this context, it is possible to control the acceleration of the actuator. A force sensor
is used to monitor the behavior of the impact. Due to the used electrical device for specimen
excitation, a high reproducibility of the impact force is realizable (see Fig. 2). Figure 2 shows in
addition the relation of the preset current to the measured impact force.
The vibration is measured by a laser Doppler vibrometer. An optical measurement technique

is used to avoid a coupling between structure and sensor, which may induce additional uninten-
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Fig. 2. Measured force with several executions of the excitation (left) and corresponding coil current
(right)

Fig. 3. Experimental setup (schematic)

ded damping. In Fig. 3, the schematic experimental setup is shown, also illustrating necessary
supply and control units.

2.3. Vacuum chamber

The vacuum chamber is used to eliminate damping caused by the surrounding medium. The
chamber is developed in two main design steps (Fig. 4). The first design step is focused on
the ability to facilitate the whole experimental setup in the chamber. The specimen clamping
and also the excitation mechanism are bolted to the bottom of the chamber. An electrical feed-
-through for the excitation mechanism and a window for vibration measurement are considered.
On the basis of the first design step, the position of the flange, the flange height, the flange
diameter and the wall thickness of the chamber are changed. This is ensured by frequency
optimization with respect to a wide frequency range of interest (common eigenfrequency range
of turbine blades). Being designed for vacuum conditions, a potential coupling of the specimen
and the structure (via the remaining air in the chamber) is eliminated due to the performed
frequency optimization. In this way, precise detection of the influence of the surrounding air
on the damping value is also possible. Furthermore, additional masses are applicable on the
chamber cap, to ensure a shift of the eigenfrequency range of the vacuum chamber. This enables
a high variability of the analyzable eigenfrequencies of interest.
It is possible to define the optimization problem by maximizing the gap between the eigen-

frequencies of the chamber and the eigenfrequencies of interest (representative eigenfrequency
range for turbine blades). In Fig. 5, the frequency gaps are graphically presented.
The optimization variable Opt has to be calculated using the three frequency gaps (∆fa,

∆fb, ∆fc). In this context, it has to be ensured that the frequency gaps reach their maximal
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Fig. 4. Design steps of the vacuum chamber

Fig. 5. Frequency gaps of the specimen and the vacuum chamber (bold: eigenfrequency range of the
chamber), top: chamber without additional masses, bottom: chamber with additional masses

magnitudes. Furthermore, the magnitudes of ∆fb and ∆fc should be equal. As a consequence,
the optimization variable can be defined as follows

Opt = e∆fa + h(∆fb,∆fc) (2.1)

The factor e represents a weight factor concerning the first frequency gap. To satisfy the criterion
of maximal and equal magnitudes of the factors ∆fb and∆fc, the function h(∆fb,∆fc) is defined

h(∆fb,∆fc) = a| cos(α)∆fb − sin(α)∆fc|σ(sin(α)∆fc − cos(α)∆fb)
+ b| cos(α)∆fb − sin(α)∆fc|σ(cos(α)∆fb − sin(α)∆fc)− c(sin(α)∆fb + cos(α)∆fc)

(2.2)

The factors a, b, c and α are additional weight factors concerning the two frequency gaps ∆fb
and ∆fc. The several weight factors are used to ensure a high variability of the optimization
process. Out of this, it is possible to repeat the optimization by changing the weighting factors
to give e.g. priority to another frequency gap.
The influences of these factors on the frequency gaps are summarized in Table 2 and Fig. 6.

Table 2. Influences of the different weight factors

Factor Influence

a weight factor concerning the magnitude of ∆fc
b weight factor concerning the magnitude of ∆fb
c symmetric weight factor concerning ∆fb and ∆fc
α weight factor concerning the relationship between ∆fb and ∆fc

The optimization is carried out by performing modal analysis using the finite element pro-
gram ANSYS and its sub-problem approximation method (see ANSYS, 2009). The optimization
process is presented in detail in Fig. 7.
Using the defined scalar optimization variable and the optimization process presented in

Fig. 7, the ideal chamber geometry with a high magnitude of the frequency gaps is calculated. The
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Fig. 6. Weight factors and their influences

Fig. 7. Design steps of the vacuum chamber

Fig. 8. Measured natural frequencies of the vacuum chamber

different eigenfrequencies measured for the manufactured chamber without additional masses are
shown in Fig. 8.

It shall be pointed out that the requested frequency gaps are reached. Figure 9 shows the
vacuum chamber with the integrated experimental setup.

Being equipped with a vacuum pump, low chamber pressures can be reached (see Fig. 10)
and maintained during testing.
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Fig. 9. Experimental setup: 1 – vacuum chamber, 2 – vibration desk, 3 – voice coil actuator,
4 – specimen, 5 – clamping device

Fig. 10. Pressure-time dependency

3. Damping determination

The methodology of deriving damping values includes a Short-Term Fourier transform with an
integrated Resampling (STFR) of the signal. The used methodology for damping identification
was already presented by Hentschel et al. (2015). In this paper, only a short overview of the used
methodology will be given. Using the mentioned STFR method, it is possible to get adequate
information concerning vibration amplitude and eigenfrequency. This method is limited only to
structures excited by a force impact (realized with the experimental setup). Here, the decaying
signal xu[w], which is necessary for damping evaluation, is measured by a laser Doppler vibro-
meter. This signal can be specified by the following data sequence with Nw values regarding the
signal parts u

xu[w] =

{
x (t = (uNw + w)T0) for 0 ¬ w ¬ Nw − 1
0 otherwise

(3.1)

where w represents the signal point and T0 the sampling time. The signal is equidistantly divided
into

U =
NS
NW
− 1 (3.2)

parts, and it is analyzed stepwise. NS represents the number of all data values. In the next step,
a Discrete Fourier Transform (DFT) is applied

Xu[k] =
Nw−1∑

w=0

x ((uNw + w)T0) e
−j2π kw

Nw (3.3)
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where k describes the spectral line number. In the following, the measured signal is extracted
with respect to the mode shape of interest. Using this formulation, the frequency resolution ∆ωf
reads

∆ωf =
2π

T0Nw
(3.4)

By analyzing weakly damped systems, the amplitude is underestimated at the eigenfrequency.
To avoid this problem, resampling of the signal is performed. The goal in this context is the
identification of the required sample rate in such a way that the frequency resolution ∆ωf,n is
equal to an integer numbered multiple g of the eigenfrequency of interest ωd,int.

ωd,int = g∆ωf,n (3.5)

To satisfy the required sample rate corresponding to the criteria in Eq. (3.5), real numbered
alternation d of the sample rate T0 is necessary

∆ωf,n =
2π

T0,nNw
=
2π

dT0Nw
(3.6)

As the eigenfrequency is unknown (due to production tolerances), optimization (such as the
Nelder-Mead algorithm, Nelder and Mead, 1965) of the resampling factor d is necessary. In this
respect, the achievement of the maximal amplitude at eigenfrequency represents the optimization
criterion.
After calculating the eigenfrequency, the modal amplitude for each part of the decay curve

can be identified. Dividing the decay curve into several parts, it is possible to calculate the decay
coefficient as a function of the mean amplitude.

4. Experimental results

In this Section, the influence of experimental setup specific parameters on the damping value is
analyzed. For this purpose, an optimal setup of the test rig is identified, using the achievement of
a minimal damping value as a criterion for test rig adjustment. In addition, the reproducibility
of the measured data is also analyzed whereby the experimental setup is reassembled prior to
each measurement. The measurements are realized four times per configuration. The tests are
performed using beams with a reduced eigenfrequency for the 2-nd bending fs,c (see Table 1).
As a result of this investigation, a quantification of the identified damping value concerning its
quality is expected.
The first analyzed parameter is the ambient pressure. In Fig. 11, the normalized damping

(ratio of the measured loss factor and the maximum measured loss factor) value versus the
normalized displacement (ratio of the measured displacement and the maximum measured di-
splacement) calculated from the measured velocity is shown.
To eliminate any possibility of an aerodynamic coupling between the vacuum chamber and

the specimen, damping values are measured with and without the chamber cap under ambient
conditions. Comparing the normalized damping course with and without the chamber cap (shown
in Fig. 11), it can be seen, that there is no influence of the chamber cap on the measured damping
value. Additionally, a decrease of the normalized damping value with decreasing pressure is
visible. With regard to the ambient pressure conditions, the damping decreases to 17%. The mean
standard deviation is in a range of about 0.02% of the measured damping value at the maximal
amplitude with respect to the analyzed configuration. Herewith, an adequate reproducibility
can be obtained. Due to the used scaling factor, the influence of normalized amplitude on the
damping value cannot be recognized.
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Fig. 11. Normalized damping as a function of normalized amplitude and pressure

The next analyzed parameter is the torque of the screws with the apex (see Fig. 1). This
analysis is performed at 0.08mbar (vacuum conditions). Five different torque magnitudes are
analyzed. The normalized damping value versus the normalized amplitude is shown in Fig. 12.

Fig. 12. Normalized damping as a function of normalized amplitude and torque

Based on this analysis, an amplitude-dependent damping value can be identified. Here, the
damping value increases with the increasing amplitude. The maximal damping is measurable
at the lowest torque (hand-tight). Under these conditions, the specimen is not completely fixed
in its nodes of vibration, starting to rattle after the force impact. Frictional and impact effects
are present and responsible for additional energy dissipations. In this respect, higher damping
values are measurable. With an increasing torque magnitude, the damping value decreases to
the lowest damping value at a torque magnitude of about 6Nm. Assuming that the lowest
measurable damping value course represents the energy dissipation due to dissipation within the
material, the specimen-specific material damping value is measurable under these conditions.
By a further increase of the torque value, the damping increases too. In this context, the apex
geometry is discussed. The point of contact is plasticized, and the damaged apex lies flat on
the specimen. Through these measurements, a mean standard deviation of about 0.03% of the
measured damping value at the maximal amplitude with respect to the analyzed configuration
is identifiable.
To check the influence of the apex variation on the damping value, different apex geometries

are analyzed. From this, three different apex geometries are used (see Fig. 13), whereby the apex
radius r is varied.
For specimen clamping, a torque of 6Nm (identified before) is used. The tests are performed

at 0.08mbar (vacuum conditions). In Fig. 14, the influence of this variation on the damping
value is presented.
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Fig. 13. Apex geometry

Fig. 14. Normalized damping as a function of normalized amplitude and apex geometry

The damping value increases with the increasing apex radius. This effect leads to an additio-
nal frictional damping within the contact area. Here, the lowest damping is identifiable at the
lowest apex radius (approximately 0mm). For these configurations, also a low standard devia-
tion (0.028% of the measured damping value at the maximal amplitude) is identifiable. This is
the basis for proving the adequate reproducibility of the measured values.
Based on this analysis, it can be seen that a sufficient adjustment of the experimental setup

is necessary for sufficient structural damping identification arising from the material. In Table 3,
the adjustment of different parameters regarding the experimental setup is summarized.

Table 3. Adjustment of the experimental setup

Parameter Magnitude

Pressure 0.08mbar
Clamping torque 6Nm
Apex radius ≈ 0mm

5. Model verification

To demonstrate further utilization of the experimental data, the measured values are used to
parameterize a common model for material damping description. For this purpose, the test
rig is adjusted with respect to the data presented in Table 3. It now becomes obvious that
the measured normalized damping values correspond to the lowest measured values made in
previous investigations (see Fig. 14, Fig. 12 and Fig. 11). These damping values, which arise
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from dissipations within the material, are used for parameterization. In this connection, a static
hysteresis model is utilized which was already recommended by Lazan (1968)

ΨS =
∆WS
2πUS

=
1
2πUS

VS∫

V=0

∆Wloc dV =
1
2πUS

VS∫

V=0

Jσn dV (5.1)

In Eq. (5.1), ΨS , ∆WS, US and VS represent the specimen-specific loss coefficient, the entire loss,
the potential energy and the entire volume of the specimen. In this context, the local energy
dissipation ∆Wloc is describable as a function of the local stress σ weighted by two material
constants J and n. Analyzing the stress distribution by the Finite Element approach within
the specimen, the parameters can be identified. From this, the least squares method is used
to identify the magnitudes on the basis of the experimental data. In Fig. 15, the course of the
normalized damping with respect to the maximal local stress σmax is presented.

Fig. 15. Parameterization of a common model for material damping description

It is to be mentioned that the maximal local stress σmax within the specimen corresponds
to the measured amplitude. The magnitude of the maximal local stress is identified using the
Finite Element approach. Finally, it can be seen that the experimental data presented in Fig. 15
are describable in a suitable way using the static hysteresis model presented by Lazan (1968).
In this context, the coefficient of determination has a magnitude of R2 = 0.94.

6. Conclusions

In the present paper, an experimental setup for specimen-specific material damping determina-
tion is developed. A design optimization with respect to the natural frequencies of a vacuum
chamber and a frequency range of interest are performed. It could be shown that requested
frequency gaps are achieved to avoid possible aerodynamic coupling between test specimen and
vacuum chamber. In addition, test specimens are clamped in their nodes of vibration to avoid
unintended frictional damping. The clamping device is also frequency optimized to avoid possible
structural coupling. Moreover, a method for damping determination is discussed briefly. Sub-
sequently, several parameters influencing the measured specimen-specific damping value using
the analyzed setup are identified. It can be shown that a defined magnitude of the clamping
torque as well as a defined geometry of the clamping apex is important to identify an accurate
damping value. In this connection, an adjustment of the experimental setup is presented. In
this context, the lowest identifiable damping value is used as a criterion for the adjustment of
the experimental setup. Additionally, it can be shown that an adequate reproducibility of the
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measured values is realizable. Finally, a model for material damping description is parameterized
on the basis of the measured material-specific damping values.
Using the developed experimental setup, it is possible to identify influential parameters on

structural damping values arising from dissipations within the material. Based on this, develop-
ment and parameterization of material damping models is realizable. It should be mentioned,
that the analyzable respectively excitable frequency range is limited by the impact force.
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In this study, vibration analysis of a telescopic platform is conducted, and the platform
structure is reconstructed to satisfy vibrational standards. The analysis is realised using so-
lid modelling, finite elements and an analytical method. The results are verified using expe-
rimental modal techniques. Through the finite element and experimental modal approach
free vibration analysis is carried out and natural frequencies are determined. Additionally,
vibration accelerations of the structure are obtained by forced vibration analysis of the mo-
del. All calculations one performed on the new reconstructed structure, and it is determined
whether the reconstructed structure satisfies the vibrational standards.

Keywords: telescopic platforms, modal analysis, Finite Element Method, vibration

1. Introduction

Platforms are crane-like machines that lift workers and their equipment to desired heights and
over various distances. The word ’platform’ was only used to describe static structures such
as bridges and ladders until the second half of the twentieth century. However, over the past
30 years, various types of platforms have been specified:

• jointed platforms
• trussed platforms
• load platforms
• telescopic platforms
• vertical platforms

In this study, we examine vibrations of telescopic platforms, which are widely used in con-
struction areas, airports and harbours. Telescopic platforms are structures that have at least
two long beams, with one sliding within the other, called booms. Usually, the second boom
operates through hydraulic cylinders, and the other subsequent booms operate through chains.
An example of a telescopic platform with five booms is shown in Fig. 1.
A survey of the literature reveals that many studies have been conducted using the finite

element method and three-dimensional modelling. Dayawansa et al. (2004) described cracks that
grow in weld joints (called clusters), which protect the booms from catastrophic collapse, and
the maintenance and repair techniques used to keep these joints in service. Karahan (2007) desi-
gned and analysed a two-level telescopic crane using the finite element method. The parts of the
crane were designed in 3D using the Pro ENGINEER software program. The sheet thickness of
the main stationary boom carrying the load was determined by performing stress analysis in the
ANSYS workbench using the finite element method. Marjamaki and Makinen (2006) extended
the idea of modelling a flexible telescopic boom using a non-linear finite element method in
3D. The boom was assembled using Reissner’s geometrically exact beam elements. The sliding
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Fig. 1. An example of a five-boom telescopic platform

boom parts were coupled together by the elements where the slide-spring was coupled to the
beam with the aid of the master-slave technique. A special element with a revolute joint and an
element with an offset were developed. Telescopic movement was achieved by varying the length
of the element and the connecting chains. Ozkan (2005) analysed connection points of a frame
crane and investigated stress distributions of the connection point components. The commer-
cial finite element package ANSYS was used for finite element analysis. The main objectives of
the study conducted by Rusiński et al. (2006) were to discuss design problems associated with
machines used in underground mining and to investigate the reasons why these problems arise
in the cracked boom of an underground mine machine. Numerical and experimental approaches
were pursued. The finite element method was used for numerical simulation. Fractographic and
microscopic evaluation, chemical analysis and hardness tests were used to evaluate the mate-
rials. The objectives were achieved by numerical simulation of a cracked loader boom, material
evaluations of specimens and comparison of the results obtained from both approaches. Nu-
merical simulations were performed based on a discrete model of a jib boom using predefined
boundary conditions. The finite element analysis of the jib boom provided information regarding
stress distribution under extreme load conditions. The study involved macroscopic and fracto-
graphic inspection, microscopic evaluation as well as hardness testing of the materials used for
the jib boom. Erdol (2007) performed static finite element analysis and weight optimisation of
a box girder, which constitutes approximately 50% of the total weight of gantry crane struc-
tures. Trabka (2014) presented ten variants of a computational model for a telescopic boom
crane that differs in the number and selection of flexible components. Modelling and numerical
simulations were conducted using the finite element method. In the study, the compatibility of
the numerical simulation results and test results of a real structure was qualitatively and qu-
antitatively assessed. Time characteristics and frequency characteristics fter application of the
discrete Fourier transformation were also analysed in the study. Posiadała and Cekus (2008)
presented one degree of freedom discrete model representing vibration of the telescopic boom
of a truck crane in the rotary plane. In the model, the influence of the hydraulic cylinder on
the crane radius change was considered. Park and Chang (2004) applied time delay control and
commandless input shaping technique, which is a modification-based on the concept of Input
Shaping Technique to increase the productivity of the boom of the telescopic handler. Lastly,
Sochacki (2007), considered the dynamic stability of a laboratory model of the truck crane. In
the study, the results in form of frequency curves for changing the geometry of the system were
presented. In this study, vibrational analyses of telescopic platforms are conducted, and these
structures are optimised to satisfy vibrational standards.
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2. Models

In this study, a telescopic platform with five booms and a maximum operating height of 24m has
been selected for modelling. The booms are modelled in two different cross-sections: rectangular
and annular. The telescopic platform which is was constructed using annular cross sectional
booms, is named the ’reconstructed structure’ in the study. All of the components of the platform
are modelled using the Pro/ENGINEER software. The model consists of the following main
parts: foundation, tower, booms, basket joint and basket. The first part that is modelled is
the foundation. The foundation is based on a 4920 × 2100mm area, and profiles with cross-
-sections measuring 80 × 160 × 6mm are used for modelling where 80mm represents height,
160mm represents width and 6mm represents thickness of the thin-walled rectangular section.
The tower is mounted on the foundation using a group of gears located in the reduction gear box.
The next part that is modelled is called the tower. The base flange of the tower has thickness
of 20mm. It consists of 16×∅17 mm holes that are used to mount the gear box. The tower can
rotate 360◦ around its axis, but its operation angle is limited to 180◦. The piston that connects
the first boom to the tower is also modelled. The properties of the five booms modelled in this
study are presented in Tables 1 and 2 for the rectangular and annular cross-section, respectively.
The solid models for the booms with rectangular and annular cross-sections are also presented
in Figs. 2 and 3, respectively.

Table 1. Dimensions of the booms with thin-walled rectangular cross-sections

Boom No. Length ℓi [mm] Cross-section [mm]

1 4580 292× 510 × 8
2 3600 250× 422 × 6
3 3600 210× 340 × 5
4 3600 170× 260 × 5
5 3600 132× 202 × 5

Table 2. Dimensions of the booms with thin-walled annular cross-sections

Boom No. Length ℓi [mm] Cross-section [mm]

1 4580 ∅340 × 12
2 3600 ∅280 × 12
3 3600 ∅232 × 10
4 3600 ∅184 × 8
5 3600 ∅132 × 8

Fig. 2. A boom with a rectangular cross-section
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Fig. 3. A boom with an annular cross-section

One of the most important components of the model is the basket joint. The basket joint
is the vital part that connects the last boom to the basket in which the worker operates. The
last component of the model is the basket in which the work operates. The basket is modelled
using ∅30 × 2.5mm round profiles. It has base area of 900 × 1500mm and height of 1120mm.
The assemblies are constructed both for rectangular and annular section booms.

3. Finite element analysis for full assemblies

After the assembled 3D solid model of the telescopic platform is obtained, it is imported into the
commercial finite element analysis software program ABAQUS for natural frequency and mode
shape analysis. The approximate mesh size of the finite element model is 100mm. The meshed
finite element model is shown in Fig. 4. Linear tetrahedral solid elements are used in the mesh
and the material properties are taken as follows:

• density: 7850 kg/m3

• Poisson’s ratio: 0.3
• modulus of elasticity: 210000MPa

Fig. 4. Finite element model

The first 10 natural frequencies are presented in Table 3. In Table 3, ’ip’ and ’op’ stand for
the in-plane (XZ plane) and out-of-plane (XY plane) mode shapes, respectively.
The source of the excitation is mainly the engine, and the origin of the excitation has been

accepted as the foundation; therefore, we conducted the forced vibration finite element analysis
by applying the force to the foundation of the platform. The operating (excitation) frequency of
the system is 12.875 Hz. This is the frequency of the system when the engine runs idle and the
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Table 3. Natural frequencies

Mode Natural frequency [Hz] Natural frequency [Hz] Mode
No. (rectangular section) (annular section) shape

1 0.2987 0.2515 ip
2 0.4196 0.2668 op
3 1.1249 1.0035 ip
4 1.6382 1.0812 op
5 4.9468 4.1055 ip
6 7.1794 4.4389 op
7 12.125 10.105 ip
8 16.929 10.988 op
9 21.803 18.631 ip
10 31.183 19.926 op

workers are working in the basket. As shown in Table 3, the natural frequency is f = 12.125 Hz,
which is very close to the operating frequency of the system. This indicates a risk of resonance
under operating conditions. Therefore, the model has been reconstructed. After reconstruction
(annular boom profile), it has been clearly revealed that there is no natural frequency close to
the operating frequency of the system, which validates the reconstruction.

4. Analytical solution for the five-boom model

For flexural modes, the boom is modelled as shown in Fig. 5.

Fig. 5. Analytical model of the boom for flexural modes

Let the deflection in the y direction be ν(z, t). The equation of vibration for the beam element
is given as

EI
∂4ν

∂z4
+ µ

∂2ν

∂t2
= 0 (4.1)

where µ is mass per unit length, ρ is mass density, A is cross-sectional area, t is time and
EI represents the flexural stiffness. As known

µ = ρA (4.2)

and

ν(z, t) = φ(z) sin(ωt) (4.3)

for harmonic motion. Substituting Eq. (4.3) into Eq. (4.1) gives

∂4φ

∂z4
− µω2

EI
φ = 0 (4.4)

The solution is

φ(z) = A cosh
λz

ℓ
+B sinh

λz

ℓ
+ C cos

λz

ℓ
+D sin

λz

ℓ
(4.5)
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where A, B, C and D are the integration constants and

λ = ℓ 4
√
µω2

EI
(4.6)

For a five-boom structure, the equations are arranged as below. The model of the booms of a
telescopic platform with a point mass at the free end is shown in Fig. 6, where M is mass of the
point mass, and J is mass moment of inertia of the point mass with respect to the x-axis for
in-plane and the y-axis for out-of-plane analysis

φi(z) = Ai cosh
λiz

ℓi
+Bi sinh

λiz

ℓi
+ Ci cos

λiz

ℓi
+Di sin

λiz

ℓi
i = 1, 2, 3, 4, 5 (4.7)

Fig. 6. Analytical model of the five-boom structure for flexural modes

Geometric boundary conditions are

φ1(0) = 0
dφ1
dz
(0) = 0 (4.8)

Transition boundary conditions are (i = 1, 2, 3, 4)

φi(ℓi) = φi+1(0)
dφi
dz
(ℓi) =

dφi+1
dz
(0)

EIi
d2φi
dz2
(ℓi) = EIi+1

d2φi+1
dz2

(0) EIi
d3φi
dz3
(ℓi) = EIi+1

d3φi+1
dz3

(0)
(4.9)

Natural boundary conditions are

EI5
d2φ5
dz2
(ℓ5)− ω2J

dφ5
dz
(ℓ5) = 0 EI5

d3φ5
dz3
(ℓ5) + ω2Mφ5(ℓ5) = 0 (4.10)

For torsional modes, the boom is modelled as shown in Fig. 7.

Fig. 7. Analytical model of the boom for torsional modes

Let the twist angle about the z-axis be ϕ(z, t). The equation of vibration for the beam
element is given as

ϕ = ϕ(z, t) GC
∂2ϕ

∂z2
= ρIp

∂2ϕ

∂t2
(4.11)

where GC is the torsional stiffness related to Saint-Venant’s principle. For harmonic motion,
substituting Eq. (4.12)1 into Eq. (4.11)2 gives Eq. (4.12)2

ϕ = θ(z) sin(ωt) c2
∂2θ

∂z2
+ ω2θ = 0 (4.12)
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where

c2 =
GC

Ip
(4.13)

The solution is

θ(z) = A sin
ωz

c
+B cos

ωz

c
(4.14)

where A and B are the integration constants. For the booms of the telescopic platform

θi(zi) = Ai sin
ωzi
ci
+Bi cos

ωzi
ci

c2i =
GCi
ρ(Ip)i

i = 1, 2, 3, 4, 5 (4.15)

Geometric boundary conditions are

θ1(0) = 0 θi(ℓi) = θi+1(0) i = 1, 2, 3, 4 (4.16)

Transition boundary conditions are

GCi
dθi
dz
(ℓi) = GCi+1

dθi+1
dz
(0) i = 1, 2, 3, 4 GC5

dθ5
dz
(ℓ5) = 0 (4.17)

The results of the finite element analysis and analytical solutions for both rectangular and
annular cross-sectional five-boom systems are given in Tables 4-7. In Table 4, ’ip’ and ’op’ stand
for the in-plane and out-of-plane mode shapes, respectively. The value of the point mass is
200 kg, which is the sum of masses of the basket and the worker. The discrepancies in Tables
have been calculated according to the formula given below

Dis. [%] =
Analytical − FEA
Analytical

· 100

Table 4. Flexural natural frequencies for rectangular cross-sections

Rectangular section Rectangular section Rectangular
Mode
shape

(five-boom without (five-boom with section
point mass) point mass) (full assembly)

FEA Analytical Dis. [%] FEA Analytical Dis. [%] FEA

0.3045 0.3134 2.84 0.2987 ip
0.4286 0.4425 3.14 0.4196 op

1.3610 1.4180 4.02 1.1529 1.1924 3.31 1.1249 op
2.0196 2.1049 4.05 1.6864 1.7486 3.56 1.6382 op
5.1049 5.3411 4.42 5.1198 5.3358 4.05 4.9468 op
7.4014 7.7389 4.36 7.4375 7.7484 4.01 7.1794 op
12.027 12.649 4.92 12.291 12.884 4.60 12.125 op
17.324 18.258 5.12 17.714 18.629 4.91 16.929 op
22.285 23.643 5.74 22.862 24.182 5.46 21.803 op
31.995 34.076 6.11 32.811 34.881 5.93 31.183 op
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Table 5. Flexural natural frequencies for annular cross-sections

Annular section Annular cross-section Annular
(five-boom without (five-boom with cross-section
point mass) point mass) (full assembly)

FEA Analytical Dis. [%] FEA Analytical Dis. [%] FEA

0.2549 0.2691 5.28 0.2515
1.2790 1.3410 4.62 1.0224 1.0745 4.85 1.0035
4.4066 4.6309 4.84 4.2253 4.4469 4.98 4.1055
10.366 11.010 5.85 10.425 11.134 6.37 10.105
19.119 20.419 6.37 19.339 20.875 7.36 18.631
31.444 33.434 5.95 31.584 33.926 6.90 30.105
48.990 52.014 5.81 48.927 52.673 7.11 46.439
65.911 70.520 6.54 65.163 71.154 8.42 61.458

Table 6. Torsional natural frequencies for rectangular cross-sections

Rectangular Rectangular
cross-section cross-section

(five-boom model) (full assembly)
FEA Analytical Dis. [%] FEA

61.67 63.71 3.20 60.5784
110.96 112.10 1.02 105.988
167.98 169.81 1.08 156.036
214.76 230.28 6.74 190.169

Table 7. Torsional natural frequencies for annular cross-sections

Annular section Annular section
(five-boom model) (full assembly)

FEA Analytical Dis. [%] FEA

76.44 79.47 3.81 74.7758
135.92 140.40 3.19 129.100
204.09 210.30 2.95 186.386
273.28 282.68 3.33 233.853

5. Experimental modal analysis

To conduct forced vibration analysis using the finite element method, we need to determine
the excitation force of the system. Due to the restrictions regarding the construction of the
telescopic platform, it is impossible to locate a force transducer to measure the excitation force
of the system. Instead, we measure the acceleration values of the foundation and basket. Then,
we conduct a series of forced vibration analyses using the finite element method to satisfy these
acceleration values measured at certain points using sensors on the platform. Thus, we obtain the
excitation force value required to further reconstruct the structure. The positions of the sensors
on the system are shown in Fig. 8. A B&K 4524B triaxial CCLD piezoelectric accelerometer with
frequency range of 0.25-3000 Hz and sensitivity of 100mV/g has been used in the experiments.
FFT analyses are conducted for 0-100Hz (800 lines – 0.125Hz resolution) with sampling rate of
256Hz (256 samples per second).
The first triaxial accelerometer is located on the connection part between the foundation

and the tower so we obtain the acceleration data for the foundation to create the simulation



Analytical and experimental vibration analysis of telescopic platforms 49

Fig. 8. Locations of the sensors on the foundation and basket

of forced vibration analysis. Secondly, another triaxial accelerometer is located on the floor of
the basket to obtain the acceleration data for the basket in order to use in the forced vibration
simulation. These data obtained by the measurements on the foundation and basket are then used
as reference values in the forced vibration analysis, and a series of forced vibration simulations
are carried out to satisfy these reference values. The correct excitation force value is detected
when we reach the same values on the foundation and basket as the reference values. This
excitation force value which is obtained from forced vibration simulations is then used in the
forced vibration simulation of the reconstructed platform model (annular boom profile). Thus,
both models have been excited by the same and correct excitation force for the forced vibration
simulations.

The results of spectral analyses of the acceleration data obtained by the sensors on the
foundation and basket are shown in Figs. 9 and 10.

Fig. 9. Spectral analysis of foundation vibration of the telescopic platform: (a) X direction,
(b) Y direction, (c) Z direction
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Fig. 10. Spectral analysis of basket vibration of the telescopic platform: (a) X direction,
(b) Y direction, (c) Z direction

The main units written at the top of the axes in Fig. 9 and Fig. 10 are m/s2. 2m means
2mm/s2 where m stands formm. 500u means 500µm/s2 where u stands for µm.
Using the results of spectral analysis, the acceleration values at the operating frequency have

been determined. They are presented in Table 8.

Table 8. Experimentally obtained acceleration values at the operating frequency

Direction
Foundation Basket
]mm/s2] [mm/s2]

X 5.004 9.173
Y 24.455 5.494
Z 2.203 19.532

Having realised the forced vibration analysis using the finite element method to satisfy the
acceleration values, the distributed excitation force is determined to be 8.52 · 10−6 ton/mm2
(0.0836MPa). This force has been used to analyse both assembly models (with rectangular and
annular boom profiles).

6. Conclusions

In this study, vibrational analysis of a telescopic platform has been conducted. This structure has
been reconstructed to satisfy vibrational standards (applying to the industrial safety regulations)
and shift resonance frequencies. The vibrational analyses are conducted using solid modelling,
finite elements and an analytical method. The results of the analysis are also verified using the
experimental modal technique.
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The operating (excitation) frequency of the system is 12.875 Hz. The table of natural frequ-
encies of the original model indicates that there is a natural frequency value of 12.125 Hz that
is very close to the operating frequency of the system. This reveals a risk of resonance under
operating conditions. After reconstruction, it has been clearly revealed that there is no natural
frequency close to the operating frequency of the system, which validates the reconstruction.
Although it is impossible to locate a force transducer on the system and to measure the

acting force, the distributed force has been determined to be 8.52 · 10−6 ton/mm2 (0.0836MPa)
using experimental modal analysis by taking the acceleration values obtained experimentally into
account. We measured the accelerations in different points of the system and then conducted
a series of forced vibration finite element analyses with different force values until we achieved
the acceleration values obtained by the experiments. This force value can be used in any modal
analysis of this model.
By examining the related standard, it has been observed that the acceleration values on the

basket are very high for workers. After the reconstruction, we observed a significant reduction
in the acceleration values. The acceleration values on the basket before and after reconstruction
are presented in Table 9. According to the related standard (ISO 2631), which defines the
maximum allowed acceleration values for a worker, the acceleration values on the basket after
reconstruction stay considerably under the limits for the operating frequency.

Table 9. Comparison of acceleration values on the basket

Direction
Rectangular cross-cection Annular cross-section
(original) [mm/s2] (reconstructed) [mm/s2]

X 9.597 1.358
Y 5.709 1.267
Z 20.636 3.528

Tables 4-7 indicate that five-boom analytical models can be accepted instead of full assemblies
because parts other than the booms have little effect on the frequencies. Therefore, we can agree
that the telescopic platform can be taken as a connection of beams with varying cross-sections for
frequency calculations. The results also show that the point mass, which replaces the masses of
the basket and workers in the analytical model, causes very little difference on natural frequencies
but only changes the mode shapes. The point mass has no effect on torsional modes.
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In this article, a 3-link kinematic model of a human leg is defined and analyzed with focus on
optimizing the manipulability. The forward kinematics for the leg is used to define quantita-
tive measures of the manipulability and workspace in a sagittal plane. Analytical results for
different manipulability indices are derived. Using numerical optimization in Matlab packa-
ge, the manipulability measure is optimized under different constraints. The range of motion
and joint comfort zones of every joint is defined. The algorithm for redundant chain, based
on analytical equations, is proposed in inverse kinematics.

Keywords: inverse kinematics, human leg, optimization

1. Introduction

The inverse kinematics of a human leg is the mapping that, given a goal position, calculates a set
of joint positions so as to place the human leg effector (e.g. toe) in the specified goal. It is very
important in the rehabilitation process. In this work, we present the main concerns on finding
an inverse kinematics algorithm for a 3 link kinematic leg in plane. The work is divided into
two parts: the first one, describing the analytical method for solving inverse kinematics, and the
second one about the numerical method by using Matlab package. Inverse kinematics algorithms
have been an issue to focus on since the first robots vave been built. The most popular methods
have been the analytical ones (Parker et al., 1989), but an exact solution does not always exist.
Therefore, sometimes alternative methods are used as interval methods (Rao et al., 1998), based
on distances (Porta et al., 2006), genetic algorithms (Parker et al., 1989), or based on neural
networks (Tejomurtula and Kak, 1999). This paper presents a numerical approach to solve the
problem of multiple inverse kinematic solutions of a 3-link redundant manipulators (like the
model of a human leg) to find a single optimum solution. A simulation model of this approach
has been developed and computer simulations have been conducted by using Matlab package.
The movement of the hip joint has not been implemented in the proposed algorithm, whereas it
can be significant and should be included in the future studies. For people with injured spinal
cord, the most important is verticalization. The authors treated the hip as stationary. Future
work can be done in this direction by extending this approach to the 3 dimensional model with
an increased number of links and joints. The described approach is simple and very fast in nature
while solving inverse kinematics in comparison with genetic algorithms.

2. Kinematic model of the leg

The human structure is constituted by a skeleton and a number of muscles, which are col-
lectively called the human musculoskeletal system. The human skeleton is a framework that
consists of more than 200 bones (Gu, 2013). The movements of parts of the human body are
presented in Fig. 1. Circumduction is a circular movement that combines flexion/extension,
abduction/adduction.
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Fig. 1. Human joint movement. Reproduced from [9]

2.1. Model of the human leg

The proposed kinematic human leg model, in a sagittal plane, which passes from anterior
to posterior, dividing the body into right and left halves, is presented in Fig. 2. The system
of articulated links connected by rotatory joints are adopted to illustrate the human leg in
this study. The leg is described as a system consisting of three segments, thigh, shank and
foot as the length between ankle and metatarsal. The leg can be represented topologically
using a kinematic chain structure in which links represent leg segments. The proposed model is
kinematically redundant, because it possesses more degrees of freedom than those required to
place the effector in a specified goal. To obtain the kinematic parameters, we make the following
assumptions:

• The leg base is located at the origin C(xC , yC) (hip joint), the knee joint G(xG, yG), the
ankle joint K(xK , yK) and end effector (metatarsal) O(xO, yO), respectively;

• Lengths of links are calculated as a function of human height H [m], thigh bone
lt = 0.2450H, shank ll = 0.2460 H, length from ankle to metatarsal lf = 0.0577 H;

• Joints are revolute and the limitations θh, θk, θa are known;
• The initial joint angles θh, θk, θa are known;
• The coordinates of the goal are given.

2.2. The range of motion and comfort zone

The range of motion (ROM) of every joint is determined not only by the mechanical structure,
but also by many human factors, such as the use, body build, gender, health condition, age and
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Fig. 2. Model of the human leg in a sagittal plane

many other factors (Chaffin and Andersson, 1991). The comfort zone (CZ) of each joint of the
human leg, should be a subset of the corresponding joint ROM. Table 1 lists those average joint
ROM’s and the comfort zones just as a reference. The appropriate value of the upper-lower limit
of each comfort zone is calculated by 0.35× the upper or lower limit of the corresponding human
leg joint ROM. All the ROM data in the table are referred to the literature of biomechanics and
kinesiology as average ranges (Tejomurtula and Kak, 1999). The comfort zone of each joint is
determined by 35% of the ROM values, and the comfort center θCi for each joint angle θi can be
obtained as

θCi =
1
2
(θuiCZ − θliCZ) + θhi (2.1)

where θuiCZ and θ
l
iCZ are the first and second angles of the comfort zone, respectively, for the

corresponding joint i, and θhi is the i-th joint home position. For example, θa is the joint angle of
ankle plantarflexion/dorsiflexion with its home position θha = 0

◦ (knee neural 0◦). According to
Table 1, θuaCZ = 13.30

◦ and θlaCZ = −12, 25◦. The ankle comfort zone plantarflexion/dorsiflexion
joint can be calculated as θCa = (13.30

◦+12.25◦)/2−0◦ = 12.78◦. This calculation can be useful
to set up the joint comfort optimization criterion in trajectory generation.

Table 1. The average joint ROM’s and joint comfort zones

Joint ROM Comfort zone Conditions
mobility [deg] [deg] when

Hip 113/ − 45 39.55/ − 15.75 knee neutral 0◦
flexion/extension 90/ − 30 31.50/ − 10.5 knee flex 90◦

Knee flexion

113 (stand) 39.55
125 (prone) 43.75 hip neutral 0◦

159 (knee) 55.65
80 (stand) 28.00 hip flex 90◦

Ankle plantarflexion 38/ − 35 13.30/ − 12.25 knee neutral 0◦
dorsiflexion 36/ − 33 12.60/ − 11.55 knee flex 90◦

2.3. The trajectory planning

Seeking the joint trajectories of the human leg is a wide research problem. In this article,
the proposed method is based on the fifth degree polynomial. One of the advantages of this
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polynomial is that the velocity and acceleration at the beginning and at the end of motion is
zero. To start, it is necessary to determine the function for each natural coordinate in the initial
position for the moment in time t0 and end at the time tk. By using the fifth degree polynomial,
it is essential to plan the velocity and acceleration at the beginning and the end of the movement.
The fifth degree polynomial takes the form

θ(t) = s0 + s1t+ s2t2 + s3t3 + s4t4 + s5t5 (2.2)

with restrictions

θ(0) = θp θ(tk) = θk θ̇(0) = θ̇p

θ̇(tk) = θ̇k θ̈(0) = θ̈p θ̈(tk) = θ̈k

then we receive

θp = s0 θk = s0 + s1tk + s2t2k + s3t
3
k + s4t

4
k + s5t

5
k

θ̇p = s1 θ̇k = s1 + 2s2tk + 3s3t2k + 4s4t
3
k + 5s5t

4
k

θ̈p = 2s2 θ̈k = 2s2 + 6s3tk + 12s4t2k + 20s5t
3
k

(2.3)

where the final formula takes form of



s0
s1
s2
s3
s4
s5




=




1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t

3
0

1 tk t2k t3k t4k t5k
0 1 2tk 3t2k 4t3k 5t4k
0 0 2 6tk 12t2k 20t

3
k




−1 


θ0
θ̇0
θ̈0
θk
θ̇k
θ̈k




(2.4)

2.4. Forward kinematics and the workspace

By using the forward kinematics, it is possible to determine the position and orientation of the
end effector. There are several methods to resolve this problem from geometrical to analytical
by using homogeneous transformation matrices method and Denavit-Hartenberg’s systematic
representation of reference systems (Głowiński et al., 2015). Our kinematic model of the leg is
in the sagittal plane, then one can easily extract its direct kinematics parameters

xO = lt cos θh + ll cos(θh − θk)− lf sin(θh − θk − θa)
yO = lt sin θh + ll sin(θh − θk) + lf cos(θh − θk − θa)

r =
√
x2O + y

2
O r1 =

√
l2t + l

2
l + 2ltll cos θk r2 =

√
l2l + l

2
f + 2lllf sin θa

θk = αl − βl θa = γl − βl −
π

2
θf = π − γl

(2.5)

The workspace is an important performance index of a human leg in the rehabilitation
process. This workspace can be divided into two categories: the position workspace and the
orientation angle workspace. The position workspace indicates the region reached by the refe-
rence point on the end-effector. The orientation angle workspace indicates a set of angle ranges
by which the end-effector can reach with certain orientation for any point within the reachable
position workspace. The workspace coordinates of the human leg including n-joints constraints
can be obtained by using formulas

x =
n∑

i=1

li cos

(
i∑

p=1

θp

)
y =

n∑

i=1

li sin

(
i∑

p=1

θp

)
(2.6)



An inverse kinematic algorithm for the human leg 57

Figure 3 shows the leg workspace in the sagittal plane of a 1.75m height person, with
joint constraints. This workspace is characterized in a half cross-section by singular curves. The
workspace topology is defined by the number of cusps and nodes that appear on these singular
curves.

Fig. 3. The human leg workspace for the constrained optimization problem

3. Algorithm approach to solving the inverse kinematics and obtaining the
trajectory of the human leg

In inverse kinematics we want to find the set of joint angles that produce a specific end-effector
position. If we have a configuration of our model, and we want to move it to a new position, then,
we want to compute the change in the joint angles needed to produce the change in endpoint
position. In Fig. 2a it is assumed that it is not straightforward to obtain the inverse kinematics
of a simple 3-joint leg model. If we know the orientation (e.g. the foot angle θf ) and the final
position, it is possible to obtain analytical solutions by using formulas

θk = arccos
(xO − lf sin θf )2 + (yO − lf cos θf )2 − l2t − l2l

2ltll

θh = arctan
yO − lf cos θf
xO − lf sin θf

+ arccos
l2t − l2l + (xO − lf sin θf )2 + (yO − lf cos θf )2

2lt
√
(xO − lf sin θf )2 + (yO − lf cos θf )2

θa = θh − θk − θf +
π

2

(3.1)

If we do not know the orientation, there is an infinite number of solutions. Thus, the numerical
methods appears to be acceptable.

3.1. Formulation of the optimization problem

When dealing with a redundant manipulator, as the proposed leg model has more degrees
of freedom than necessary to perform a certain task, the remaining degrees of freedom give a
set of feasible solutions of the inverse kinematics. Among these solutions, it is recommended to
choose thst satisfying a certain criterion. The main goal is to find the compromising solutions
between several criteria. The criteria can be formulated as ROM and the distance between the
goal and end the effector. One of the criteria used in inverse kinematics algorithms is to restrict
joint limits. This can be done by optimizing a potential function with very high values in the
neighbourhood of a limit. This function can be expressed as

w(θ) =
1
2n

n∑

i=1

(θi,max − θi,min)2
(θi,max − θi)(θi − θi,min)

(3.2)
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where n is the number of joints. This function gives, as we can see in Fig. 4, a very high potential
when approaching the knee joint limit, and the minimum value at the midpoint.

Fig. 4. The rise of the potential function when approaching knee joint limits

The next criterion can be formulated as a distance, where O(xO, yO) represents the goal

xO − [lt cos θh + ll cos(θh − θk)− lf sin(θh − θk − θa)] < 0.0001
yO − [lt sin θh + ll sin(θh − θk) + lf cos(θh − θk − θa)] < 0.0001

(3.3)

A general formulation of the optimization problem would be

min
θ
f(θ) such that c(θ) < 0 and ceq(θ) = 0 (3.4)

In formulation (4.4) θ is the vector of optimization variables, c and ceq are vectorial functions
involved in the inequality and equality constraints, respectively. The optimum angles of joints
are defined as θh,opt,θk,opt, θa,opt. They can be personalized for each person. Problems without
any constraint c and ceq are called unconstrained while the others are constrained. The objective
function f(θ) should be minimized and it is based on the comfort zone of every joint, and can
be expressed as

f(θ) =
( θh − θh,opt
θh,min − θh,max

)2
+
( θk − θk,opt
θk,min − θk,max

)2
+
( θa − θa,opt
θa,min − θa,max

)2
(3.5)

By using Matlab package, it is possible to use different solvers depending on the objective
function and constrains. In his problem, the constrains are nonlinear and the objective function
is quadratic, then the best fit solver is fmincon.

3.2. Inverse kinematics algorithm

In Fig. 5, the inverse kinematics algorithm is illustrated. The algorithm is divided into four
steps. The first step begins by initialization. It is necessary to determine the height H of a
subject and calculate length of thigh lt, shank ll and foot lf as the height function. The next
part of this step is the determination of the initial hip, knee and ankle angles, respectively, θh,
θk, θa, and calculation of the initial effector position by using forward kinematics (3.1). Next,
with joints constraints and formulas (3.2) the workspace and the comfort zone of each joint
should be designated. In the second step, the end position coordinates should be given. The
program checks whether the final coordinates are in the workspace. If not, it is necessary to find
new coordinates. The third steps of the optimization begins by using Matlab package fmincon
solver. The solution is a matrix with three angles in the final position. The angles are the most
comfortable with taking into account the comfort zone of each joint. If the result is not satisfied,
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the next optimization should be done, or the comfort zone calculated properly. In the fourth
step, the maximum velocity, acceleration and the minimum time of movement is determined.
After that step, the trajectory by using fifth degree polynomial (2.4) can be obtained.

Fig. 5. The inverse kinematics algorithm

4. Results

For a 1.75m person height, the initial angles are obtained as θhi = 86◦, θki = 17◦, θai = −6◦.
From forward kinematics (3.1), the end-effector coordinates are calculated as A(xO = 0.089,
yO = 0.856). If we know the final point as C(xf = 0.4, yf = −0.4), based on the provided
algorithm and the determined optimal angles, the final angles are calculated as θhf = 17◦,
θkf = 108◦, θaf = −6◦. Then by using fifth degree polynomial (2.2), the trajectory can be
determined. Figure 6 shows the visualization and the angles, angular velocity and acceleration
of each joint. The time of motion is 2 s. The maximum angular knee joint velocity is about 80◦/s,
whereas acceleration 140◦/s2. It is acceptable from the biomechanical point of view (Głowiński
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et al., 2015). The generated result shows high similarity between the model motion and the real
human leg motion.

Fig. 6. Graph presenting displacement, angular velocity and acceleration for the fifth degree polynomial
describing motion of the human leg between the two positions, human leg model displacement (a),

hip (b), knee (c), foot (d)

From Fig. 6, it is observed that the final leg position is close to the target points
C(xf = 0.4, yf = −0.4). The proposed methodology has been validated for different starting
points and the results satisfied the criteria. Repeatability is a significant issue in our algorithm.
It is very important for the user that the Matlab solver behaves consistently and is not sensitive
to changes in the starting point.

5. Conclusion

In this paper, an approach for modelling and simulation of the human leg inverse kinematics
is presented. When planning the trajectory of the human leg, which will be used for rehabi-
litation, individual patient capabilities need to be taken into consideration. This can be done
by a preliminary study. Subsequently, the physician selects exercises depending on disease. It
is particularly important after stroke with spasticity. As mentioned earlier, it should be noted
that this study is limited to analysis of movements in the sagittal plane. Further investigations
are thus needed in order to generalize our findings to other planes.
When planning the trajectory, significant simplifications are being made by assuming the

maximum acceleration values for each degree of freedom. If the maximum acceleration values
are improperly selected, this can lead to the possibility of exceeding human joint limits. From
the presented simulation results, the best method for path planning is a fifth degree polynomial.
According to the simulation results, it is decided to improve the mechanical construction. In real
situations, for particular real exercises, there are much more parameters needed to be considered
in the modelling, for example, the inserted force or the stability criterion. Further experiments
are to be carried out in order to verify the modelling results in experiments.
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This paper presents analytical methods for determination of the curve for a high-cycle fa-
tigue. It has been found based on qualitative and quantitative verification that the error
introduced by these methods can be as large as 3-fold length of the experimental life. In
addition, the wrong result can lay on either the safe or the unsafe side with equal probability.
Therefore, an analytical-and-experimental (hybrid) method has been proposed. Verification
of computed characteristics vs. experimental data demonstrated that the “proprietary” pro-
posal reduced the error. In addition, an approximate error depending on the number of
experiments has been determined based on the computations.

Keywords: fatigue design, S-N curve, high-cycle fatigue, accelerated method

1. Introduction

While designing a new component of a machine, the designer has to give it correct dimensions.
Typically, the part is exposed to loads variable in time, which can produce fatigue failure. This is
why the fatigue life of the component is determined by means of computations. Before the com-
putations can be made, fatigue characteristics of the material or component has to be available,
such as that provided by Skibicki et al. (2012). Because this information is typically unavailable
at the preliminary computation phase, analytical methods are used to determine these charac-
teristics based on static properties of the material or based on characteristics available for a test
specimen of different geometry, an example of which can be found in Tomaszewski et al. (2014).
The references describe many such methods but their authors fail to describe the possible error
inherent to the method. Note further that the resulting fatigue characteristics predict the point
of destruction of the component with a 50% probability whereas, for design purposes, engineers
use plots featuring a 95% or higher probability factor. An appropriate coefficient is used to
bring the fatigue characteristics to the required level of reliability. The following points describe
a method for determining this coefficient.
The approach described in the FITNET procedure, documented in the report by Kocak et

al. (2006) is one of the latest analytical methods used to determine fatigue characteristics. The
main assumption underlying the algorithm is the determination of the fatigue limit for a material
consisting of multiplication of the material tensile strength by an appropriate coefficient. The
basic number of cycles adopted for the method is 106 cycles (same as in the remaining methods
described in the literature). However, for the limited life, the method uses slope coefficients
m = 5 for normal stress and m = 8 for shear stress. See a diagram of the algorithm in Fig. 1a.
Another of the discussed methods is the one proposed by Lee et al. (2005). This approach

assumes that 2 points on the plot are required for the determination of fatigue characteristics:
the fatigue limit for the basic 106 cycles for steel and the fatigue for 103 cycles. See Fig. 1b for
the illustration of the method.
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Fig. 1. S-N characteristics according to: (a) FITNET method, (b) Lee and Taylor’s method,
(c) Schijve’s method and (d) method by Stephens et al. (2001)

Another approach described in the literature is the one proposed by Schijve (2009). As in the
previous method, again, 2 points are required for the determination of fatigue characteristics: the
fatigue limit Sfk for the basic 106 cycles (Nknee) for steel and the fatigue life for 102 cycles (Nup).
The author of the method claimed that the value adopted as the material tensile strength Su
less than the mean stress Sm was a good approximation. See Fig. 1c for a schematic description
of the procedure.
One more approach discussed in this paper is the method proposed by Stephens et al. (2001).

It is based on setting 2 points: the fatigue life for an unlimited life Sf and the strength for one
loading cycle A. The value of A can be determined experimentally using Basquin’s equation or
be adopted as the value of the actual tensile strength σf (breaking force on elongation divided
by the minimum cross sectional area on rupture). If the foregoing information is not available,
A can be equal to the material tensile strength (see Fig. 1d) for a schematic procedure for the
estimation of the fatigue characteristics.
The last of the presented methods is the “proprietary” one. In this approach, the determina-

tion of the fatigue limit is based on the method described in the FITNET procedures while the
value of the straight line slope coefficient within the limited life range is computed as follows

meσ =
log 10

6

NRe

log 0.9ReσWK

NRe = 400
( Re
Rm

)−10
(1.1)

where Rm is tensile strength, Re – yield point.
The proprietary method of analytical determination of the Wöhler diagram is shown in

Fig. 2. See the paper by Strzelecki and Sempruch (2012) for a more detailed description.
The solid line represents the fatigue plot for the 50% probability and the dashed line defines

the characteristics for the target probability. A plot featuring the probability different than 50%
is obtained by multiplying the fatigue limit (σWK , τWK) by the coefficient CR (Table 1).



Verification of analytical models of the S-N curve... 65

Fig. 2. S-N characteristics according to the proprietary method

Table 1. Value of the coefficient of reliability for different levels of reliability

Reliability CR

0.9 0.897
0.95 0.868
0.98 0.836
0.99 0.814
0.999 0.753
0.9999 0.702

The method for obtaining these values is described in the paper by Strzelecki and Sempruch
(2013). Note that the values of CR obtained by the authors are based on the normal distribution
of the fatigue limit and the coefficient of variation is equal to 0.08 (value proposed in the
literature).

2. Analytical verification of methods for approximate determination of the
characteristics

Because the literature is silent on the error made while using the analytical methods described in
the foregoing Section, the authors decided to verify these algorithms. The qualitative verification
was based on the determination whether the estimated characteristics fits within the safe zone
or not. See Fig. 3 for a sample diagram used for the evaluation of these methods.

Fig. 3. Diagram for steel S235JR (Robak et al., 2012) (black line) vs. characteristics obtained by
analytical methods: sample diagram illustrating the qualitative evaluation of the characteristics

Where the estimated characteristic was positioned within the safe zone (the dashed part of
the diagram), the estimated life of the material was identified with the “+” sign. Otherwise, the
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sign was negative (“−”). However, if the characteristics laid on the safe side but shifted to the
unsafe side, it was marked with the “+/−” signs. If vice versa, the signs was reversed to “−/+”.
For the “+/−” case, the fatigue limit was found to lay on the safe side but the slope coefficient of
the analytical characteristics was smaller than the value determined based on the experimental
data. But when the case was flagged with the “−/+” signs, the method overestimated the fatigue
limit, but the resulting slope coefficient was larger than the experimental value. See Table 2 for
the results of verification for smooth samples made of 71 grades of steel.

Table 2. Results of qualitative verification of analytical methods

Evaluation Method
sign FITNET Lee & Taylor Schijve Stephens et al. Proprietary

+ 6/8% 21/30% 17/24% 28/39% 32/45%
+/− 33/46% 20/28% 3/4% 0/0% 9/13%
−/+ 0/0% 6/8% 8/11% 26/37% 6/8%
− 32/45% 24/34% 43/61% 17/24% 24/34%

In order to verify the procedural algorithm in quantitative terms, the authors determined
the strength of the specified material for the life of 105 cycles based on the fatigue characteristics
taken from the literature and, then, determined the material life for the known stress based on
the characteristics determined using the specified method. See Fig. 4 for an illustration of the
procedure.

Fig. 4. Fatigue plot for steel S355J0 (Ligaj and Szala, 2010) and fatigue plot account to FITNET:
presentation of the method of computation of the estimation error of the analytical method

The error was computed using the difference between the logarithmized life obtained for the
experimental characteristics (Ne – value for 105 cycles) and the logarithmized life determined
using the analytical method Np. The determination of this value was written with

Bl = logNe − logNp Bl = log
Ne
Np

(2.1)

Note that there were cases when the value of the fatigue limit determined by the analytical
method was larger than the material strength for 105-cycle life based on the experimental cha-
racteristics. In this case, the straight line from the limited life range was extended until it
provided the target stress value. In such a case, the life Np was longer than 106 cycles.
Based on the value of the error computed using equation (2.1)2, the authors determined the

normal distribution (i.e., mean and standard deviation) for this error for each of the methods
listed in Table 3. In addition, the table presents the results of the Shapiro-Wilk test for the
normality of distribution performed using application R, v. 2.15.3, 64-bit.
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Table 3. Quantitative verification results

Normal distribution Values obtained by the
Method values Shapiro-Wilk test

µ-mean σ-SD µ-mean

FITNET −0.4874 0.3920 0.9838 0.4744
Lee & Taylor −0.1603 0.8597 0.9725 0.1208
Schijve −0.5201 1.0915 0.9817 0.3888

Stephens et al. 0.0767 1.5589 0.9854 0.5821
Proprietary 0.1676 0.8574 0.9814 0.3760

To illustrate the distribution of the error generated by each method, the distributions were
overlaid on the plot of the density of probability (Fig. 5).

Fig. 5. Plot of the function of density of errors for the individual methods

3. Analytical and experimentala metod

Considering that the qualitative and quantitative verification presented in Section 2 showed that
the analytical methods can generate significant errors, the authors decided to propose a hybrid
solution. It consists of setting the characteristics using an analytical method and, then, correcting
the accuracy of life determination by carrying out a “simplified” experiment. This simplified
experiment consists of determining an experimental point within the limited life range for the
strength corresponding to 105 cycles based on the analytical characteristics. The schematic
procedure is illustrated in Fig. 6. Note that 3 fatigue tests were carried out and arithmetic mean
was computed for the tests to determine the point in support of the analytical method.

Fig. 6. Schematic presentation of the experimental support for the analytical method
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4. Experimental verification of the proposals

To verify the proposals presented in the foregoing sections, the authors carried out an experiment
consisting of plotting the fatigue of materials C45+C (as delivered) and 42CrMo4 (toughened).
The static properties of the materials are presented in Table 4. The fatigue properties under
high-cycle loading were determined using a device for rotating bending based on a proprietary
design presented and verified in the authors’ paper (2012).

Table 4. Static properties of the materials tested

Property
Material

C45+C 42CrMo4

Rm [MPa] 826 1172
Re [MPa] 647 1095
HRC 21.1 32.7

The tests were conducted on smooth and circumferentially notched samples. The drawings
of the samples are shown in Fig. 7 and the diagrams based on the data obtained from the
experiments are presented in Fig. 8.

Fig. 7. Test samples: (a) smooth, (b) notched

5. Verification results

To verify the accuracy of application of the reliability factor described in Section 1 used to
generate the fatigue plot by the analytical method for the required level of probability, Fig. 9
presents plots obtained for the experimental data and characteristics obtained by the analytical
method for the 50% and 95% probabilities of survival.
The analytical and hybrid methods were verified in accordance with the methodology de-

scribed by Park and Song (1995). The following equations (Park and Song, 1995) are used to
estimated the quantitative conformity of the analytical characteristics to the experimental plot

Ef (s) =
1
s ¬

Np
Nf
¬ s

n

Ea =
(1− |α|) + (1− |1− β|) + (1− |1− α− β|) + (1− |1− r|)

4

(5.1)

where: Np – life obtained by the application of the verified characteristics, n – number of expe-
rimental points, α – free term in the equation for simple regression for the verified method,
β – slope coefficient for the regression line for the verified method, r – correlation coefficient for
the regression line for the verified method.
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Fig. 8. The resulting fatigue characteristics for: (a) material C45+C, smooth sample,
(b) material C45+C, notched sample, (c) material 42CrMo4, smooth sample, (d) material 42CrMo4,

notched sample

The value of Ef (s) ranges from 0 to 1 and stands for the number of points determined by the
analytical method, located within the specified scatter band. On the other hand, the maximum
value of Ea is 1 but the quantity has no lower limit. The last relation defines the matching of the
straight line estimated from the points obtained by the analytical method to the ideal straight
line assuming that the experimental life is equal to the estimated life. Table 5 shows the results
of computations for the foregoing analytical methods.

For instance, Fig. 10 shows the subsequent plots based on the FITNET method and on the
experimental characteristics.

The following equation (Jakubiec and Malinowski, 1996) was used to perform statistical
analysis aiming at the determination of the error made using the analytical method and the
analytical-experimental (hybrid) method based on experimental values, i.e., the measurement of
hardness, tensile strength Rm, yield point Re, life determined within the limited strength range
(mean from 3 measurements) and fatigue limit determined with the LOCATI method

Bp =

√
( ∂f
∂x1

)2
∆x21 +

( ∂f
∂x2

)2
∆x22 + · · ·+

( ∂f
∂xn

)2
∆x2n (5.2)

where: f – equation of the function defining the value of the quantity being determined, ∆xn –
standard deviation of the n-th measured value, xn – n-th quantity measured in an intermediate
measurement.
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Fig. 9. Fatigue plots: experimental (black line), analytical (grey line) and set off to the 95% reliability
level for the analytical method (dark grey line) for: (a) material C45+C, smooth sample,

(b) material C45+C, notched sample, (c) material 42CrMo4, smooth sample, (d) material 42CrMo4,
notched sample

Table 5. Values of coefficients Ef and Ea for the analytical and analytical-experimental methods
for the tested materials

Material
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C45+C Ef (3) 0.64 1.0 0.27 0.46 0.95 0.95 0.41 0.46
Ea −0.34 0.75 0.09 −0.83 0.46 0.73 −0.37 −0.83

42CrMo4 Ef (3) 0.09 1.0 0.06 0.36 0.82 1.0 0.58 0.58
Ea −0.91 0.7 −0.71 −2.38 0.41 0.79 −0.38 −0.37

C45+C Ef (3) 0.0 0.39 0.44 0.56 0.5 0.56 0.5 0.56
notched Ea 0.22 −2.2 −0.57 −2.1 −1.33 −2.46 −0.81 −2.10
42CrMo4 Ef (3) 0.0 0.0 0.0 0.2 0.23 0.34 0.09 0.4
notched Ea −0.95 −1.6 0.05 −1.46 −0.05 −0.57 0.26 −0.35



Verification of analytical models of the S-N curve... 71

Fig. 10. Characteristics for: (a) material C45+C, smooth sample, (b) material 42CrMo4, smooth
sample, (c) material C45+C, notched sample, (d) material 42CrMo4, notched sample; solid line –
experimental characteristics, dotted line – FITNET method, dashed line – FITNET method with

experimental support

The proposed method determining the material life is emploed to make the computation
using the foregoing equation based on the following relationship

N =
( Z
σa

)
log

N0
400(Re/Rm)−10

log
0.9Re
Z N0 (5.3)

For the notched samples, the method of determining the life is expressed as follows (Strzelecki
and Sempruch, 2013)

N =
(Zk
σa

)
log
N0
103

logZ+
log(0.9Re/Z)
log(N0/NRe)

log
N0
103
−logZkN0 (5.4)

The values of errors depending on the quantity of experimental information for the tested
materials are shown in Fig. 11. Figure 11 illustrates the determination of the relative error using
the following formula

ξp =
∣∣∣
Ne −Bp
Ne

∣∣∣ · 100% (5.5)

The time required for completing the measurement is assumed as the time of the experiment.
The times for the preparation of measuring instruments, preparation of samples, etc. are not
taken into account. It is assumed that the measurement of hardness would take 10 minutes (A)
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Fig. 11. Error of the analytical method error depending on the number of quantities determined
experimentally

and the static tensile test 30 minutes (B). But the determination of life for a limited strength
time for 3 samples takes 4 hours (C). For the experiment carried out using the Locati method,
a 24-hour measurement time (D) is adopted.

6. Summary and conclusions

The verification of the methods for analytical determination of fatigue characteristics presented
in Section 2 demonstrated that the value of the error can be 3 times larger than the experimental
value. Further, the inaccuracy of determining the fatigue life using these methods can lay on
either the safe or unsafe side with equal probability. Even if the proposed method provides better
verification results, the accuracy of life determination carries a significant error. In addition,
Section 5 presents the verification of the analytical method using the reliability coefficient CR,
which makes it possible to obtain characteristics featuring the desired probability. Based on the
characteristics obtained, the results are satisfactory except for the plot for material 42CrMo4
and notched samples.
In order to improve the estimation of the fatigue life, the authors propose the analytical-

-and-experimental (hybrid) method. The experimental verification demonstrated that the error
made while using this algorithm combined with laboratory testing can be significantly smaller,
which is shown in Section 5. Therefore, whenever it is possible to conduct an experiment, it is
recommended that the fatigue life is determined experimentally for 3 samples within the limited
life range defined in Section 3.
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A solution to the problem of synthesizing an initial three-dimensional kinematic chain with
spherical and rotary kinematic pairs is presented. It is shown that this chain can be used
as a structural module for structural-kinematic synthesis of motion of a three-dimensional
four-link generating lever mechanisms by preset positions of the input and output links.
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1. Introduction

Some papers demonstrate that four-link basic kinematic chains (BKC) may be used as a struc-
tural module with structural and kinematic synthesis of plain linkage mechanisms. Such an
approach to the synthesis of plain mechanisms allows reducing the problem of their structural
and kinematic synthesis to solution of the problem of BKC synthesis (Joldasbekov et al., 1987),
which is very useful for automation of mechanisms engineering. This paper testifies that a spe-
cified approach may be applied to the problem of structural and kinematic synthesis of spatial
linkage mechanisms (Kosbolov and Rakhmatulina, 2012b). The solution of the problem of syn-
thesis of spatial BKC of RSS type (R – rotational, S - spherical kinematic pairs) is represented,
and its use as a structural module with structural and kinematic synthesis of spatial linkage
mechanisms through predetermined positions of input and output links is shown (Kosbolov et
al., 2005). A method of solving the problem of BKC synthesis of RSS type is based on the intro-
duction of two movable bodies invariably associated with the input and output links (Kosbolov
and Rakhmatulina, 2013b).

2. On the existence of solution to the problem of initial kinematic chain
synthesis with spherical kinematic pairs

Problem statement: given N of finite distant positions of two solids Q1 and Q2

Q1(θ1i , ψ
1
i , φ
1
i ) Q2(XDi, YDi, ZDi, θ2i , ψ

2
i , φ
2
i ) i = 1, N (2.1)

where θji , ψ
j
i , φ
j
i are fixed axis Eulerian angles OXY Z and XDi, YDi, ZDi are coordinates of the

point Di of the solid Q2.
It is required to find such points in the fixed axis as A(XA, YA, ZA), of the solid Q1 and

C(xC , yC , zC) of the solid Q2, so that distance between the points B and C in all positions of
the solids Q1 and Q2 is little different from some constant value R (Fig. 1).
Problem solution: Let us introduce a weighted difference for the i-th position of the solids

in form

∆qi = |
−−→
BiCi|2−R2 = (XCi −XBi)2+(YCi −YBi)2+(ZCi −ZBi)2−R2 i =

−−→
1, N (2.2)
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Fig. 1. Equivalent four-link kinematic chain ABCD
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and

Tij0 =



e′i1 e′i2 e′ic
m′i1 m′i2 m′ic
n′i1 n′i2 n′ic




j = 1, 2

i = 1, N
(2.4)

where

eji1 = cosψ
j
i cosφ

j
i − cos θji sinψji sinφji

mi1 = sinψ
j
i cosφ

j
i + cos θ

j
i cosψ

j
i cosφ

j
i

nji1 = sin θ
j
i sinφ

j
i

eji2 = − cosψji sinφji − cos θji sinψji cosφji
mji2 = − sinψji sinφji + cos θji cosψji sinφji
nji2 = sin θ

j
i cosφ

j
i

eji3 = sin θ
j
i sinψ

j
i

mji3 = − sin θji cosψji
nji3 = cosφ

j
i

(2.5)

It is a function of ten parameters: XA, YA, ZA, xB , yB, zB , R, xC , yC , zC . By grouping
these parameters in fours with the common parameter R, let us represent the weighted diffe-
rence in three different forms (McCarthy, 1995; Golynski, 1970; Innocenti, 1995; Kosbolov and
Rakhmatulina, 2012b, 2013b,c; Kosbolov et al., 2014)

∆(1)qi = (X̃Ai −XA)2 + (ỸAi − YA)2 + (Z̃Ai − ZA)2 −R2

∆(2)qi = (x̃Bi − xB)2 + (ỹBi − yB)2 + (z̃Bi − ZB)2 −R2

∆(3)qi = (x̃Ci − xC)2 + (ỹCi − yC)2 + (z̃Ci − ZC)2 −R2
(2.6)
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where Tikj is the transfer matrix from the k coordinate system to the j system determined as

Ti01 = [T
i
10]
T Ti02 = [T

i
20]
T Ti21 = T

i
01 ×Ti20 Ti12 = T

i
02 ×Ti10 (2.8)

The necessary conditions for minimum of the sum of squares of the weighted difference

S =
N∑

i=1

[∆(k)qi ]
2 k = 1, 2, 3) (2.9)

may be written as the following system of equations

∂S

∂XA
= 0

∂S

∂YA
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∂S

∂ZA
= 0

∂S

∂R
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= 0

∂S

∂zB
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(2.10)

From (2.10)1, considering (2.6)1 and (2.9), we obtain

N∑

i=1

∆(1)qi (X̃Ai −XA) = 0
N∑

i=1

∆(1)qi (ỸAi − YA) = 0

N∑

i=1

∆(1)qi (Z̃Ai − ZA) = 0
N∑

i=1

∆(1)qi R = 0

(2.11)

Assume that R 6= 0. Then from the last equality of system (2.11), it follows that

N∑

i=1

∆(1)qi = 0 (2.12)

With provision for (2.12), the system of equations (2.11) takes the form

N∑

i=1

∆(1)qi X̃Ai = 0
N∑

i=1

∆(1)qi ỸAi = 0
N∑

i=1

∆(1)qi Z̃Ai = 0
N∑

i=1

∆(1)qi = 0 (2.13)
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By substituting expressions for ∆(1)qi from (2.6)1 into system (2.13), we obtain

N∑

i=1

[
X̃2AiXA + X̃AiỸAiYA + Z̃AiX̃AiZA +

1
2
(R2 −X2A − Y 2A − Z2A)X̃Ai

]

=
1
2
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(X̃2Ai + Ỹ
2
Ai + Z̃

2
Ai)X̃Ai
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1
2
(R2 −X2A − Y 2A − Z2A)ỸAi

]

=
1
2
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2
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2
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X̃AiXA + ỸAiYA + Z̃AiZA +

1
2
(R2 −X2A − Y 2A − Z2A)X̃Ai

]
=
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(2.14)

System (2.14) is linear with respect to the variables XA, YA, ZA and H1 = (R2−X2A−Y 2A−
Z2A)/2, thus it may be written as
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ỸAiZ̃Ai
N∑
i=1

Z̃2Ai
N∑
i=1

Z̃Ai

N∑
i=1

X̃Ai
N∑
i=1
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where R2Ai = X̃
2
Ai + Ỹ

2
Ai + Z̃

2
Ai.

The solution to this system by Cramer’s rule is as follows

(XA, YA, ZA,H1) =
1
D1
(DXA ,DYA ,DZA ,DH1) D1 6= 0 (2.16)

Similarly, from (2.10)2, considering (2.6)2 and (2.9), we obtain a system of linear equations in
the unknowns xB, yB, zB, H2
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By solving this system by Cramer’s rule, we obtain

(xB , yB, zB ,H2) =
1
D2
(DxB ,DyB ,DzB ,DH2) D2 6= 0 (2.18)
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From (2.10)3, considering (2.6)3 and (2.10)1, we obtain a system of linear equations in the
unknowns xC , yC , zC , H3
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From which we obtain xC , yC , zC , H3

(xC , yC , zC ,H3) =
1
D3
(DxC ,DyC ,DzC ,DH3) D3 6= 0 (2.20)

Eliminating the first four unknowns XA, YA, ZA, R, based on formula (2.15), it is possible to
bring system (2.10) to a system of six equations with six unknowns xB, yB , zB , xC , yC , zC ,
which is convenient to be given as

N∑
i=1

∆
(1)
qi
∂∆
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∂∆
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∆
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(2.21)

Apparently, equations of this system are the same as the three equations of the thirteen degree
in the three unknown functions given in the work by Kosbolov et al. (2005), though in this
case we have a system of six equations in six unknown functions. Solution of system (2.21) is
labor-intensive task, so it is more effective to apply a search algorithm for the minimum of the
function S stated below:

1. Give arbitrarily reference points B(0) ∈ Q1, C(0) ∈ Q2.
2. Solve the system of linear equations (2.16) and determine X(1)A , Y

(1)
A , Z

(1)
A , R

(1)
1 .

3. Give points A(1) ∈ Q, C(0) ∈ Q2.
4. Solve the system of equations (2.18) and determine x(1)B , y

(1)
B , z

(1)
B , R

(1)
2 .

5. Give points A(1) ∈ Q, B(1) ∈ Q1.
6. Solve the system of equations (2.20) and determine x(1)C , y

(1)
C , z

(1)
C , R

(1)
3 .

7. Check |Xi+1A −XiA| ¬ ε, |Y i+1A − Y iA| ¬ ε, |Zi+1A − ZiA| ¬ ε, |Ri+1 −Ri| ¬ ε.
8. If this condition is satisfied, the iterating is completed.

9. If this condition is not satisfied, proceed to item 1 by replacing the reference points B(0)

and C(0) for the found points B(1) and C(0).

10. Then check the accuracy of the prescribed function reproduction by analysis of the position
RKC ABCD

rD0 = T10T21T32rD3
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11. The iterating is completed, if the accuracy of reproduction satisfies the prescribed function.
If it does not satisfy the prescribed accuracy, it is necessary to proceed to item 1 of the
given algorithm.

By applying the algorithm, we obtain a decreasing sequence of values of the objective function
S
(1)
1 , S

(1)
2 , S

(1)
3 , S

(2)
1 , S

(2)
2 , S

(2)
3 which has a limit equal to the value of the function S at the

point of local minimum. When satisfying the inequality

max
(
|R(i) −R(i−1)|, |X(i)A −X

(i−1)
A |, |Y (i)A − Y

(i−1)
A |, |Z(i)A − Z

(i−1)
A |

)
¬ ε

where ε is the prescribed calculation accuracy, the iterating is completed. Convergence of the
suggested algorithm is proved by the Weierstrass theorem.

Weierstrass theorem: For each function f(x) continuous over [a, b] and any real number
ε > 0, such a polynomial p(x) may be found that ‖P (x)− f(x)‖ < ε.

As a result of the problem solution, the points A(XA, YA, ZA) are determined in the fixed
system of coordinates, B(0) ∈ Q1, C(0) ∈ Q2, such that when coinciding the link BC with them,
we obtain the desired RKC in form of an open four-link chain ABCD.
Then we check the accuracy of the prescribed function reproduction by analysis of the po-

sition of RKC ABCD. If the accuracy of reproduction satisfies the prescribed function, the
iteration is completed, and if it does not satisfy the prescribed accuracy, it is necessary to
proceed to item 1 of the prescribed algorithm.
When specifying a part of the desired synthesis parameters in various combinations, we

obtain different modifications of RKC (Kosbolov and Rakhmatulina, 2013b).

• If the coordinates of point A(XAi , YAi , ZAi) and Eulerian angles θ1i , ψ1i , φ1i of the solid Q1
as well as the axes of point Di(XDi , YDi , ZDi) and Eulerian angles θ

1
i , ψ

1
i , φ
1
i of the solid Q2

are specified, we obtain a three-link open chain ABCD (Fig. 1). The necessary conditions
for the minimum of the sum S in this case takes the form

∂S

∂j
= 0 j = xB, yB , zB , R, xC , yC , zC (2.22)

and to find the minimum S, we may use the algorithm given above, considering that the
parameters XA, YA, ZA are specified.

If the points A(XA, YA, ZA) and D(XD, YD, ZD) are fixed, then, as a result of the synthesis
of RKC, we obtain a spatial four-link chain ABCD.

• Given the coordinates xC = yC = zC = 0 of the point C ∈ Q2, coordinates XDi, YDi,
ZDi of the point D of the solid Q2 and Eulerian angles θ1i , ψ

1
i , φ

1
i of the solid Q1, and the

desired parameters XA, YA, ZA, R, xB , yB, zB .

The necessary conditions for the minimum of the sum S takes the form

∂S

∂j
= 0 j = XA, YA, ZA, R, xB , yB, zB (2.23)

To find the minimum of the function S we may use again the algorithm given above,
considering that xC = yC = zC = 0.

• Given coordinates xB, yB , zB = 0 of the point B of the solid Q1 and Eulerian angles of the
solid Q2, θ2i , ψ

2
i , φ

2
i . The original problem reduces to the definition of sphere of positions

of the fixed point C of the solid Q2 which is the least remote from N (Fig. 1).
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The necessary conditions for the minimum of the sum S is

∂S

∂j
= 0 j = XA, YA, ZA, R, xC , yC , zC (2.24)

This problem was studied in detail in work by Kosbolov et al. (2013c). For its solution we
may also use the algorithm given above, assuming xB, yB , zB = 0, but in this special case,
the algorithm of the minimum search is absolutely coinciding with the kinematic inversion
method.

Thus, as we see, the problem of RKC with spherical kinematic pairs is solved, and their
modifications may be used as modules of structural and kinematic synthesis of spatial linkage
mechanisms through specified positions of the input and output links.

3. Example

Suppose that it is necessary to design a six-linkage mechanism with spherical pairs (Fig. 2),
approximately reproducing seven body positions specified in Table 1 and the initial data in
Table 2.

Fig. 2. Kinematic diagram of spatial linkage mechanisms with spherical pairs

Table 1. Assigned positions of the body for synthesis of a single movable mechanism – six-linkage
mechanism with N = 7

Position
XOi YOi ZOi

Euler angles [deg]
No. (i) θ1i ψ1i φ1i
1 0.30 0.12 0.01 0 0 0
2 0.35 0.17 0.24 28 35 17
3 0.44 0.21 0.25 34 38 5
4 0.51 0.15 0.32 17 24 12
5 0.50 0.30 0.45 50 50 21
6 0.60 0.25 0.41 45 33 24
7 0.55 0.32 0.35 0 0 0

When N = 7, as known in mobile spatial systems, there are points (not more than 20)
with seven positions on one sphere. Furthermore, the points which are in the seven considered
positions are approaching the sphere. As noted, the exact spherical points of a movable system
correspond to an absolute minimum S = 0 of the sum S =

∑
∆2qi , because they make all ∆qi
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Table 2. Initial data (N = 7)

N = 7
ZLL = 6, ZKK = 6, MJ0 = −1.2, NJ0 = −1.2,
ZII = 6, dmj = 0.2 KJ0 = −1.2

XS = 0.3 YS = 0.12 ZS = 0.01 F = 0 P = 0 T = 0
XS = 0.35 YS = 0.17 ZS = 0.24 F = 28 P = 35 T =17
XS = 0.44 YS = 0.21 ZS = 0.25 F = 34 P = 38 T = 5
XS = 0.51 YS = 0.15 ZS = 0.32 F = 17 P = 24 T = 12
XS = 0.5 YS = 0.3 ZS = 0.45 F = 50 P = 50 T = 21
XS = 0.6 YS = 0.25 ZS = 0.41 F = 45 P = 33 T = 24
XS = 0.55 YS = 0.32 ZS = 0.35 F = 0 P = 0 T = 0

Table 3. Results of calculation (N = 4)

LL = 3, KK = 2, II = 1 MJ = −0.6, NJ = −0.8, KJ = −1
N = 1 A = 0.488270 C = −2.22103
N = 2 A = 0.303894 C = 3.96393
N = 3 A = 0.151985 C = −3.85753
N = 4 A = 0.146845 C = 3.00599

R0 = 0.245293 R01 = 0.245194 S = 4.296551E-0.3 S1 = 4.295576E-0.3

LL = 3, KK = 2, II = 2 MJ = −0.6, NJ = −0.8, KJ = −0.8
N = 1 A = 0.488270 C = −3.42355
N = 2 A = 0.303894 C = 2.28575
N = 3 A = 0.151985 C = −2.95424
N = 4 A = 0.146845 C = 3.00600

R0 = 0.245216 R01 = 0.245194 S = 4.292136E-0.3 S1 = 4.295576E-0.3

LL = 3, KK = 2, II = 3 MJ = −0.6, NJ = −0.8, KJ = −0.6
N = 1 A = 0.488174 C = −3.18222
N = 2 A = 0.303906 C = 5.18244
N = 3 A = 0.152115 C = −2.55608
N = 4 A = −0.146845 C = 0.3006

R0 = 0.245195 R01 = 0.245194 S = 4.294402E-0.3 S1 = 4.295576E-0.3

LL = 3, KK = 2, II = 4 MJ = −0.6, NJ = −0.8, KJ = −0.6
N = 1 A = 0.488217 C = −2.74528
N = 2 A = 0.303942 C = 8.77332
N = 3 A = 0.152078 C = −2.92302
N = 4 A = 0.146866 C = 3.00599

R0 = 0.245217 R01 = 0.245194 S = 4.297097E-0.3 S1 = 4.295576E-0.3

(i = 1, 2, . . . , 7) vanish. The approximate spherical points of a movable system correspond to
the local minima of the sum or are located in the vicinity of the local minimum of the function
S = F (xC , yC , zC). Both these and other are common points of the surfaces Gx = 0, Gy = 0,
Gz = 0, and they are determined based on the solution to system (2.21).

We are definitely interested not in all system solutions (2.24), but in those which correspond
to the minimum of the sum S. These solutions in this case are a numerical method for searching of
the minimum of the sum S, based on the searching algorithm for the minima of the function S.
Since we need five spherical points of the movable system for construction of the six-linkage
mechanism (Fig. 2) having analysed the results we selected five points of the minimum of the
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surface S = F (xC , yC , zC). The coordinates of these points, the parameters of approaching
spheres corresponding to them and the values ∆qi maximum per module are given in Table 3.

4. Research results

Judging from deviations, the points C1, C2, C3 are the exact spherical points (found with the
given measure of inaccuracy), and C4 and C5 – are approximate points.
To solve this problem, a Visual Basic program has been written. The results of the problem

solution are given in Table 3.
The calculations have been made within the range

−1.2 < MJ < 0.6 − 1.2 < NJ < 0.6 − 1.2 < KJ < 0.6

with a pitch dmj = 0.2.
In the entire range of calculations, the process of calculation is concurrent. The global mini-

mum is equal to

Smin = 0.0042921

and it is achieved at

LL = 3 KK = 2 II = 2

In Table 3, only a part of results in the neighborhood of the global minimum is shown. Its value
is highlighted in bold frame in Table 3.
Below, the results of calculation of the objective function in form of carpet plots and 3D

plots (Figs. 3 and 4) are given.

Fig. 3. LL = 1,2,3, Smin = −0.0042921, volume graphics
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Fig. 4. LL = 4.5,6, Smin = −0.0042921, volume graphics

5. Discussion

As can be concluded, the use of one and the same objective function being generated for synthesis
of BKC and its modification allows automating of the process of synthesis of spatial linkage
mechanisms through predetermined positions of the input and output links of the mechanism.

6. Conclusions

In summary, in the synthesis of BKC with spherical kinematic pairs through predetermined
positions of the input and output links of a mechanism when two adjacent links of BKC tend to
infinity, it is necessary to replace the spherical kinematic pair for a plain or cylindrical one. In
such a case, the synthesized mechanism takes form of a spatial link mechanism after determining
the required parameters.
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This paper is concerned with the designing of simultaneous flight control deflections for air-
craft system identification. The elevator, ailerons and rudder are excited with harmonically
related multisine signals. The optimal deflections are designed when there is no information
about the stability and control derivatives and when this information is available. The in-
clusion of the system dynamics in the inputs design phase is done with the D-optimality
criterion. Both sets of optimal flight surface deflections are used as excitations of a nonli-
near aircraft model which is identified through the maximum likelihood estimation method.
Parameters accuracy for those maneuvers (designed with and without a-priori knowledge)
is presented and compared.

Keywords: inputs design, system identification, flight dynamics

1. Introduction

To obtain precise information about aircraft dynamics, aerodynamic stability and control de-
rivatives have to be determined. This can be done by various methods like wind tunnel tests
(Hoe et al., 2012), Computational Fluid Dynamics – CFD (Mader and Martins, 2011) and Sys-
tem Identification – Sys-ID (Jameson and Cooke, 2012; Jategaonkar, 2006; Lichota and Ohme,
2014). Among this group, the gathering of aerodynamic databases from flight test data is the
most reliable as it is based on experiments made on real objects. On the other hand, as multiple
flight tests are performed in the Sys-ID, it is of high cost and time consuming. CFD methods are
the least expensive in this group, however final results of aerodynamic derivatives (regardless of
the object) have to be compared with experiments (Rogowski and Maroński, 2015).
The Sys-ID approach consists of four main steps that are: designing and performing mano-

euvres, measuring the data, modelling the object and estimating unknown parameters. Those
steps are strictly connected, and if the registered data will be inaccurate or there will be not
enough information about the aircraft dynamics in the output signals, reliable estimation will
not be possible. As modern sensors allow one to obtain very high accuracy of the data and me-
asurement techniques are well developed a strong emphasis should be put on designing inputs
used for exciting the optimal aircraft response.
The research concerning excitations that were to maximize the information content in the

measured data was extensively investigated in the seventies and eighties. Those studies showed
that sine-sweep (linear or logarithmical) or typical multi-step inputs (pulse, doublet, 3-2-1-1) can
be used to develop a good mathematical model of an aircraft if only one flight control surface
is deflected through a manoeuvre. It has been shown recently that simultaneous multi-step
excitations could be used for this purpose as well (Lichota and Ohme, 2014), but this requires
a priori knowledge of the aerodynamic derivatives.
If the flight controls can be deflected at the same time, the use of harmonically related

multisine signals is possible as well. This approach does not require the initial information about



88 P. Lichota

the system and allows one to obtain estimates with the same quality (in terms of parameters
accuracy) as the design with simultaneous multi-step inputs. If the inclusion of the a priori
knowledge in the multisine inputs design phase would increase the quality of estimation, it would
mean that multisine signals are more adequate for aircraft Sys-ID purposes than simultaneous
multi-step excitations.
The incorporation of initial knowledge of aerodynamic parameters can be done by introdu-

cing the D-optimality criterion instead of the Relative Peak Factor in the multisine optimization
phase. In the present study, a linear aircraft model is used for this purpose as it is less com-
putationally demanding than the nonlinear representation. The designed set of simultaneous
multisine excitations is used as inputs for a nonlinear aircraft model that has been created in
Matlab. On the basis of recorded signals the unknown parameters of the object are estimated
by applying the maximum likelihood principle.
A similar procedure is applied to multisine signals that are designed without a priori know-

ledge of the system dynamics. Evaluated ailerons, elevator and rudder deflections are used as
excitations for the nonlinear aircraft model. The response of the object is recorded and then the
unknown parameters of the system are identified. The results are compared with the estimates
obtained from the manoeuvre in which initial values of the aerodynamic derivatives are available
in the inputs design phase.

2. Multisine input signals

The multisine input is an excitation that is composed of summed harmonic sinusoids with
individual amplitudes Ak and phase shifts φk (Morelli, 2012)

δ =
M∑

k=1

Ak sin(2πfkt+ φk) (2.1)

where k = 1, . . . ,M stands for the number of the harmonic, fk is the frequency of the k-th
component and δ is the input signal.
An important feature of the multisine signals is that they can be designed as mutually

orthogonal in the time and frequency domain (Morelli, 2003). This means that simultaneous
ailerons, elevator and rudder deflections can be independent. In order to achieve this aim, it
is required to assign different harmonics to each flight control (e.g. 2f0, 5f0, 8f0,. . . to ailerons,
3f0, 6f0, 9f0,. . . to elevator, 4f0, 7f0, 10f0,. . . to rudder). This assignment provides orthogonality
in the frequency domain as distinct spectral lines form the frequency content of each input. In
the time domain, the mutual orthogonality is achieved due to orthogonality properties of the
sine function (Morelli, 2012). It is practicable to omit the first harmonic in this assignment in
order to optimize the cost function effectively.
Frequencies of the consecutive components in the multisine signals are evenly spaced and

based on the excitation time T : fk = k/T . This also limits the minimum available frequency
which must satisfy the condition: fmin ­ 2/T . The maximum available frequency is limited by
the frequency range of interest in the investigated case.
Multisine input signals have wide-frequency band and the amplitudes of the different har-

monics Ak are chosen to achieve desired power spectrum. If there is no need to put an emphasis
on specific frequencies, a uniform power spectrum should be used. For simultaneous aileron,
elevator and rudder deflections and flat power spectrum, the amplitudes Ak related to the j-th
control are given by

Aj,k =
Aj√
Mj

(2.2)
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where Aj is the amplitude of the j-th flight control and Mj is the number of the harmonic
components assigned to the j-th flight surface.
For each flight control, input energy maximization is done through proper selection of conse-

cutive harmonics phase angles φj,k. The phase angles should maximize the excitation effectiveness
without unnecessary increase in each signal value as this can cause that aircraft will go too far
from the trim conditions and will hinder the Sys-ID process. For this purpose, the Relative Peak
Factor (RPF ) can be used as it expresses the input amplitude range divided by the excitation
energy. The RPF is also scaled so that for a single sinusoid it is equal to 1. For the j-th flight
surface deflection δj , the RPF is given by

RPF (δj) =
max δj −min δj
2
√
2rms(δj)

(2.3)

RPF minimization is equivalent to input effectiveness maximization and can be achieved with
a simplex optimization algorithm. In our study, the Schroeder phase angles are used as initial
values of the phase angles φk for the j-th flight control (Schroeder, 1970)

φj,k = φj,k−1 + 2π(fj,k−1 − fj,k)tj,k−1 tj,k = T
k∑

l=1

pj,l (2.4)

where fj,k is the k-th harmonic frequency assigned to the j-th input and tk is time epoch. For the
flat power spectrum and the j-th flight control, the power of the k-th component is pj,k = 1/Mj .
As deflections should start and end with zero amplitude, it is necessary to find a constant

time offset for the components of each excitation. This is equivalent to sliding the inputs along
the time axis until the zero crossing occurs at t = 0.

3. D-optimal criterion

The design process of multisine input signals does not require knowledge of the system dynamics
in terms of stability and control derivatives. However, it is considered that inclusion of some
information about aerodynamic parameters in the design phase could increase the quality of
the aircraft response in terms of the Sys-ID. This requires introducing estimator based on the
minimum mean squared error (Kay, 1993)

MSE(Θ̂) = E[(Θ̂−Θ)2] = cov (Θ̂) + bias2(Θ, Θ̂) (3.1)

where Θ are the parameters of the model and Θ̂ are their estimates.
When the estimator is designed to be unbiased, the minimum mean squared error consists

only of the covariance term. This part can be determined on the basis of Cramér-Rao inequality
which states that the covariance of the unbiased estimator is at least as high as the inverse of
the Fisher Information Matrix F

cov (Θ̂) ­ F−1 (3.2)

The Fisher Information Matrix which is a measure of the amount of information that observable
variables carry about the unknown system parameters is defined as

F = E

{[
∂ lnL(Θ|z)

∂Θ

] [
∂ lnL(Θ|z)

∂Θ

]T}
(3.3)

where the likelihood function L(Θ|z) is equal to p(z|Θ) – conditional probability that the
measurement vector z is observed for the model parameters Θ.
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If the likelihood function is twice differentiable with respect to the model parameters, it can
be shown that

F = −E
[
∂2 lnL(Θ|z)
∂ΘΘT

]
(3.4)

Multivariate normal distribution is usually chosen to evaluate the probability density function
at a certain time point tk. Due to variables, independence the probability can be defined for all
time points in the manoeuvre (Jategaonkar, 2006)

p(z|Θ) = 1
√
(2π)n|R|N

exp

(
−1
2

N∑

k=1

[z(tk)− y(tk)]TR−1[z(tk)− y(tk)]
)

(3.5)

where n is the number of model outputs y, k = 1, . . . , N is the index of time samples and R is
the measurement noise covariance matrix.
The described approach with neglecting small terms leads strictly to the Fisher Information

Matrix sensitivity form

F ≈
N∑

k=1

[
∂y(tk)
∂Θ

]T
R−1

[
∂y(tk)
∂Θ

]
(3.6)

where the output signals gradients ∂y(tk)/∂Θ can be obtained through forward difference for-
mula. Introducing central differences does not increase the accuracy significantly and raises the
computational time, therefore, it is not used in the evaluations.
The columns of the Fisher Information Matrix represent contributions of the model para-

meters, so if the columns are independent, the determinant reaches its maximum value. On
the contrary, if the columns are linearly dependent, the determinant will accept the minimum
value. Therefore, the optimality criterion (D-optimality) is expressed by maximization of the
Fisher Information Matrix determinant what means that the estimation error ellipsoid volume
is minimized.
Inclusion of the D-optimality criterion in the multisine design phase can be used in order

to introduce the initial information about stability and control derivatives. This task can be
achieved by incorporating the linear aircraft model and minimization of the Fisher Information
Matrix inverse (Parameter Error Covariance Matrix P) determinant. The linear representation
has been selected because it well describes the object, and the computational time for single
evaluation is relatively short.

4. Linear model

The aircraft dynamic equations of motion are derived in a vehicle carried coordinate system
Oxyz and linearised in accordance with Etkin (1972). The origin of the Oxyz reference frame is
located at the center of gravity. The Ox axis coincides with the longitudinal axis of the airplane.
The Oy axis is normal to the aircraft symmetry plane and is pointing in the direction of the right
wing. The Oz axis is oriented downward, so it completes the right-handed coordinate system.
The Oxyz system is related to the vehicle carried Oxgygzg reference frame through rotation

angles: Φ (roll angle), Θ (pitch angle), Ψ (yaw angle) which are used to describe the orientation of
the object. The Oxgygzg coordinate system remaines parallel to the earth fixed reference frame
O1x1y1z1, whose origin is located at an arbitrary point of the Earth with the Ox1 axis pointed
north, Oy1 axis pointed east and the Oz1 axis is directed toward center of the Earth. Relations
between the described coordinate systems are shown in Fig. 1, and the transformations of linear
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Fig. 1. Coordinate systems and motion variables

and angular quantities from the gravitational reference frame Oxgygzg to the body coordinate
system Oxyz are given by the matrices

ΛV =



1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ






cosΘ 0 − sinΘ
0 1 0
sinΘ 0 cosΘ






cosΨ sinΨ 0
− sinΨ cosΨ 0
0 0 1




ΛΩ =



1 0 − sinΘ
0 cosΦ sinΦ cosΘ
0 − sinΦ cosΦ cosΘ




(4.1)

Dynamic equations of motion are derived from Newton’s second law of motion in Oxyz and
kinematic relationships, which leads to

m(V̇O +Ω×VO) = F IΩ̇+Ω× (IΩ) =MO Φ̇ = Λ−1Ω Ω (4.2)

where VO = [U V W ]T is the velocity of the origin, Ω = [P Q R]T is the angular velocity,
Φ̇ = [Φ Θ Ψ ]T describes the aircraft orientation, m stands for mass, I for inertia matrix,
F = [X Y Z]T and MO = [L M N ]T are forces and moments acting on the object. The dot
symbol is used to denote derivatives with respect to time.
When the level flight is the equilibrium state, it is possible to linearize the equations of

motion and describe the system as follows

u̇ = Xuu+Xαα+ (Xq − u0α0)q + gθ cosΘ0 +XδE δE
β̇ = Yββ + (Yp + α0)p+ (Yr − 1)r +

g

|V0|
cosΘ0 + YδAδA + YδRδR

α̇ = Zuu+ Zαα+ (Zq + 1)q −
g

U0
sinΘ0 + ZδEδE

ṗ = Lββ + Lpp+ Lrr + LδAδA + LδRδR
q̇ =Muu+Mαα+Mqq +MδEδE
ṙ = Nββ +Npp+Nrr +NδAδA +NδRδR

φ̇ = p+ r tanΘ0

θ̇ = q

(4.3)

where small letters are used to describe the perturbations of the flight state from the trim
condition which is denoted by subscript 0 (e.g. U = u0 + u). Symbol g is used for gravitational
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acceleration, α is the angle of attack, β is the angle of sideslip and δA, δE , δR are ailerons,
elevator and rudder deflections respectively. The signs of flight control deflections are defined
with accordance to Hopkin (1970) – a positive flight surface deflection causes a negative aircraft
response. This means that: left aileron up, elevator down and rudder to left are considered as
positive. The symbols that are not defined yet are known as dimensional stability and control
derivatives, e.g. Mα is the pitching moment derivative with respect to the angle of attack.

5. D-optimal multisine inputs

Application of the D-optimality criterion for phase angles selection in multisine inputs design
requires minimization of the Fisher Information Matrix inverse determinant (cost function)

δ = min
φ
F
−1 (5.1)

The cost function has multiple local minima, therefore a genetic algorithm is selected for finding
the optimal solution. The phase angles related with j-th flight surface and k-th harmonic φj,k are
coded in a binary string that consists of fixed-length strings s. Base-2 floating point representa-
tion is used to determine phase angles for different aileron, elevator and rudder deflections

φj,k = 2π
∑

s

bs2−s (5.2)

where s = 1, . . . , 12 is a part of the string that contains bit values bs ∈ {0, 1} used for coding a
specific phase angle φj,k.
Genetic algorithms mimics the process of natural selection and require multiple executions

of four steps that are: population generation, selection mating, exchange of the information and
mutation (Mitchel, 1999).
The initial population contains P possible solutions that are randomly drawn. The solutions

are decoded into input signals and sorted in descending order in accordance with the cost
function. Then different selection probability is assigned for each solution. The binary string
that represents simultaneous excitations and produces the highest cost function has the smallest
drawing probability pmin = 1/

∑P
i=1 i. The binary string that represents excitations with the

smallest cost function has the highest drawing probability pmax = P/
∑P
i=1 i. The probabilities

are assigned with the linear scale. In the next step, solutions are drawn in accordance to their
probabilities and combined in pairs.
Exchanging information between the solutions in each mated pair (parents) is done by apply-

ing uniform crossover which results in creating two new solutions (offspring). Applying uniform
crossover requires drawing a mask of flags which has the same length as coded solutions and is
filled with zeros and ones. The first offspring is formed from fields of the first parent when the
flag of the mask is 0 and from fields of the second parent when the flag of the mask is 1. The
second offspring is created in a similar way – from fields of the first parent when the flag of the
mask is 1 and from fields of the second parent when the flag of the mask is 0. The uniform cross-
over idea is shown in Fig. 2. Fields of the first parent have white background and of the second
parent – gray. The described procedure is carried for all mated pairs and results in creating a
set of new solutions whose size is equal to the initial population.
To introduce more diversity in the newly created population, a mutation operator is used.

This action requires drawing a number for each field of each solution. When this number is
higher than the threshold (0.95), the value of the field is changed from 0 to 1 or from 1 to 0.
After performing mutation for all solutions, the initial population is replaced by the new one.
In order to preserve the best simultaneous inputs, the parent that has the lowest cost function
is also included in this population.
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Fig. 2. Uniform crossover

The described steps: selection, crossing, mutation and population generation are performed
until the global maximum is found.

6. Nonlinear model

Multisine input signals designed with and without a priori knowledge of stability and control
derivatives are used as excitations of the nonlinear aircraft model (Lichota and Ohme, 2014;
Raab, 2006). The dynamic equations of motion of the object are given by (4.2). The forces and
moments that act on the aircraft consist of aerodynamic, gravitational and propulsion terms

F = Fa + Fg + Ft MO =Ma +
4∑

i=1

ri × Ft (6.1)

where r is the thrust force arm and the indices a, g and t indices denote aerodynamic, gravita-
tional and propulsion forces and moments.
The aerodynamic forces Fa = [Xa Ya Za] and moments MaO = [La Ma Na] are obtained

with the use of dimensionless force and moment coefficients (about quarter-chord point)

CD = CD0 + kC2L
CY = CY 0 + CY ββ + (CY p + CY pαα)p

∗ + (CY r + CY rαα)r∗ + CY δRδR

CL = CL0 + CLWBαα+
SH
S
(CLHαHαH + CLHδEδE)

Cl25 = Cl0 +Clββ + (Clp + Clpαα)p
∗ + (Clr + Clrαα)r

∗ + ClδAδA + ClδRδR

Cm25 = Cm0 + CmWBqq
∗ − xLH

c

SH
S
(CLHαHαH + CLHδEδE)

Cn25 = Cn0 + Cnββ + (Cnp + Cnpαα)p∗ + (Cnr + Cnrαα)r∗ + CnδAδA + CnδRδR

(6.2)

where p∗ = pb/(2VO), q∗ = qc/(VO) and r∗ = rb/(2VO) are normalised angular rates, S is the
wing area, SH the horizontal tail area, xLH is the horizontal tail arm and k is the drag polar
coefficient. The indices WB and H in the equations for the lift force and pitching moment
coefficients denote Wing-Body and Horizontal tail, respectively.
The angle of attack at the horizontal tail is given by

αH = α−
∂ε

∂α
α
(
t− xLH

VO

)
+ iH + αdyn (6.3)

where ε is the downwash angle, iH is the horizontal tail setting angle and αdyn = qxLH/VO is
the dynamic angle of attack.
The force and moment coefficients are defined in the aerodynamic coordinate system Oxeyeze.

The Oxe axis has the direction of the flow, the Oye axis is directed towards the right wing and
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the Oze axis is directed upwards. As the equations of motion are derived in the body fixed
coordinate system Oxyz, the following transformation is required

Cx = −CD cosα+ CL sinα Cy = CY Cz = −CD sinα− CL cosα
Cl = Cl25 cosα−Cn25 sinα Cm = Cm25 Cn = Cl25 sinα+ Cn25 cosα

(6.4)

This allows one to obtain components of the aerodynamic forces and moments as

Xa = CxqS Ya = CyqS Za = CzqS

La = ClqSb Ma = CmqSc Na = CnqSb
(6.5)

The thrust force is a function of the throttle position, altitude and speed: T(δth, h, VO). It
is stored in a 3D array and interpolated for specific flight conditions. The gravitational force
Fg = mg is defined in the Oxgygzg coordinate system, therefore transformation to Oxyz is
required.

7. System Identification

The classical and most widely used definition of System Identification was given by Zadeh:
“Identification is the determination, on the basis on input and output, of a system within a
specified class of systems, to which the system under test is equivalent” (Zadeh, 1962). If the
response of the dynamical system and input signals are recorded and the structure of the model
is known then the Sys-ID is equal to adjusting the model parameters Θ so that the model
outputs y match the measured aircraft response z when the inputs u are the same. The process
can be done either offline or online in real time (Hendzel and Trojnacki, 2014).
The structure of the model we used in the Sys-ID was nonlinear and the same as for generating

the aircraft response what allowed us to eliminate modelling errors in the study. The adjusting
of model parameters was done in the time domain when all data was collected (offline). To find
the set of unknown model parameters we used the Output Error Method whose aim was to
minimize the error between measured system outputs and estimated response.
When the Maximum Likelihood Estimation principle is selected for error minimization the

task is equivalent to finding the parameters vector that maximize the conditional probability
p(z|Θ)

Θ̂ = argmax
Θ

p(z|Θ) (7.1)

where the hat symbol denotes the estimates, and the conditional probability p(z|Θ) is given by
(3.5).
As it is frequently done, we replace the probability maximization task by an easier action –

minimization of a negative log likelihood function (Jategaonkar, 2006)

L(Θ|z) = 1
2

N∑

k=1

[z(tk)− y(tk)]TR−1[z(tk)− y(tk)] +
nN

2
ln(2π) +

N

2
ln(det(R)) (7.2)

The unknown measurement covariance matrix R is estimated as

R̂ =
1
N

N∑

k=1

[z(tk)− y(tk)][z(tk)− y(tk)]T (7.3)

Substitution of the measurement covariance matrix estimate R̂ into the negative log likelihood
function and rejection of the constant terms allows one to obtain the cost function

J(Θ) = det(R) (7.4)
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The Gauss-Newton algorithm has been used for cost function minimization.
The accuracy of each estimated parameter is determined on the basis of the Parameter Error

Covariance Matrix P

σ(Θi) =
√
Pi,i (7.5)

where σ is the standard deviation and Pi,i is the element of the Parameter Error Covariance
Matrix P = F−1.

8. Results

In the study, we investigate two designs with simultaneous multisine inputs: when there is no
a priori knowledge of the system dynamics and when this information is available. The frequency
range of interest upper bound is set to fmax = 2Hz and the lower is determined on the basis of
the excitation length T = 20 s. A total of 39 harmonics is evaluated and assigned to the elevator
(f2, f5, . . .), aileron (f3, f6, . . .) and rudder deflections (f4, f7, . . .). The maximum values of all
inputs are set to 1 deg. In the multisine design without a priori knowledge, the phase angles φk
are optimized through Relative Peak Factor minimization. When additional information about
the system is available, the D-optimality criterion is used for signal optimization. In this case,
the cost function extreme is found by a genetic algorithm.
Both designed sets of excitations are used as input signals for a nonlinear aircraft model.

In both cases, the response of the model is recorded. The gathered data is used to perform a
Sys-ID for a model with unknown aerodynamic parameters. The results of the estimation are
shown in Fig. 3, Fig. 4 and in Table 1.

Fig. 3. Measured and estimated signals for multisine inputs
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Fig. 4. Measured and estimated signals for the D-optimal multisine inputs

Table 1. Standard deviations

Parameter Multisine
D-optimal

Parameter Multisine
D-optimal

multisine multisine

k 2.5440E-004 3.5897E-004 Cl0 2.2346E-009 7.2915E-010
CL0 3.6488E-005 3.9050E-005 Clβ 2.6671E-006 9.9505E-007
CLWBα 2.6817E-004 3.1839E-004 Clp 1.3783E-004 2.1207E-004
CLHαH 1.1588E-003 1.3114E-003 Clpα 1.6153E-003 2.6471E-003
CLHδE 6.8113E-005 8.6226E-005 Clr 2.3736E-004 2.6195E-004
∂ε/∂α 1.7339E-004 1.9543E-004 Clrα 3.0391E-003 3.2459E-003
CD0 1.0919E-004 1.6787E-004 ClδA 1.2369E-006 4.8513E-007
Cm0 2.1883E-004 1.8874E-004 ClδR 9.6532E-007 4.0260E-007
CmWBq 1.0397E-002 1.1892E-002 Cn0 2.1906E-009 7.2876E-010
CY 0 2.2318E-008 8.4724E-009 Cnβ 2.5441E-006 1.6348E-006
CY β 1.3871E-005 5.2384E-006 Cnp 1.1095E-004 2.1430E-004
CY p 1.0030E-003 1.6169E-003 Cnpα 1.3218E-003 2.6642E-003
CY pα 1.2198E-002 2.0359E-002 Cnr 1.9973E-004 2.3221E-004
CY r 1.6164E-003 2.0590E-003 Cnrα 2.5561E-003 2.8803E-003
CY rα 2.0288E-002 2.5716E-002 CnδA 1.5451E-006 8.3159E-007
CY δR 4.8513E-006 2.6505E-006 CnδR 1.2249E-006 7.7315E-007

In Figs. 3 and 4, solid lines are used to denote the estimated aircraft response and the input
signals. The cross points denote the recorded values of flight parameters. For presenting the
measurements, a 10-point data reduction is used. From Figs. 3 and 4 it can be seen that the
obtained set of estimates allows one to obtain a good visual match for flight parameters whether
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the D-optimality criterion is used or not. However, as more than one set of model parameters
can produce a response that visually fits well the data, another quality of estimation indicator
should be used – standard deviations.
Table 1 indicates that for both analysed designs the evaluated standard deviations are small

(of the order of 1.0E-002 or lower) for all parameters what means that the estimation is successful.
The standard deviations obtained for model parameters when the D-optimality is used in the
design phase are of the same order as when the criterion is not used in the optimization. Therefore
we consider that the inclusion of the D-optimality criterion for phase angles optimization in the
simultaneous multisine inputs design does not increase significantly the quality of the Sys-ID
manoeuvre. Moreover, as the Parameter Error Covariance Matrix determinant minimization is
more computationally demanding that Relative Peak Factor optimization, we found the inclusion
of the D-optimality criterion impractical.
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In the paper, mathematical relationships which are used to describe kinematic variables of
the aircraft-obstacles configuration and motion of the aircraft are presented. These define the
base for the set of conditions enabling determination of the possibility and threat of collision.
The second important aim of such a definition is creation of prerequisites for selection of an
appropriate anti-collision manoeuvre, computation of reference signals and inequalities used
as limitations on these signals in the automatic flight control process. Theoretical analysis
is illustrated by an example of computer simulation of the flight of aircraft. Two anti-
-collision manoeuvres are studied in this experiment. The first one, performed in a vertical
plane, consists in emergency climbing. The second one, performed in the horizontal plane, is
shaped by three turns, each one of small radius, to go around the obstacle and then return
to the previously realised flight path.

Keywords: anti-collision manoeuvre, obstacle avoidance, flight simulation

1. Introduction

Recently, one can notice the growing number of methods presented in accessible scientific ma-
terials aimed at solving the collision avoidance problem with several types of obstacles. This
results from growing requirements for flight safety of piloted and unmanned flying objects. The
proposed solutions and mathematical methods focused on the problem differ one from another
due to geometrical representations of obstacles (Graffstein, 2012a; Park et al., 2012), types of
moving objects, types of obstacles, methods of getting information about obstacles (Ariyur et
al., 2005; Higuchi et al., 2012), etc.
A safe preselected anti-collision manoeuvre is the most typical solution of the considered

problem. Safety of such motion consists, among others, in keeping the minimum distance be-
tween any point of the object and any point of the obstacle above the assumed level, defined
as the safety margin rCMB. This value depends on a number of factors, some of them were
described bz Blajer and Graffstein (2012), Graffstein (2006, 2012b). The capability of avoiding
the collision with previously unknown obstacles safely depends on many factors including, first
of all manoeuvring capabilities of the flying object, configuration and dimension of obstacles,
parameters of its motion, object-to-obstacle distance at the moment of obstacle detection and
accuracy of accessible data characterising the obstacle.
The object-to-obstacle distance at the moment of obstacle detection is determined by tech-

nical means used in the obstacle detector, first of all by the type of sensor (Fasano et al., 2010;
Freeman and Moosbruggerb, 2010; Higuchi et al., 2012). The knowledge of this distance and
parameters of the object and obstacle motion enables determination of the most convenient
anti-collision manoeuvre and its parameters (Becker et al., 2006; Graffstein, 2012a; Schøler et
al., 2009). In the case of danger of collision with a moving obstacle, the situation appears to
be more complex, because of possible and crucial variety of the obstacle motion. Four possible
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scenarios of such a situation exist: continuation of the flight without any changes to motion
parameters and the following three types of manoeuvres: a random one or according with rules
and agreed with the pilot. This last scenario can be a solution in the case of collision threat
with many moving obstacles (Carbone et al., 2006; Lalish et al., 2009; Seo et al., 2012). Another
scenario is assumed for a obstacle continuing its motion without any changes and reactions to
the collision threat. In such a case, computation of necessary kinematic variables, described in
further parts of the work, is obligatory as well as verification of collision threat conditions and
choice of the appropriate manoeuvre. These operations are within the scope of tasks defined
for anti-collision systems, which is described in the next Section. Presented results of computer
flight simulation illustrate a practical solution of the described problem. In the numerical expe-
riments, two different types of anti-collision manoeuvres have been simulated, both effective in
avoiding collision with moving obstacle.

2. Structure of the anti-collision system

Preparation and execution of a manoeuvre to avoid a moving obstacle is a complex operation
that constitutes considerable workload for the aircraft pilot. Thus, the structure of an anti-
-collision system is proposed, aiming at reduction of the workload of the pilot performing such
tasks. The diagram (Fig. 1) presents the general idea of sub-system cooperation. The system
is autonomous and makes use of two sources of data of obstacles: the detector of obstacles and
the data base containing data of obstacles. The first source detects moving and fixed obstacles,
delivers estimates of the object-to-obstacle distance and relative velocity. The data base contains
information about fixed obstacles in the terrain covering the planned flight path and also about
height of the terrain. This source of data plays a supplementary role in the system designed
to avoid moving obstacles. During the process of searching for the appropriate anti-collision
manoeuvre, the data base makes the system capable of eliminating manoeuvre candidates which
make the risk of collision with one of the existing fixed obstacles and being too high.

Fig. 1. Schematic diagram illustrating operation of the anti-collision system
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In every time step, when new data of the obstacles are acquired, the process of new obstacles
detection is executed as well as the estimation of risk of collision in one or both planes. If the
threat is detected, the procedure of searching for possible and safe anti-collision manoeuvre is
executed. Searching for parameters fulfilling the appropriate criteria is performed within the base
of anti-collision manoeuvres prepared in advance. In the case when more than one manoeuvre is
found (for example: performed within both planes), selection of one of them is necessary. Safety
is the basic criterion for the final decision, so is the magnitude of safety margin, among others.
On the other side, important conditions require minimisation of two values: the distance from
the previously planned flight path and the time interval defined as becoming when the aircraft
abandons this flight path and ends when returns. In addition, flight conditions have to be taken
into account: the magnitude and type of disturbances, e.g. wind direction and speed, altitude,
height of the obstacle, etc. The selected manoeuvre is executed by an automatic control system.

3. Variables describing motion of the aircraft and obstacles in airspace

The aircraft and the obstacle detected by the on-board sensing sub-system create the spa-
tial aircraft-obstacle configuration (Becker et al., 2006; Blajer and Graffstein, 2012; Graffste-
in, 2012b) similar to UAV-target (Koruba and Chatys, 2005) and Missile-target (Ładyżyńska-
-Kozdraś, 2009). Mutual relations in this configuration are described by physical quantities il-
lustrated in Figs. 2 and 3. These quantities apply also to each moving object separately: the
aircraft with geometric centre in the point OS and the obstacle with geometric centre in the
point OP . Kinematic variables for the considered objects are described by mathematical rela-
tionships defined in the body axes reference system fixed to the aircraft and within the reference
system fixed to the Earth. Further, the position of the aircraft towards the obstacle is considered
separately (Carbone et al., 2006; Smith and Harmon, 2009): in the horizontal plane, see Figs. 2
and 4 and in vertical plane, see Figs. 3 and 5.

Fig. 2. The aircraft-obstacle spatial arrangement including elements contained in the horizontal plane

The linear position of the obstacle, determined in relation to the aircraft, is the important
information for presented considerations. This position is described by the vector rSP which is
computed with accordance to the relationship
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Fig. 3. The aircraft-obstacle spatial arrangement including elements contained in the vertical plane

rSP = rP − rS rSP = |rSP |Λr (3.1)

where the matrix of transformation takes the form

Λr =
[
cos γSP cosψSP cos γSP sinψSP − sin γSP

]T
(3.2)

The position of the aircraft and the obstacle in the Earth reference system are

rS =
[
x1S y1S z1S

]T
rP =

[
x1P y1P z1P

]T
(3.3)

The aircraft-to-obstacle distance is computed according to the relationship

|rSP | =
√
(x1P − x1S)2 + (y1P − y1S)2 + (z1P − z1S)2 =

rCMB
sinβ0

(3.4)

The components of linear velocity of the aircraft and velocity of the obstacle in the Earth
reference systems and in body axes are

Vi =
[
ẋ1i ẏ1i ż1i

]T
= Λ−1V

[
Ui Vi Wi

]T
(3.5)

where i = S for the aircraft or i = P for the obstacle.
The matrix of transformation for the aircraft and the obstacle is

ΛV i =




cosΨi cosΘi sinΨi cosΘi − sinΘi
sinΦi cosΨi sinΘi − cosΦi sinΨi sinΦi sinΨi sinΘi + cosΦi cosΨi sinΦi cosΘi
cosΦi cosΨi sinΘi + sinΦi sinΨi cosΦi sinΨi sinΘi − sinΦi cosΨi cosΦi cosΘi




(3.6)

The trajectory angles for the aircraft and the obstacle are

γi = arcsin
ż1i
Vi

(3.7)
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where

Vi =
√
ẋ21i + ẏ

2
1i + ż

2
1i (3.8)

The vector of relative velocity of the obstacle is

VSP = VS −VP VSP = ṙSP (3.9)

The components of relative velocity are (Choi and Kim, 2013)

VSP =



VSPx
VSPy
VSPz


 =



cos γSP cosψSP −rSP cos γSP sinψSP −rSP sin γSP cosψSP
cos γSP sinψSP −rSP cos γSP cosψSP −rSP sin γSP sinψSP
− sin γSP 0 −rSP cos γSP






ṙSP
γ̇SP
ψ̇SP




(3.10)

The components of angular velocity of the aircraft and angular velocity of the obstacle in the
body axes and Earth reference systems are

Ωi =
[
Pi Qi Ri

]T
= ΛΩi

[
Φ̇i Θ̇i Ψ̇i

]T
(3.11)

where the matrix of transformation is

ΛΩi =



1 0 − sinΘi
0 cosΦi sinΦi cosΘi
0 − sinΦi cosΦi cosΘi


 (3.12)

4. Motion of the aircraft and the obstacle in the horizontal plane

The selected horizontal plane (parallel to the surface of the Earth) includes the geometrical
centre of the aircraft shifted from the point OS to the point OS1 along the straight line AOS1.
The distance rSPh (in Fig. 2) to the obstacle is smaller in comparison with the real value.
Physical quantities which appear to be important in the horizontal plane are illustrated in
Fig. 4. The knowledge of values presented in this figure makes verification whether the threat of

Fig. 4. The aircraft obstacle arrangement in horizontal plane
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collision with the obstacle exists in the considered plane possible. This information is the basis of
the procedure of searching for the anti-collision manoeuvre (series of appropriate turns). Using
trigonometric identities, the angle of the aircraft velocity vector in the horizontal plane can be
described by the relationship (Paielli, 2003)

ψS = ψSP + arcsin
[VPh
VSh
sin(ψP − ψSP )

]
(4.1)

The angle of relative velocity vector takes the form

ψSP = arctan
VSh sinψS − VPh sinψP
VSh cosψS − VPh cosψP

(4.2)

The relative velocity in the horizontal plane is equal to

VSPh =
√
V 2Sh + V

2
Ph − VShVPh cos(ψS − ψP ) (4.3)

where the velocity of the aircraft and obstacle in the horizontal plane is

Vih =
√
ẋ21i + ẏ

2
1i (4.4)

The time derivative of the angle of tangent

ρ̇2h = β̇SPh + β̇0h (4.5)

Taking into account relationships (3.4) and (4.5), the derivative of the angle of tangent is deter-
mined

ρ̇2h = −
VSPh sinψSP
rSPh cos βSPh

− ṙSPh
rSPh
(tan βSPh + tan β0h) (4.6)

where

ṙSPh = −
rCMB

sinβ0h tan β0h
β̇0h

and when θSP = γSP the equality holds rSPh = rSP cos γSP .
The angle of line of sight in the horizontal plane is

βSPh = arctan
y1P − y1S
x1P − x1S

(4.7)

The angles of straight lines tangent to the circle of diameter rCMB and centre in the point OP
and coming through the point OSI included in the horizontal plane are (Benayas et al., 2002)

ρ1h, ρ2h = βSPh ∓ arcsin
rCMB√

(x1P − x1S)2 + (y1P − y1S)2
(4.8)

The aircraft-to-obstacle distance in the horizontal plane is

rSPh =
√
(x1P − x1S)2 + (y1P − y1S)2 =

rCMB
sin β0h

(4.9)

Verification of the reliable condition enabling determination whether collision threat exists
appears to be a significant element of safe flight. The case when first two (4.10) or the last one
(4.10) of inequalities presented below are fulfilled proves that the threat occurs, so the procedure
according to the diagram presented in Fig. 1 ought to be initiated

ψSP > ρ1h ∧ ψSP < ρ2h ∨ rSPh > rCMB (4.10)
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To avoid the collision in the horizontal plane, it is necessary to perform a turn of radius rzs.
During this turning, conditions regarding the derivative of the angle of relative velocity vector
have to be fulfilled simultaneously. The first one of them follows from the change of the tangent
angle

ψ̇SP > ρ̇2h (4.11)

The second condition follows from the necessity to reach the desired value of the angle of
relative velocity vector before the aircraft enters the dangerous area in which the threat of
collision exists

ψ̇SP >
1
tZ
(ψSP − ρ2h) (4.12)

The desired value of yaw angle is

ΨSZ = ρ2h + arcsin
[VP
VS
sin(ψP − ρ2h)

]
(4.13)

The desired value of roll angle (Schøler et al., 2009) is

ΦZ = arctan
V 2S cos γS
grzs

(4.14)

5. Motion of the aircraft and the obstacle in the vertical plane

The spatial configuration of the vertical plane is presented in Fig. 3. Physical values, found to
be necessary for considerations within this plane (Thipphavong, 2009), are shown in Fig. 5. The
presented relationships have form analogous to those discussed in the previous Section, but due
to different kind of aircraft motion, serious discrepancies occur in some mathematical formulas.
The definition of kinematic variables enables formulation of the second condition for the collision
threat. This makes it possible to prepare an anti-collision manoeuvre resulting in a change in
the altitude of flight.

Fig. 5. The aircraft obstacle arrangement in vertical plane
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The angle of the vector of aircraft linear velocity in the vertical plane is described by a
relationship analogous to (4.1)

γS = γSP + arcsin
[VPv
VSv
sin(γP − γSP )

]
(5.1)

The angle of linear relative velocity vector takes the form

γSP = arctan
VSv sin γS − VPv sin γP
VSv cos γS − VPv cos γP

(5.2)

The relative velocity in the vertical plane is

VSPv =
√
V 2Sv + V

2
Pv − VSvVPv cos(γS − γP ) (5.3)

where the velocity of the aircraft and the obstacle in the vertical plane is

Viv =
√
ẋ21i + ż

2
1i (5.4)

The time-derivative of the angle of tangential line is

ρ̇2v = β̇SPv + β̇0 (5.5)

Taking into account relationships (3.4) and (5.5), the derivative of the angle of the tangent line
is defined by the relationship

ρ̇2v = −
VSPv sin γSP
rSP cos βSPv

− ṙSP
rSP
(tan βSPv + tan β0) (5.6)

where

ṙSP = −
rCMB

sin β0 tan β0
β̇0 (5.7)

The angle of the line of sight in the vertical plane is

βSPv = arctan
z1P − z1S
x1P − x1S

(5.8)

The angles of lines tangential to the circle of diameter rCMB and centre OP , which are going
through the point OS within the vertical plane (Benayas et al., 2002) are

ρ1v, ρ2v = βSPv ∓ arcsin
rCMB√

(x1P − x1S)2 + (z1P − z1S)2
(5.9)

Just like in the previous discussion, it is important to verify the condition of collision threat in
the vertical plane. The fulfilment of first two (5.10) or the last one (5.10) of inequalities, points
out that the collision threat exists, and the procedure illustrated in diagram (Fig. 1) ought to
be started

γSP > ρ1v ∧ γSP < ρ2v ∨ rSPv > rCMB (5.10)

It is important to notice that the fulfilment of only one of logical conditions (5.10) proves that
the collision threat with the obstacle exists. In the vertical plane, it is possible to avoid the
collision by the climb (or descent) manoeuvre with conditions regarding the derivative of the
angle of relative velocity vector γ̇SP fulfilled. The first condition follows from the change of the
angle of the tangent line

γ̇SP > ρ̇2hv (5.11)



Spatial motion of the aircraft manoeuvring to avoid moving obstacle 107

The second one follows from the necessity of reaching the desired value of the angle of relative
velocity before the aircraft enters the dangerous area, where the threat of collision with the
obstacle is considerable

γ̇SP >
1
tZ
(γSP − ρ2v) (5.12)

The desired value of the trajectory angle is

γSZ = ρ2v + arcsin
[VP
VS
sin(γP − ρ2v)

]
(5.13)

The desired pitch angle is

ΘSZ = γSZ + αS (5.14)

where the angle of attack is computed by the relationship

αS = arctan
WS
US

(5.15)

6. Results of computer simulation

The mathematical model of the I23 Manager aircraft dynamics has been used in simulations
according to (Maryniak, 1992; Phillips, 2010). This model meets general, typical simplifying
assumptions that were mentioned in (Maryniak, 1987).
The system of differential equations describing the aircraft motion is solved numerically

within the Matlab package by the rk4 procedure with a 0.01 s time-step.
The simulated motion of the aircraft contains two manoeuvres performed to avoid moving

obstacles: climbing (within the vertical plane) and a series of turns (within the horizontal plane).
A number of variables describing this motion are obtained. Appropriate time histories illustrating
some selected variables describing the aircraft position, motion and control signals are also
presented graphically.
Pre-determined scenarios describing motion of the objects taking part in the numerical expe-

riment have been assumed. The obstacles are moving at constant altitudes: the first one at 160m,
and the second one at 220m, respectively. Both of them perform steady, constant level motion
with constant speeds with respect to the ground: 40m/s for the first one, 60m/s for the second
one. The first anti-collision manoeuvre consists in climbing from the altitude of 200m up to the
altitude of 250m. The second one is composed of three turns, each one performed with the same
60◦ roll angle. In both cases, the speed of the aircraft with respect to the ground is 50m/s.
The aircraft and obstacle trajectories are chosen to make the considered objects come closer

one to another: for the first obstacle – along perpendicular trajectories, for the second one –
along trajectories crossing at the angle of 40◦. The initial positions and speeds of these objects
at the moment when the evasive manoeuvring starts, guaranteed that the aircraft could perform
this manoeuvres safely.
To avoid collision with an obstacle for the assumed conditions, it is required either to climb

with a considerable value of the trajectory angle or to perform an alternative manoeuvre – a
series of turns of appropriately small radius. In order to minimise the time needed to fly by the
obstacle and return to the previous leg of trajectory, the aircraft complets the series of turns
with the same pre-determined roll angle.
The flight path in the airspace is presented in Fig. 6 with symbolic representations of obstacle

positions and projection of the flight path on the horizontal plane. The trajectory of the climb
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Fig. 6. Trajectories of the aircraft and obstacles in airspace

Fig. 7. The segment aircraft trajectory in the vertical plane

Fig. 8. The segment aircraft trajectory in the horizontal plane

manoeuvre is shown in the vertical plane in Fig. 7. The circle of 90m radius represents the sum
of dimensions of the aircraft, obstacle and pre-defined safety margin.
The minimum distance between the aircraft and contour of the obstacle in the vertical plane

is 60m what corresponds to the pre-defined safety margin. The diagram presented in Fig. 9
illustrates the time histories of pitch angle and pitch rate obtained during simulated climb.
Nature of these changes follows from the elevator deflection, which is illustrated in Fig. 9.
Extreme values of the elevator deflection are not exceeded.
Three turns (the first one and third to the right and the second one to the left) are necessary

to omit the obstacle in the horizontal plane and then to return to the previously realised flight
path (Figs. 6 and 8).
The first turn ensures avoidance of collision, the second turn – safe bypassing the obstacle,

the third one – returning to the leg of the flight path realised before the anti-collision manoeuvre.
The flight trajectory in the horizontal plane during the complex manoeuvre is presented in space
in Fig. 6 and in the plane in Fig. 8. The safety margin has the same value: 60m as in the previous
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Fig. 9. The time history of pitch angle, pitch rate and the elevator deflection during the manoeuvre in
vertical plane

example. The described motion of the aircraft is characterised by presented variations of the
angle of the velocity vector and roll rate (Fig. 10). Aileron movements, necessary to complete
the discussed complex manoeuvre, are shown in Fig. 11. Extreme values of aileron deflections
vary within the range of +15◦ and −15◦. For ailerons, it is the full range of displacement. The
maximum rate of the change is equal to 50circ/s.

Fig. 10. The time history of roll angle and angle of velocity vector during the manoeuvre in the
horizontal plane

Fig. 11. The time history roll rate and aileron deflections during the manoeuvre in the horizontal plane
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7. Concluding remarks

In the paper, two selected scenarios of the threat of collision with a moving obstacle as well as
appropriate different manoeuvres as a reaction to this threat have been presented. Discussion
has been carried out on the base of the spatial scenario of the flight of the aircraft and motion
of the obstacle.
During the simulated flight, two different anti-collision manoeuvres have been performed to

bypass moving obstacles. Transients of state variables of the aircraft performing the anti-collision
manoeuvre serve as the basis for the assessment of the object behaviour during the examined
phases of flight.
Results obtained from these simulations have led to the following conclusions:

• The simulated anti-collision manoeuvres guide the aircraft to the safe state of motion
keeping the accepted safety margin.

• The manoeuvre proposed in the vertical plane avoids the collision threat within 8.8 s,
whereas the manoeuvre in the horizontal plane – within 6.9 s.

• It should be assumed that the anti-collision manoeuvre performed in the vertical plane
has to be started earlier than the manoeuvre performed in the horizontal plane.

• Solution of the collision avoidance problem in the case of moving, manoeuvring obstacle
may require introducing of some modifications to the presented method.

Various scenarios of motion of the aircraft and obstacle as well as their relative positions will
be analysed in the future. For the assessment of the impact of disturbances typical for wind on
the anti-collision manoeuvre, more results of numerical simulations are needed.
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An NURBS-based isogeometric analysis for elastic-plastic stress in a cylindrical pressure
vessel is presented. The vessel is made of a ceramic/metal functionally graded material, i.e.
a particle-reinforced composite. It is assumed that the material plastic deformation follows
an isotropic strain-hardening rule based on the von Mises yield criterion. The mechanical
properties of the graded material are modelled by the modified rule of mixtures. Selected
finite element results are also presented to establish the supporting evidence for validation of
the isogeometric analysis. Similar analyses are performed and solutions for spherical pressure
vessel and rotating disk made of FGMs are also provided.
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1. Introduction

The intensity and variation of stress distributions due to large mismatch in material proper-
ties can be substantially reduced if micro-structural transition behaviour, i.e. a graded material
model, is used. Advances in material synthesis technologies have spurred the development of
functionally graded materials (FGM) with promising applications in aerospace, transportation,
energy, cutting tools, electronics, and biomedical engineering (Chakraborty et al., 2003). An
FGM comprises a multi-phase material with volume fractions of the constituents varying gradu-
ally in a predetermined profile, thus yielding a non-uniform microstructure in the material with
continuously graded properties (Jin et al., 2003).
Elastic and elastic-plastic analyses of thick-walled pressure vessels have always attracted a

lot of research interest because of their importance in engineering applications. Figueiredo et
al. (2008) proposed a numerical methodology in order to predict the elastic-plastic stress beha-
viour of functionally graded cylindrical vessels subjected to internal pressure. It was assumed
that the structures undergo small strain and that the material properties of the graded layer
were modelled by the modified rule of mixtures approximation. Furthermore, the plastic do-
main for ductile phases was defined through the von Mises yield criterion. They proposed an
iterative method for solving the nonlinear system combining a finite element approximation and
an incremental-iterative scheme. Haghpanah Jahromi et al. (2009, 2010) extended the Variable
Material Property (VMP) method developed by Jahed and Dubey (1997) for materials with
varying elastic and plastic properties. In the VMP method, the linear elastic solution to the
boundary value problem was used as a basis to generate the inelastic solution. Through iterative
analysis, the VMP method was used to obtain the distribution of material parameters which
were considered as field variables. The application of the VMP method, generally applied to
homogeneous elastic-plastic materials (Jahed and Shirazi, 2001; Jahed et al., 2005, 2006), was
extended to materials with varying elastic-plastic properties in order to calculate the residual
stresses in an autofrettaged FGM cylindrical vessel.
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Although there are several papers on the elastic analysis of FGM spherical pressure vessels in
the literature (You et al., 2005; Dai et al., 2006; Chen and Lin, 2008), elastic-plastic stress analysis
of FGM spherical pressure vessels is not such a customary study. Sadeghian and Ekhteraei (2011)
studied thermal stress field for an FGM spherical pressure vessel made of an elastic-perfectly
plastic and a power law material model.
Similar to the FGM cylindrical and spherical vessels, much of the studies on FGM rotating

disks has been carried out in elasticity cases (Durodola and Attia, 2000; Bayat et al., 2008).
Haghpanah Jahromi et al. (2012) applied the VMP method to estimate the elasto-plastic stresses
in a rotating disk with varying elastic and plastic properties in the radial direction.
In this paper, isogeometric analysis is proposed for predicting stress components of a strain-

-hardening cylinder based on the von Mises yield criterion under plane stress conditions. Isoge-
ometric analysis was introduced by Hughes et al. (2005) as a generalisation of the standard finite
element analysis. In isogeometric analysis, the solution space for dependent variables is represen-
ted in terms of the same functions which represent the geometry. The geometric representation is
typically smooth, whereas the solution space for the standard finite element analysis is continu-
ous but not smooth. Adoption of the isogeometric concept has shown computational advantages
over the standard finite element analysis in terms of accuracy and analysis time in many ap-
plication areas, including solid and structural mechanics. Most CAD systems use spline basis
functions and often Non-Uniform Rational B-Splines (NURBS) of different polynomial orders to
represent geometry. Results obtained from finite element analysis using the commercial software
ABAQUS (v. 6.10) were used to validate the results from the isogeometric analysis. The analysis
was further extended to obtain solutions for FGM spherical vessels and rotating disks.
A brief review of the isogeometric analysis based on NURBS is presented in Section 2.

This is followed in Section 3 by describing the details of isogeometric analysis formulation for
elastic-plastic cases (functionally graded cylindrical and spherical vessels and rotating disks). In
Section 4, we describe material properties of the graded layer modelled by the modified rule of
mixtures, whereas in Section 5 the results of elastic-plastic analyses are presented. Finally, in
Section 6, key conclusions are pointed out.

2. Fundamentals of NURBS-based isogeometric analysis

2.1. B-splines and NURBS

Non-uniform rational B-splines (NURBS) are a standard tool for describing and modelling
curves and surfaces in the computer aided design and computer graphics.
B-splines are piecewise polynomial curves composed of linear combinations of B-spline basis

functions. The piecewise definition allows approximation of a large number of control points
using lower order polynomials. The coefficients are points in space, referred to as the control
points. A knot vector Ξ is a set of non-decreasing real numbers representing coordinates in the
parametric space of the curve

Ξ = [ξ1, ξ2, ξ3, . . . , ξi, . . . , ξn+p+1] (2.1)

where p is the order of the B-spline and n refers to the number of the basis functions (also
control points). The interval [ξ1, ξn+p+1] is called a patch.
The B-spline basis functions for a given degree p are defined recursively over the parametric

domain by the knot vector. The piecewise constants are first defined as

Ni,0(ξ) =

{
1 if ξi ¬ ξ < ξi+1

0 otherwise
(2.2)
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For p > 0, the basis functions are defined by the following recursion formula

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2.3)

A B-spline surface is constructed by the basis functions in two directions, Ni,p(ξ) and Mj,q(η),
and a set of control points Pij, i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Similar to the first para-
metric direction ξ, Mj,q(η) is also defined by Eqs. (2.2) and (2.3), but another knot vector
H = [η1, η2, η3, . . . , ηj , . . . , ηm+q+1] constitutes the foundation. Often, the B-spline order is the
same in both directions, i.e. p = q.
The surface is to be drawn in the two-dimensional space, Pij ∈ R2. The B-spline surface is

then interpolated by

S(ξ, η) =
n∑

i=1

m∑

j=1

Ni,p(ξ)Mj,q(η)Pij (2.4)

The B-spline surface is the result of a tensor product. The patch for the surface is now the
domain [ξ1, ξn+p+1]× [η1, ηn+p+1]. Identifying the logical coordinates (i, j) of the B-spline surface
with the traditional notation of the node A and the Cartesian product of the associated basis
functions with the shape function NA(ξ, η) = Ni,p(ξ)Mj,q(η), the familiar finite element notation
is recovered, namely

S(ξ, η) =
nm∑

A=1

NA(ξ, η)PA (2.5)

B-splines are non-rational functions that form non-rational B-spline curves and surfaces. A
rational curve or surface can represent conical sections in an exact manner. Non-uniform rational
B-splines (NURBS) are therefore introduced by including weights on the control points. The
NURBS basis functions will differ from the B-spline basis functions, but the knot vectors, the
tensor product nature, and refinement mechanisms are unchanged.
The NURBS surface is given by

S(ξ, η) =
1

w(ξ, η)

nm∑

A=1

NA(ξ, η)wAPA =
nm∑

A=1

NA(ξ, η)PA (2.6)

where

w(ξ, η) =
nm∑

A=1

NA(ξ, η)wA NA(ξ, η) =
NA(ξ, η)wA
w(ξ, η)

2.2. Fundamentals of the isogeometric analysis

The isogeometric analysis was defined by Hughes et al. (2005) and means that the analysis
model uses the same mathematical description as the geometry model. This notion of using the
same basis for geometry and analysis is called the isoparametric concept, and it is quite common
in the classical finite element analysis. The fundamental difference between the isogeometric ana-
lysis and the finite element analysis is that, in the FEA, the basis chosen for the approximation
of the unknown solution fields is used to approximate known geometry whereas the isogeometric
analysis turns this idea around and selects a basis capable of exactly representing the known
geometry, and uses it as a basis for the fields we wish to approximate (Cottrell et al., 2009).
The main advantages of the isogeometrical method, compared to other numerical methods,

can be summarised as below:
• feduction in size of the system of equations,
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• flexibility and accuracy in the definition of geometry and its boundaries,
• the possibility of keeping the original model in the whole process without several remeshing
in problems with a varying domain of interest,

• considerable ease in implementing adaptively and mesh refinement,
• accuracy in satisfaction of the essential boundary conditions,
• applicability of the method in problems of functionally graded materials (Hassani et al.,
2011).

And the main disadvantages of the isogeometric analysis can be mentioned as in the following:

• the control points of geometry commonly are not a part of the physical domain of the
problem,

• the relative difficulty of establishing a correspondence between the point in the domain
and the solution.

3. Isogeometric analysis formulation for the elastic-plastic case

3.1. Elastic formulation

We use the principle of virtual displacement applied to a plane elastic body

0 =
∫

V

(σijδεij + ρüiδui) dV −
∫

V

fiδui dV −
∮

S

tiδui ds (3.1)

where σij is the Cauchy stress, εij is strain, ρ is density, üi is the acceleration component, ui is
the displacement component (i.e. u, v,w), fi is the body force component, ti is the traction
component (i.e. tx, ty, tz), V is volume and S is surface area corresponding to the volume.
In the cylindrical coordinate system and axisymmetric condition, Eq. (3.1) can be rewritten

as follows

0 = 2π
∫∫
(σijδεij + ρüiδui)r dr dz − 2π

∫∫
fiδuir dr −

∮

S

tiδui ds (3.2)

By using the NURBS basis functions, the approximated displacement functions can be written
as

r(ξ, η) =
nm∑

A=1

NA(ξ, η)rA = [N1(ξ, η), N2(ξ, η), . . . , Nnm(ξ, η)]




r1
r2
...

rnm



= Nr

z(ξ, η) =
nm∑

A=1

NA(ξ, η)zA = Nz

u(ξ, η) =
nm∑

A=1

NA(ξ, η)uA =Nu w(ξ, η) =
nm∑

A=1

NA(ξ, η)wA = Nw

δu(ξ, η) =
nm∑

A=1

NA(ξ, η)δuA = Nδu δw(ξ, η) =
nm∑

A=1

NA(ξ, η)δwA = Nδw

(3.3)

where rA and zAare the x- and y-coordinates of the control points of the surface, uA and wA
are the control points of the displacement.
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The stress and strain relationships are given by

ε = TN

[
u
w

]
= B

[
u
w

]
σ = Cε = CB

[
u
w

]
(3.4)

where T is the matrix of differential operators, C is the constitutive matrix (constitutive matrix
is calculated via Young’s modulus and Poisson’s ratio) and B = TN. In this study it is assumed
that Poisson’s ratio ν is a material constant while Young’s modulus E(r) varies with the position
across the wall thickness of the vessel (disk).
Substituting Eqs. (3.3) and (3.4) into Eq. (3.2), and in the absence of inertia forces, we

obtain

0 = 2π
∫∫ (

BTCB

[
u
w

])
r dr dz − 2π

∫∫
NT

[
fr
fz

]
r dr dz −

∮

S

NT
[
tr
tz

]
ds (3.5)

Note that in Eq. (3.5) all variables are written in terms of the parameters ξ and η which is
similar to mapping in the standard finite element method where the base or unit elements are
used

0 = 2π

ξn+p+1∫

ξ1

ηm+q+1∫

η1

BTCB

[
u
w

]
r(detJ) dη dξ

− 2π
ξn+p+1∫

ξ1

ηm+q+1∫

η1

NT
[
fr
fz

]
r(detJ) dη dξ −

∮

S

NT
[
tr
tz

]
ds

(3.6)

where

J =

[
∂r/∂ξ ∂z/∂ξ
∂r/∂η ∂z/∂η

]

and the matrix form is as follows

Ku = F+T (3.7)

where

K = 2π

ξn+p+1∫

ξ1

ηm+q+1∫

η1

BTCB

[
u
w

]
r(detJ) dη dξ

F = 2π

ξn+p+1∫

ξ1

ηm+q+1∫

η1

NT
[
fr
fz

]
r(detJ) dη dξ

T =
∮

S

NT
[
tr
tz

]
ds

(3.8)

Integrals in Eq. (3.8) can be calculated using the Gauss-Legendre method of numerical integra-
tion.
In order to obtain stress distributions for a spherical thick-walled functionally graded pressure

vessel, the isogeometric analysis formulation is rewritten in the spherical coordinate system
(r, θ, ϕ).
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3.2. Plastic formulation

In order to formulate a theory which models elasto-plastic material deformation, three requ-
irements have to be met:
• before the onset of plastic deformation, an explicit relationship between stress and strain
must be formulated to describe material behaviour under elastic conditions,

• a yield criterion must be postulated to indicate the stress level at which plastic flow
commences,

• a relationship between stress and strain must be developed for post yield behaviour, when
the deformation is made up of both elastic and plastic components (Owen and Hinton,
1980).
According to the normality hypothesis of plasticity, the plastic strain increment dεp is defined

as:

dεp = dλ
∂Q

∂σ
(3.9)

where Q is the yield function and dλ is called the plastic multiplier.
Assuming that the material plastic deformation follows the isotropic strain-hardening rule

based on the von Mises yield criterion n ≡ ∂Q/∂σ = [3/(2σe)]S and dλ = dεpe , Eq. (3.9) may be
rewritten as

dεp =
3
2
dεpe
σe
S (3.10)

where dεpe is the equivalent plastic strain increment. The superscripts p and e denote plasticity
and elasticity conditions respectively, also the subscript e denotes equivalent (effective) parame-
ters (stress or plastic strain).
The equivalent stress σe and the deviatoric stress S for the plane stress field are defined as

σe =
√
σ2r + σ

2
θ − σrσθ S =



Sr
Sθ
Sz


 =




2σr − σθ
3

2σθ − σr
3

−σr + σθ
3




(3.11)

where σr and σθ are the radial and hoop stresses, respectively. For a linear strain hardening
material (Fig. 1), the yield stress σy and the plastic multiplier dλ are determined by

σy = σy0(r) + hp(r)εpe dλ =
nTCdε

nTCn+ hp
(3.12)

where hp(r) is the plasticity modulus (i.e. the gradient of the stress-plastic strain curve) and
σy0(r) is the initial yield stress of the FGM material. Both hp(r) and σy0(r) are functions
dependent on the radial position r. The stress increment is given by

dσ = Cdεe = C(dε− dεp) = C(dε− dλn) (3.13)

by substituting Eq. (3.12)2 into Eq. (3.13), we can obtain the complete elasto-plastic incremental
stress-strain relation

dσ = Cepdε Cep = C− CnnTC

nTCn+ hp
(3.14)

where the superscripts ep denote the elasto-plastic behaviour.



Elastic-plastic analysis of pressure vessels and rotating disks... 119

Fig. 1. Stress-strain curve for linear strain hardening

If we denote all quantities at the iteration k with a superscript k, and those at the next
increment by k + 1 in a similar way, then we may write

dλk =
nk
T
Cdεk

nk
T
Cnk + hp

dσk = C
(
dεk − dλknk

)
(3.15)

The integration to obtain the quantity at the end of the time step ∆t may be then written as

σk+1 = σk + dσk (3.16)

If relatively large load increments are to be permitted, the process described can lead to an
inaccurate prediction of the stresses. Two parameters R (reduction factor) and m (the excess
of the yield stress is divided into m parts) can help to minimize the error (Owen and Hinton,
1980). The algorithm for plasticity isogeometric analysis is summarized in Fig. 2.

Fig. 2. Flow chart of the algorithm for the elastic-plastic analysis
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4. Mechanical behaviour of FGM

It is assumed that the functionally graded metal-ceramic composite is locally isotropic and fol-
lows the von Mises yield criterion. The three important material properties for elastic-plastic
analysis are the elastic modulus E(r), the initial yield stress σy0(r), and the tangent modu-
lus H(r). These properties can be calculated using the modified rule of mixtures for composites
(Suresh and Mortensen, 1998). Note that the modified rule of mixtures is appropriate for mo-
deling of isotropic materials

E =
[
(1− fc)Em

q + Ec
q + Em

+ fcEc
][
(1− fc)

q + Ec
q + Em

+ fc
]−1

σy0 = σy0m
[
(1− fc) +

q +Em
q + Ec

Ec
Em

fc
]

H =
[
(1− fc)Hm

q + Ec
q +Hm

+ fcEc
][
(1− fc)

q + Ec
q +Hm

+ fc
]−1

hp =
EH

E −H

(4.1)

where the subscripts c and m indicate the ceramic and metal material, respectively. The volume
fraction of ceramic particles is denoted by fc, and q is the ratio of the stress to strain transfer,
where σc, εc and σm, εm are the average stresses and strains in ceramic and metal, respectively
(see Fig. 3)

q =
σc − σm
|εc − εm|

0 < q <∞ (4.2)

Fig. 3. (a) Schematic representation of a thick FGM vessel (rotating disk) with internal radius ri and
external radius ro. (b) Schematic representation of the modified rule of mixtures used to estimate the

behaviour of the ceramic particle-reinforced metal composite

The empirical parameter q depends on many factors including material composition, mi-
crostructural arrangements and internal constraints. For example, q → ∞ if the constituent
elements deform identically in the loading direction, while q = 0 if the constituent elements
experience the same stress level. In the present analysis, the ceramic particle reinforcement is
assumed to have a volume fraction that varies from 0 at the inner radius ri to fc0 at the outer
radius ro according to the following relationship

fc(r) = fc0
( r − ri
ro − ri

)n
(4.3)

where n is the reinforcement distribution exponent n = 0 denotes uniformly-reinforced metal-
-ceramic). The material properties for each constituent phase are listed in Table 1. The para-
meter q may be approximated by calibration of experimental data from tensile tests performed
on monolithic composite specimens. For example, a value of q = 4.5GPa is used for a TiB/Ti
FGM (Carpenter et al., 1999), whereas Poisson’s ratio is taken constant and equal to 0.3.
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Table 1. Material properties (Jin et al., 2003)

Materials
Young’s modulus Yield stress Tangent modulus

[GPa] [MPa] [GPa]

Ti 107 450 10
TiB 373

5. Results

In this Section, we study three cases, a cylindrical and spherical pressure vessel as well
as a rotating disk made of FGMs. The elastic-plastic isogeometric analysis code is written
in MATLAB (2008). The cylinder (disk) B-spline model includes 50 control points (10 po-
ints in the r-direction and 5 points in the z-direction), and the assumed knot vectors are
Ξ = [0, 0, 0, 0, 0.142, 0.285, 0.428, 0.571, 0.714, 0.857, 1, 1, 1, 1] and H = [0, 0, 0, 0, 0.5, 1, 1, 1, 1]
(cubic NURBS). In all the cases, the second order Gauss quadrature is used for numerical
integrations (156 Gauss points in the r-direction and 8 Gauss point in the z-direction). The
knot vectors and the number of control points in the sphere model is similar to that in the
cylinder model. The geometries in this study are modeling with a single patch (the patch for
the surface is the domain [ξ1 = 0, ξn+p+1 = 1] × [η1 = 0, ηn+p+1 = 1]), and we have no need
to assemble the stiffness matrices and force vectors. By removing the assemble step, we redu-
ce the overall analysis time by about 10% (at the same number of degrees-of-freedom in the
isogeometric method and FEM).

To verify the accuracy of the isogeometric analysis, finite element analyses have been perfor-
med using the commercial finite element code ABAQUS (Karlsson, Hibbitt, Sorensen Inc., 2008).
The conventional method of modelling FGMs in the software is to subdivide the thick wall into
several thin layers with equal thickness. This method of modelling leads to discontinuity in the
mechanical properties of FGM materials and is both difficult and time-consuming. Setoodeh et
al. (2008) proposed a new approach for analysing the FGM material in the elastic zone without
the need for dividing the thickness into thin strips. They applied a virtual temperature distri-
bution in the cylinder wall using the facility available within the software to assign continuously
variable properties across the wall thickness and then created a one-to-one relationship between
the temperature and mechanical properties. The correlation of the distribution of temperature
and mechanical properties of the FGM material allowed one tp model the variation of FGM
properties in the cylinder. Note that the conductivity factor and other thermal parameters are
set to zero, and the temperature does not change during analysis. Indeed, the analysis is solely
mechanical and no thermomechanical examination is carried out. This method allows the analy-
sis of the elastic-plastic FGM cylindrical and spherical vessels as well as the rotating disk. The
three-dimensional 8-noded linear coupled temperature displacement family of finite elements in
ABAQUS has been used to model the cylinder. Sensitivity analysis of the mesh has also been
performed to ensure the results remained insensitive to the element size.

In order to evaluate the isogeometric analysis code, a set of results from finite element
calculations and the VMP method (Haghpanah Jahromi et al., 2009) obtained for the plane
strain conditions have been compared with the results obtained from the isogeometric analysis
for the FGM cylindrical vessel subjected to autofrettage internal pressure 100 MPa (Fig. 4).
The results indicated that the isogeometric analysis method has some influence on the accuracy.
Figure 5 illustrates the distribution of von Mises stresses across the thickness in the cylindrical
vessel subjected to internal pressure 300MPa with n = 2 and different reinforcement distribution
coefficients fc0. The results show that because Ec/Em > 1, an increase in fc0 elevates von Mises
stress in the outer surface, and the plastic region decreases in the inner surface.
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Fig. 4. Comparison of the VMP method (Haghpanah Jahromi et al., 2009) with the finite element
analysis. The results show the residual stresses in the autofrettaged vessel. In this calculation:

Em = 56GPa, Ec = 20GPa, σy0m = 106MPa, Hm = 12GPa and νm = νc = 0.25. The vessel undergoes
a plane-strain condition

Fig. 5. Von Mises stress along the thickness in the FGM cylindrical vessel subjected to internal pressure
300MPa with q = 4.5GPa and n = 2 for different fc0. The vessel has t/ri = 1 and plane-stress

condition (properties listed in Table 1)

For the spherical vessel subjected to internal pressure of 600MPa, the results obtained from
the isogeometric analysis method have been compared with the finite element results. Excellent
agreement is observed as shown in Fig. 6. For the purpose to investigate the effect of n on the
initiation of yielding, we introduce two parameters Pv1 (pressures corresponding to the initiation
of yielding at the inner radius) and Pv2 (pressures corresponding to the initiation of yielding at
the outer radius). Figure 7 shows that Pv1 and Pv2 decrease with growing n. Also, in the cylinder
subjected to Pv2, by increasing n, the plastic region gradually spreads from the inner surface.
Note that by increasing n, the metal properties dominate overcoming the ceramic properties
and, therefore, the plastic behaviour of the material becomes more evident.

Similar to the previous cases, the excellent agreement of the isogeometric analysis with the
finite element predictions of elastic-plastic stresses for the rotating disc is shown in Fig. 8. The
distribution of von Mises stresses across the thickness in the disk rotating at different angular
velocities with n = 2 and fc0 = 0.8 is presented in Fig. 9. The results clearly indicate that the
growth of the plastic zone across the thickness is initiated from both sides of the disc. In this
study, density of metal is ρm = 4420 kg/m3 and density of ceramic is ρc = 2000 kg/m3.
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Fig. 6. Comparison with the finite element method. The results show the stress components in the
spherical vessel with fc0 = 1 and n = 2 subjected to internal pressure 600MPa. In this calculation

q = 4.5GPa. The vessel has t/ri = 1 (properties listed in Table 1)

Fig. 7. Von Mises stress along the thickness in the FGM spherical vessel subjected to Pv1 and Pv2 with
fc0 = 1 and different n. In this calculation q = 4.5GPa. The vessel has t/ri = 1 (properties listed in

Table 1)

Fig. 8. Comparison with the finite element method. The results show the stress components in the
rotating disk with fc0 = 0.8 and n = 2 at the angular velocity ω = 230 rad/s. In this calculation

q = 4.5GPa. The disk has t/ri = 1 (properties listed in Table 1)
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Fig. 9. Von Mises stress along the thickness in the FGM rotating disk at different angular velocities with
fc0 = 0.8 and n = 2. In this calculation q = 4.5GPa. The disk has t/ri = 1 (properties listed in Table 1)

6. Conclusion

Using the isogeometric analysis method, elastic-plastic stress distributions in a cylindrical and
spherical pressurized vessels and rotating disks made of an FGM material have been determined.
As expected, this approach to the plasticity problem is computationally cost effective and results
in a much smaller system of equations to solve. Finite element analysis of the problem using
ABAQUS commercial code has been used for verification of the isogeometric method. The nu-
merical analysis within the software has been performed by the application of a “virtual thermal
load” that enabled continuous variation of the material behaviour through the wall thickness.
The analysis results obtained in this work also indicate the possibility of formation and growth
of a plastic region within the wall thickness from the external surface of the FGM vessels or
rotating disks whereas in cylindrical (spherical) vessels and rotating disks made of homogeneous
materials, the plasticity essentially starts from the inner surface.
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Results of investigation on the transport of vorticity in Rivlin-Ericksen viscoelastic fluid
in the presence of suspended magnetic particles is presented here. Equations governing the
transport of vorticity in Rivlin-Ericksen viscoelastic fluid in the presence of suspended ma-
gnetic particles are obtained from the equations of magnetic fluid flow. From these equations
it follows that the transport of solid vorticity is coupled with the transport of fluid vortici-
ty. Further, we find that because of thermokinetic process, fluid vorticity may exist in the
absence of solid vorticity, but when fluid vorticity is zero, then solid vorticity is necessarily
zero. A two-dimensional case is also studied and found that the fluid vorticity is indirectly
influenced by the temperature and the magnetic field gradient.

Keywords: Rivlin-Ericksen viscoelastic fluid, suspended magnetic particles, vorticity

1. Introduction

A magneto-rheological fluid contains particles of magnetic materials mixed in a liquid that acts
as a carrier. Under normal conditions, the material behaves like a viscous fluid. When it is
exposed to a magnetic field, the particles inside align and it responds to the field, exhibiting
magnetized behaviour. There are a number of uses for magnetic fluids, ranging from medicine
to industrial manufacturing. It is, therefore, a two-phase system consisting of solid and liquid
phases. We assume that the liquid phase is non-magnetic in nature and magnetic force acts
only on the magnetic particles. Thus, the magnetic force changes the velocity of the magnetic
particles. Consequently, the dragging force acting on the carrier liquid is changed and thus the
flow of carrier liquid is also influenced by the magnetic force. Because of the relative velocity
between the solid and liquid particles, the net effect of the particles suspended in the fluid is
extra dragging force acting on the system. Taking this force into consideration, Saffman (1962)
proposed the equations of the flow of suspension of non-magnetic particles. These equations
were subsequently modified to describe the flow of magnetic fluid with the magnetic body force
µ0M∇H taken into account by Wagh (1991). Wagh and Jawandhia (1996) have studied the
transport of vorticity in a magnetic fluid. Yan and Koplik (2009) have studied the transport and
sedimentation of suspended particles in inertial pressure-driven flow.
In all the above studies, the fluid was considered as Newtonian, but many industrially impor-

tant fluids (molten plastics, polymers, pulps and foods) exhibit a non-Newtonian fluid behaviour.
Many common materials (paints and plastics) and more exotic ones (silicic magma, saturated
soils, and the Earth’s lithosphere) behave as viscoelastic fluids. With the growing importance
of non-Newtonian materials in various manufacturing and processing industries, considerable
effort has been directed towards understanding their flow. The stability of a horizontal layer of
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Maxwell’s viscoelastic fluid heated from below has been investigated by Vest and Arpaci (1969).
The nature of the instability and other factors can affect viscoelastic fluids differently than New-
tonian fluids. For example, Bhatia and Steiner (1972) have considered the effect of a uniform
rotation on the thermal instability of Maxwellian viscoelastic fluid, where rotation is found to
have a destabilizing effect. This is in contrast to the thermal instability of a Newtonian fluid
where rotation has a stabilizing effect. The thermal instability of an Oldroydian viscoelastic fluid
acted on by a uniform rotation has been studied by Sharma (1976). There are many viscoelastic
fluids that cannot be characterized by Maxwell’s or Oldroyd’s constitutive relations. One such
fluid is Rivlin-Ericksen viscoelastic fluid, having relevance and importance in geophysical fluid
dynamics, chemical technology and petroleum industry. Rivlin and Ericksen (1955) have studied
the stress-deformation relaxation for isotropic materials. Garg et al. (1994) have studied the drag
on a sphere oscillating in conducting dusty Rivlin-Ericksen viscielastic fluid. Thermal instability
in Rivlin-Ericksen viscoelastic fluid in the presence of rotation and magnetic field, separately,
has been investigated by Sharma and Kumar (1996, 1997b). Sharma and Kumar (1997a) have
studied the hydromagnetic stability of two Rivlin-Ericksen viscoelastic superposed conducting
fluids and the analysis has been carried out, for two highly viscous fluids of equal kinematic
viscosities and equal kinematic viscoelasticities wherein it was found that the stability criterion
is independent of the effects of viscosity and viscoelasticity and is dependent on the orientation
and magnitude of the magnetic field. The stability of two superposed Rivlin-Ericksen visco-
elastic fluids in the presence of suspended particles has been considered by Kumar and Singh
(2006). Kumar et al. (2007) have studied the hydrodynamic and hydromagnetic stability of two
stratified Rivlin-Ericksen viscoelastic superposed fluids.
Keeping in mind the importance of viscoelastic fluids in modern technology and industries,

the present paper attempts to study the transport of vorticity in magnetic Rivlin-Ericksen
viscoelastic fluid-particle mixtures by using the equations proposed by Wagh and Jawandhia
(1996).

2. Basic assumptions and magnetic body force

The particles of magnetic material are much larger than the molecules of the carrier liquid.
Accordingly, we consider the limit of a microscopic volume element in which the fluid can be
assumed to be a continuous medium and the magnetic particles must be treated as discrete
entities. If we consider a cell of magnetic fluid containing a larger number of magnetic particles,
then we must consider the microrotation of the cell in addition to its translations as a point
mass. We must, therefore, assign average velocity qd and the average angular velocity ω to the
cell. But, here as an approximation, we neglect the effect of microrotation. We also assume the
following:

(i) The free current density J is negligible, and J×B is insignificant.
(ii) The magnetic field is curl free i.e. ∇×H = 0.
(iii) The liquid compressibility is unimportant in many practical situations. Hence, the con-
tribution due to magnetic friction can be neglected. The remaining force of the magnetic
field is referred as magnetization force.

(iv) All time-dependent magnetization effects in the fluid (such as hysteresis) are negligible,
and the magnetization M is collinear with H.

From electromagnetic theory, the force per unit volume (in MKS units) on a piece of magne-
tized material of magnetization M (i.e. dipole moment per unit volume) in the field of magnetic
intensity H is µ0(M · ∇)H, where µ0 is the free space permeability.
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Here we note that

∇ · a = ∂a1
∂x
+
∂a2
∂y
+
∂a3
∂z

a · ∇ = a1
∂

∂x
+ a2

∂

∂y
+ a3

∂

∂z

where a = a1i+ a2j+ a3k.
Using assumption (iv), we obtain

µ0(M · ∇)H =
µ0M

H
(H · ∇)H (2.1)

where M = |M| and H = |H|.
But by assumption (ii), we have

(H · ∇)H = 1
2
∇(H ·H)−H× (∇×H) = 1

2
∇(H ·H) (2.2)

Hence

µ0(M · ∇)H =
(µ0M
H

)1
2
∇(H ·H) = µ0M∇H

The magnetic body force therefore becomes (Rosensweig, 1997)

fm = µ0M∇H (2.3)

3. Derivation of the equations governing the vorticity transport in a magnetic
Rivlin-Ericksen viscoelastic fluid

Let Γij , τij, eij , δij , ui, xi, p, µ and µ′ denote the stress tensor, shear stress tensor, rate-of-
strain tensor, Kronecker delta, velocity vector, position vector, isotropic pressure, viscosity and
viscoelasticity, respectively. The constitutive relations for the Rivlin-Ericksen viscoelastic fluid
(Rivlin and Ericksen, 1955; Sharma and Kumar, 1997a) are

Γij = −pδij + τij τij = 2
(
µ+ µ′

∂

∂t

)
eij eij =

1
2

(∂ui
∂xj
+
∂uj
∂xi

)

To describe the flow of a magnetic fluid by including the body force µ0M∇H acting on the
suspended magnetic particles, Wagh (1991) modified the Saffman’s equations for flow of suspen-
sion. The equations for the flow of suspended magnetic particles and the flow of Rivlin-Ericksen
viscoelastic fluid in which magnetic particles are suspended are therefore written as

mN
(∂V
∂t
+ (V · ∇)V

)
= mNg + µ0M∇H +KN(u−V)

ρ
(∂u
∂t
+ (u · ∇)u

)
= −∇P + ρg +

(
µ+ µ′

∂

∂t

)
∇2u+KN(V − u)

(3.1)

where P , ρ, u(ux, uy, uz), g(0, 0,−g), V(l, r, s), m and N(x, t) respectively denote the pressure
minus hydrostatic pressure, density, velocity of fluid particles, gravity force, velocity of solid
particles, particle mass and particle number density. Moreover, x = (x, y, z), and K = 6πµη,
where η is the particle radius, is the Stokes’ drag coefficient.
If we assume that the particle has a uniform spherical shape and that the velocity relative

to the fluid is small, then in the equations of motion for the viscoelastic fluid, because of the
presence of suspended particles, an additional force term appears proportional to the velocity
difference between the suspended particles and the fluid. Since the force exerted by the fluid
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on the suspended particles is equal and opposite to that exerted by the particles on the fluid,
an additional force term equal in magnitude but opposite in sign appears in the equations of
motion for the suspended particles. We neglect the buoyancy force on the particles. This force
is proportional to the quotient of ρ and the particle density, and an analysis in the case of
free-free boundary conditions (no tangential stresses) shows that its small stabilizing effect is
negligible. We also assume that the distances between particles are quite large compared with
their diameter, and we therefore also ignore particle interactions.
By making use of the Lagrange’s vector identities

(qd · ∇)qd =
1
2
∇q2d − qd ×Ω (q · ∇)q = 1

2
∇q2 − q×Ω1 (3.2)

Equations (3.1) become

mN
[∂V
∂t
− (V ×Ω)

]
= −∇mNgz − 1

2
mN∇V2 + µ0M∇H +KN(u−V)

ρ
[∂u
∂t
− (u×Ω1)

]
= −∇P −∇ρgz − 1

2
ρ∇u2 +

(
µ+ µ′

∂

∂t

)
∇2u+KN(V − u)

(3.3)

where Ω = ∇×V and Ω1 = ∇× u are solid vorticity and fluid vorticity.
Taking the curl of these equations and recalling that the curl of a gradient is identically equal

to zero, we obtain

mN
[∂Ω
∂t
− (∇×V ×Ω)

]
= µ0∇×M∇H +KN(Ω1 −Ω)

ρ
[∂Ω1
∂t
− (∇× u×Ω1)

]
=
(
µ+ µ′

∂

∂t

)
∇2Ω1 +KN(Ω−Ω1)

(3.4)

By making use of the vector identities

∇× (V ×Ω) = (Ω · ∇)V − (V · ∇)Ω+V∇ ·Ω−Ω∇ ·V = (Ω · ∇)V − (V · ∇)Ω
∇× (u×Ω1) = (Ω1 · ∇)u− (u · ∇)Ω1 + u∇ ·Ω1 −Ω1∇ · u = (Ω1 · ∇)u− (u · ∇)Ω1

(3.5)

Equations (3.4) become

mN
DΩ

Dt
= µ0∇×M∇H +mN(Ω · ∇)V +KN(Ω1 −Ω)

DΩ1
Dt
=
(
ν + ν ′

∂

∂t

)
∇2Ω1 + (Ω1 · ∇)u+

KN

ρ
(Ω−Ω1)

(3.6)

where ν and ν ′ are kinematic viscosity and kinematic viscoelasticity, respectively and
D
Dt ≡ ∂∂t + (V · ∇) is the convective derivative.
In equation (3.6)1

∇× (M∇H) = (∇M ×∇H) + (M∇×∇H) (3.7)

Since the curl of the gradient is zero, the last term in equation (3.7) is zero. Also since
M =M(H,T ).
Therefore

∇M =
(∂M
∂H

)
∇H +

(∂M
∂T

)
∇T (3.8)

By making use of (3.8), equation (3.7) becomes

∇× (M∇H) =
(∂M
∂H

)
∇H ×∇H +

(∂M
∂T

)
∇T ×∇H (3.9)



Vorticity transport analysis in magnetic viscoelastic fluid 131

The first term on the right hand side of this equation is clearly zero, hence we get

∇× (M∇H) =
(∂M
∂T

)
∇T ×∇H (3.10)

Substituting this expression in equation (3.6)1, we obtain

mN
DΩ

Dt
= µ0

(∂M
∂T

)
∇T ×∇H +mN(Ω · ∇)V +KN(Ω1 −Ω) (3.11)

Here (3.6)2 and (3.11) are the equations governing the transport of vorticity in magnetic Rivlin-
Ericksen viscoelastic fluid-particle mixtures.
In equation (3.11), the first term in the right-hand side i.e. µ0(∂M/∂T )∇T ×∇H describes

the production of vorticity due to thermo-kinetic processes. The last term KN(Ω1 −Ω) gives
the change in solid vorticity on account of the exchange of vorticity between the liquid and solid.
It follows from equations (3.6)2 and (3.11) that the transport of solid vorticity Ω is coupled

with the transport of fluid vorticity Ω1.
From equation (3.11), we see that if solid vorticity Ω is zero, then the fluid vorticity Ω1 is

not-zero and it is given by

Ω1 = −
µ0
KN

(∂M
∂T

)
∇T ×∇H (3.12)

This implies that due to thermo-kinetic processes, fluid vorticity can exist in the absence of solid
vorticity.
From equation (3.6)2, we find that if Ω1 is zero, then Ω is also zero. This implies that when

fluid vorticity is zero, then solid vorticity is necessarily zero.
In the absence of suspended magnetic particles, N is zero and magnetization M is also zero.

Then, equation (3.11) is identically satisfied and equation (3.6)2 reduces to

DΩ1
Dt
=
(
ν + ν ′

∂

∂t

)
∇2Ω1 + (Ω1 · ∇)q (3.13)

This equation is the vorticity transport equation. The last term on the right hand side of equation
(3.13) represents the rate at which Ω1 varies for a given particle, when the vortex lines move
with the fluid, the strengths of the vortices remaining constant. The first term represents the
rate of dissipation of vorticity through friction (resistance) and rate of change of vorticity due
to fluid viscoelasticity.

3.1. Two-dimensional case

Here we consider the two-dimensional case:
Let

V = vx(x, y)i+ vy(x, y)j u = ux(x, y)i + uy(x, y)j (3.14)

where components vx, vy and ux, uy are functions of x, y and t, then

Ω = Ωzk Ω1 = Ω1zk (3.15)

In two-dimensional case, equation (3.11) becomes

DΩz
Dt
=

µ0
mN

(∂M
∂T

)(∂T
∂x

∂H

∂y
− ∂H

∂x

∂T

∂y

)
+
K

m
(Ω1z − Ωz) (3.16)
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and equation (3.6)2 similarly becomes

DΩ1z
Dt
= ν∇2(Ω1z) + ν ′

∂

∂t
∇2(Ω1z) +

KN

ρ
(Ωz − Ω1z) (3.17)

since it can be easily verified that

(Ω · ∇)V = 0 (Ω1 · ∇)u = 0 (3.18)

The first term on the right hand side of equation (3.17) is the change of fluid vorticity due to
internal friction (resistance). The second term is the rate of change of fluid vorticity due to fluid
viscoelasticity and the third term is change in fluid vorticity due to the exchange of vorticity
between solid and liquid. Equation (3.17) does not explicitly involve the term representing
change of vorticity due to magnetic field gradient and/or temperature gradient. But equation
(3.16) shows that solid vorticity Ωz depends on these factors. Hence, it follows that the fluid
vorticity is indirectly influenced by the temperature and the magnetic field gradient.
In the absence of magnetic particles, N is zero and magnetization M is also zero. Equation

(3.16) is therefore satisfied identically, and equation (3.17) reduces to the classical equation for
the transport of fluid vorticity. If we consider a suspension of non-magnetic particles instead of
a magnetic fluid, then the corresponding equation for the transport of vorticity may be obtained
by setting M equal to zero in the equations governing the transport of vorticity in magnetic
fluids. If magnetization M of the magnetic particles is independent of temperature, then the
first term of equations (3.11) and (3.16) vanishes, and the equations governing the transport of
vorticity in a magnetic fluid become the same as those governing the transport of vorticity in
non-magnetic suspensions.
If the temperature gradient ∇T vanishes or if the magnetic field gradient ∇H vanishes or

if ∇T is parallel to ∇H, then also the first term in (3.11) and (3.16) vanishes. We thus see that
the transport of vorticity in a magnetic fluid is also the same as the transport of vorticity in
non-magnetic suspension.
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Thermal buckling analysis of functionally graded cylindrical panels subjected to various
conditions is discussed in this paper. Buckling governing equations are solved using the
differential quadrature method. It is assumed that the mechanical properties of the panel
are graded through thickness according to a power function of the thickness variable. The
panel is assumed to be under the action of three types of thermal loading including uniform
temperature rise and variable temperature rise in the axial and radial direction. In the
present study, the effects of power law index, panel angle, different thermal load conditions
and geometric parameters on the buckling behavior of functionally graded curved panels are
studied. The results obtained through the present method are compared to the finite element
solutions and the reported results in the literature. A desirable compatibility is concluded.

Keywords: thermal buckling, curved panel, functionally graded material, differential quadra-
ture method

1. Introduction

Due to special mechanical properties, circular cylindrical panels are widely used in engineering
structures such as pressure vessels, nuclear reactors, spacecrafts and jet engine exhausts. Due
to the increasing demands for heat-resisting, energy absorbing, light-weight elements and high
structural performance requirements in extremely high temperature environments and high-
speed industries such as fusion reactors, aircraft and aerospace structures the use of special
materials with high thermal and mechanical resistance has gained much popularity by many
researchers. The applications of functionally graded materials (FGMs) have attracted much
attention in the past two decades since they were first reported by Koizumi (1993). FGMs
are composite materials, microscopically inhomogeneous, in which mechanical properties vary
smoothly and continuously from one surface to the other. The main advantage of FGMs is that
the ceramic component provides high temperature resistance due to its low thermal conductivity
while the metal component prevents fracture induced by thermal stresses due to the high-
temperature gradient in a very short period of time. When these are subjected to a thermal
loading, the determination of thermal buckling capacity of these structures is important to
achieve an optimized design in cost and weight.
Buckling analyses of various structures were carried out by many researchers. A review of re-

search on the buckling response of plates and shells in a temperature environment was presented
by Thornton (1993). He did some research on thermal buckling of plates and shells. In his work,
he described elastic thermal buckling of metallic as well as composite plates and shells. Murphy
and Ferreira (2001) investigated thermal buckling analysis of imperfect flat plates based on the
energy consideration. They showed the ratio of the critical temperature for a perfect rectangular
plate to that of an imperfect plate as a function of the initial imperfection amplitude. Mahayni
(1966) studied thermal buckling behavior of doubly curved isotropic panels using Galerkin’s
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method. Chang and Chui (1991) carried out bifurcation buckling analysis of composites under
the action of uniform temperature change using higher order transverse shear deformation the-
ory and the finite element method. Earlier, the Differential Quadrature Method introduced by
Jang et al. (1989), was applied only to rectangular plates and lately it was considered for shells.
Mirfakhraei and Redekop (1998) used the Differential Quadrature Method to study buckling
behavior of circular cylindrical shells. Alibeigloo and Kani (2010) and Haftchenari et al. (2007)
used this method to study cylindrical shells as well.
The study of structures of functionally graded materials has received considerable attention

in recent years. Buckling of functionally graded plates under thermal loads was studied by Ja-
vaheri and Eslami (2002b). They used classical plate theory and obtained nonlinear equilibrium
and linear stability equations using variational formulations. Shahsiah and Eslami (2003) con-
sidered effects of various temperature distributions on thermal buckling of simply supported
FG cylindrical shells, using the first order shear deformation theory, however the temperature
dependency of material properties was not included. Thermoelastic stability of FG cylindrical
shells subjected to various thermal load conditions was studied by Wu et al. (2005). Thermal
buckling analysis of functionally graded plates considering simply supported boundary condi-
tions by using the first shear deformation theory was carried out by Wu (2004). He reached
the stability equation of functionally graded shells using Donnell’s shell theory and presented its
closed-form solution. Buckling analysis of FG plates using a higher order theory was presented by
Javaheri and Eslami (2002a). It was shown that higher order shear deformation theory accura-
tely predicts the buckling behavior, whereas the classical plate theory overestimates the critical
loads. Breivik (1997) discussed the buckling response of composite cylindrical panels under the
action of mechanical and thermal loading. Zhao et al. (2007) and Zhao and Liew (2010) used
the element-free kp-Ritz method for thermal and mechanical buckling analysis of functionally
graded cylindrical shells. They obtained three-dimensional buckling equations of the shell based
on the Donnell shell theory and presented a closed form solution to predict buckling loads caused
by thermal loads and critical edge displacement in the longitudinal direction.
In this paper, buckling analysis of cylindrical panels made of a functionally graded material

subjected to three types of thermal loading is investigated. To obtain the buckling load of the
cylindrical panels, the Differential Quadrature Method (DQM) is used to discretize differential
equations obtained based on the second Piola-Kirchhoff stress tensor using three-dimensional
theory of elasticity by Akbari Alashti and Ahmadi (2014). The material properties are assumed
to be temperature independent and vary continuously along the thickness according to a power
law function while Poisson’s ratio of the material is taken to be constant. Effects of various
parameters including panel curvature, grading index, various thermal load conditions and geo-
metric ratios on the buckling behavior of the curved panels are investigated. Numerical results
are validated against finite element calculations and results that are available in the offered
literature.

2. Governing equation for buckling

Consider a thick cylindrical panel made of ceramic and metallic materials with the inner ra-
dius R1, mid-surface radius a, thickness h and length L. The geometric parameters and the
cylindrical coordinate system. i.e. r, θ and x-coordinates are shown in Fig. 1.
The components of the displacement field in this coordinate system are expressed as w, v

and u, respectively. Assume that the material is isotropic, inhomogeneous with Young’s modulus
varying continuously in the thickness direction, i.e. from ceramic in the inner layer to metallic
in the outer layer according to the following formula

Vm =
(2z + h
2h

)K
Vc + Vm = 1 (2.1)
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Fig. 1. Geometry of a cylindrical panel

where Vc and Vm represent the volume fractions of the ceramic and metallic constituent and
K denotes the volume fraction index that indicates the material variation profile through the FG
shell thickness. Thus, the Young modulus in the radial direction is assumed to vary according
to the power law in the following forms

E(z) = Ec + Emc
(2z + h
2h

)K
Emc = Em − Ec (2.2)

where Em and Ec denote the elastic modulus of the metal and ceramic, respectively. The material
composition varies smoothly from the outer surface (z = h/2) of the shell as metal to the inner
surface (z = −h/2) as ceramic. Material properties of the shell are assumed to be independent of
the temperature field and Poisson’s ratio is considered to be constant throughout the thickness
of the shell.
In order to calculate buckling loads of panels, the buckling equations obtained by Akbari

Alashti and Ahmadi (2014) are used.
In this work, also the finite element linear or bifurcation buckling analysis of the cylindrical

panel using ANSYS suite of program is carried out. The eigen buckling analysis predicts theore-
tical buckling strength of a shell made of a linear elastic material. This analysis is used to predict
the bifurcation point on an F -U diagram using a linearized model of the elastic structure. It is
a technique used to determine buckling pressures at which the structure becomes unstable and
their corresponding buckling mode shapes. The basic form of the eigen buckling analysis is

Kφ = λiSφ (2.3)

where K, φi, λi and S are the structural stiffness matrix, eigenvector, eigenvalues and stress
stiffness matrix, respectively.
Eight noded quadrilateral shell elements, namely Shell281, are used to model the thick cy-

lindrical shell. The elements can handle membrane, bending and transverse shear effects and are
able to form the curvilinear surface satisfactorily. The elements are suitable for modeling of the
layer and have the stress stiffening, large deflection and large strain capabilities.
Boundary conditions of shell panels are defined using equilibrium equations. For the initial

and perturbed equilibrium positions, we have

σrr
(
a+

h

2
, θ
)
= σrr

(
a− h

2
, θ
)
= 0 τrθ

(
a+

h

2
, θ
)
= τrθ

(
a− h

2
, θ
)
= 0

τrx
(
a+

h

2
, θ
)
= τrx

(
a− h

2
, θ
)
= 0

(2.4)
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Boundary conditions at the panel edges are defined as:
— up and down edge, x = 0, L

Simply supported: w = v = σ′xx = 0

Clamped: w = v = u = 0
(2.5)

— lateral edges, θ = 0, β

Simply supported: w = σ′θθ = u = 0

Clamped: w = v = u = 0
(2.6)

3. Calculation of buckling load

In this work, two types of panels are considered:

Case 1. The panel is assumed to be simply supported at lateral edges and clamped at two ends.
Therefore, thermal variation causes no axial stress on the panel, Nθ = 0.

Case 2. We assume that the panel has clamped boundary conditions at all edges. For this
case thermal loading cause axial and circumferential stresses at the panel walls, Nx 6= 0,
Nθ 6= 0.
By substituting the components of the displacement field in the stress-strain and linear strain-

displacement equations and the resulted expression in the buckling equations, the equilibrium
equations are defined in terms of components of the displacement field.
In the present work, a polynomial expansion based on the Differential Quadrature Method

applied by Bellman and Casti (1971) is used to discretize and solve the obtained buckling
equations. According to this method, the first order derivative of the function f(x) can be
approximated as a linear sum of all functional values in the domain

df

dx

∣∣∣∣∣
x=xi

=
N∑

j=1

w
(1)
ij f(xj) for i = 1, 2, . . . , N (3.1)

where w(1)ij is the weighting coefficient and N denotes the number of grid points xi in the domain.
There are different methods for calculation of the weighting coefficients matrix, see Shu (2000).
Here, the weighting coefficients of the first order derivatives are defined based on the Lagrange
interpolation polynomials as

w
(1)
ij =

M (1)(xi)
(xi − xj)M (1)(xj)

for i 6= j w
(1)
ii =

M (2)(xi)
2M (1)(xj)

(3.2)

where

M (1)(xi) =
N∏

k=1
k 6=i,j

(xi − xk) N(xi, xj) =M (1)(xi)δij

M (2)(x) = N (2)(x, xk)(x− xk) + 2N (1)(x, xk)

(3.3)

and for higher order derivatives, we have

w
(r)
ij = r

(
w
(1)
ij w

(r−1)
ii −

w
(r−1)
ij

xi − xj
)

for i, j = 1, 2, . . . , N r = 2, 3, . . . , N − 1

w(r)ii = −
N∑

j=1,j 6=i

w(r)ij

(3.4)
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Now, applying the above formulation to the buckling equations, we have

G2
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a
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i,l wl,j,k +

G2
r
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a
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(3.5)

where

G1 = G(z) + λ(z) G2 = 2G(z) + λ(z) G3 = 3G(z) + λ(z)

and a(k)ij , b
(k)
ij and c

(k)
ij denote the weighting coefficients of the k-th order derivative in the r, θ

and x-direction, respectively; N , Q and M are grid point numbers in the r, θ and x-direction,
respectively. The critical value of the buckling load is obtained by solving the set of equations
presented in the matrix form as

[
BB BD
DB DD

]



db
u
v
w


 = σ

[
0 0
DBG DDG

]
(3.6)

where the sub-matrices BB , BD and DBG, DD, DB, DDG are found from the boundary con-
ditions and governing equations, respectively. Equation (3.6) is transformed into the standard
eigenvalue equation, as

(
−DBGB−1B BD +DDG

)−1(
−DBB−1B BD +DD

)
[u v w]T − σI[u v w]T = 0 (3.7)

from which, the eigenvalues of σ can be found. The smallest value of σ is found to be the buckling
load.



140 S.A. Ahmadi, H. Pourshahsavari

4. Thermal loading

4.1. Uniform temperature rise

The temperature changes uniformly through the thickness and remains constant in the longi-
tudinal and circumferential directions of the panel. This thermal variations induces only normal
stress, and the parameter Φ is defined as

σ =
N

h
N = − Φ

1− ν (4.1)

and

Φ =

h
2∫

−h
2

[
Em + Ecm

(2z + h
2h

)K][
αm + αcm

(2z + h
2h

)K]
∆T (x, θ, z) dz

⇒ Φ =
(
Ecαch+

[Ec(αm − αc) + αc(Em − Ec)]h
K + 1

+
(αm − αc)(Em − Ec)h

2K + 1

)
∆Tcr

(4.2)

Substituting buckling stress obtained by numerical solution into Eq. (4.1) and (4.2), helps us to
obtain the thermal buckling load ∆Tcr.

4.2. Non-uniform temperature rise in the axial direction

In this case, the assumed temperature varies in the longitudinal direction according to the
following formula

T = ∆T
(x
L

)n
+ Tm ∆T = Tc − Tm n > 0 (4.3)

where Tm is the temperature at the metal surface of the panels. According to the above equations,
axial stresses caused by the temperature rise have the same variation in this direction. The
critical stresses are obtained by considering the effects of this loading in the discretized governing
equations and then, the buckling temperatures are achieved using equations (4.1) and (4.2).

4.3. Non-uniform temperature rise in the radial direction

The functionally graded materials are designed in order to resist against high temperature
rise by ceramic, so the temperature change will be quite different at the two sides of FGM
structures. The temperature distribution across the thickness is a function of the z coordinate
as follows

T = ∆T
(
− z
h
+
1
2

)q
+ Tm − h

2
< z <

h

2
∆T = Tc − Tm (4.4)

The parameter Φ is defined as

Φ =

h
2∫

−h
2

[
Em + Ecm

(2z + h
2h

)K][
αm + αcm

(2z + h
2h

)K][
∆T

(
− z
h
+
1
2

)q
+ Tm

]
dz (4.5)

The buckling temperature rise will be obtained using equation (4.1). For example, for q = 1,
the parameter Φ is given as

Φ =
(
Ecαch+

[Ec(αm − αc) + αc(Em − Ec)]h
K + 1

+
(αm − αc)(Em − Ec)h

2K + 1

)
Tm

+
h

(K + 1)(K + 2)(2K + 1)

{
EcαcK

3 +
7
2
EcαcK

2

+ αcK
[
2
(Em − Ec

4
+ Ec

)
(αm − αc) +

(
2(Em − Ec) +

7
2
Em

)]
+ Emαm

}
∆Tcr

(4.6)
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5. Numerical results and discussion

In order to illustrate the results of the presented method for an inhomogeneous shell, a functio-
nally graded cylindrical shell made of aluminum and alumina is considered. Young’s modulus
is assumed to be temperature independent and vary smoothly in the radial direction according
to a power law distribution of the volume fraction of the constituent materials. Young’s modu-
lus for alumina at the inner surface and for aluminum at the outer surface is assumed to be
Ec = 380GPa and Em = 70GPa, respectively. It is also assumed that Possion’s ratios of the
constituent materials are constant and equal to 0.3. At the first step, the buckling temperatures
calculated by the present study are validated against the results reported in the literature.
Figures 2 and 3 plot the critical temperature changes of the complete shell with L = a = 1

against the ratio of the thickness to mid surface radius of the shell h/a for the uniform tempe-
rature rise loading. The results are compared to the finite element results and those reported by
Breivik (1997).

Fig. 2. Comparisons of the critical temperature of the complete shell under uniform temperature rise,
(a) aluminum, (b) alumina, (c) functionally graded shell K = 1

Fig. 3. Buckling mode shapes of complete shells made of aluminum under uniform temperature rise

It is evident that the results of the presented method are in good agreement with the finite
element results and those of Breivik (1997). It can be seen from these figures that the critical
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buckling temperature increases linearly as the ratio of h/a increases, and also the difference
between the results increases when the relative thickness grows. It is because of the fact that
Breivik (1997) used Donnell’s theory to obtain the buckling equation of the thin shell. This
equation creates an overestimation in the prediction of buckling load for a thick shell. The
effects of panel angle on the buckling temperature are shown in Fig. 4. The results are compared
to the results reported by Wu et al. (2005). The results are obtained for the panel (case 1) under
uniform and non-uniform temperature rise in the radial direction, and the panel is assumed to
be made of aluminum with a = 1m, L/a = 1 and h/a = 0.02.

Fig. 4. Comparisons of the critical temperature of the homogeneous panel (case 1) made of aluminum
with different angles (Tm = 0)

Fig. 5. Effect of the volume fraction index K on the buckling temperature of the panel (case 1),
non-uniform temperature rise in: (a) axial direction, (b) radial direction, (c) combined loading (Tm = 0)

To make calculations following Wu et al. (2005), the critical stress is obtained first through
the given formula and then substituted into Eq. (4.6). It can be inferred from Fig. 4 that the
buckling temperature changes decrease when the panel angel increases, and for higher angles the
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results approach constant values. The results obtained based on Donnell’s theory and obtained
by Wu et al. (2005), show low variation of the buckling load versus panel angles.
Next, variation of the critical buckling temperature for the panel (case 1) with L = a = 1m,

h = 0.01m and β = 1 rad under non-uniform temperature loading versus material gradient
index K, are presented.
It is obvious from Fig. 5 that as the material gradient index K increases from 1 to 10, the

critical buckling temperature grows rapidly and, for higher values, the results approach constant
values. It is also evident that the critical buckling temperatures increase as the value of K
increases. The main reason for such an increase is the fact that a higher value of K corresponds
to a ceramic-richer panel, which usually has a higher thermal strength than a metal-richer one.
Figure 6 shows the buckling temperature versus the ratio of h/a for the panel (case 1) with
L = 1m and β = 1 rad for three types of loading, i.e. uniform temperature rise and non-uniform
temperature rise in the axial and radial direction. Buckling modes obtained through the finite
element program for the uniform temperature rise are illustrated in Fig. 7.

Fig. 6. Buckling temperature of the panel (case 1) versus h/a (Tm = 0)

Fig. 7. Buckling mode shapes of the inhomogeneous (K = 1) panel (case 1)

It can be observed in Fig. 7 that when the thermal loading has a linear variation, the buckling
temperature rises significantly. Then, the critical buckling temperatures with respect to the panel
are plotted for the cylindrical panel with different temperatures at the outer surface under the
action of non-uniform temperature rise in the radial direction. Assuming that the panel has
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L = a = 1m, h = 0.01m and β = 1 rad, it is found that the variation of the outer surface
temperature has a significant effect on the buckling temperature of the panel.

Fig. 8. Buckling temperature of the panel (case 1) versus β for various values of Tm

Figure 9 demonstrates variation of the buckling temperature change versus aspect ratio h/a
of the panel (case 2). The results obtained through the present method are compared with the
results obtained through the given governing equations in Breivik (1997). It should be noted
that the buckling equations presented by Breivik (1997) are only solved for the shell (case 1),
and here we resolve it for the panel (case 2) using equation (4.1).

Fig. 9. Comparisons of the critical temperature of the panel (case 2) with different gradient indices
under uniform temperature rise loading, L = a = 1m, β = 1 rad (Tm = 0)

It is obvious that the results of the presented numerical method are in good agreement with
the results issuing from Donnell’s shell theory. As concluded above, the difference between the
present results and those obtained based on Donnell’s theory increase as the thickness of the
panel grows. Buckling temperature changes against the thickness ratio for the panel (case 2)
under the action of various loading conditions are illustrated in Figs. 10 and 11.

It can be found from Figs. 10 and 11 that the buckling temperature rises linearly when
thickness of the panel increases. It is also clear that the critical buckling temperatures increase
as the volume fractions of the ceramic increase. To study the effects of thermal loading variation
in several directions and buckling temperature rises for the panel (case 2) with L = a = 1m,
β = 0.8 rad, h = 0.005m versus the index K under combined temperature loadings are given in
Table 1.
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Fig. 10. Buckling temperature of panel (case 2) versus h/a for uniform temperature rise and
non-uniform loading in the radial direction, β = 0.8 rad, L/a = 1

Fig. 11. Buckling temperature of the panel (case 2) versus h/a for non-uniform temperature rise in the
axial and radial direction, β = 0.8 rad, L/a = 1

Table 1. Buckling temperature of the panel (case 2) versus K for combined load conditions

K
n = 0 n = 0.5 n = 1

q = 0 q = 1 q = 0 q = 1 q = 0 q = 1

0 13.8 27.6 19 38 24.9 49.8
1 18.7 35.1 26 48.9 34.1 64
2 14.2 47 33.4 65.8 43.7 86
5 31.9 65.6 44.3 89.8 57.6 118.8
10 37.7 77.3 52.9 107.5 68.7 140.1
20 41.5 84 57.8 117.3 75 152.5
50 42.9 86.5 59.4 119.7 77.3 156.1
100 43.2 87.6 59.8 119.8 77.6 156.8

6. Conclusion

In this paper, buckling analysis of FG cylindrical panels under the action of thermal loading is
carried out. Material properties are assumed to be temperature-independent and graded thro-
ugh the simple power law distribution in terms of the volume fractions of the constituents. The
Differential Quadrature Method is used to discretize and solve buckling equations. The buckling
analysis of such panels under the action of three types of thermal loadings, i.e. uniform tempe-
rature rise and non-uniform temperature rise in the axial and radial direction considering two
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types of boundary conditions, is carried out. From the present study, the following conclusions
are drawn:

• Determination the critical loads by the use of equations extracted from Donnell’s theory
cause an overestimation when thickness of the panel increases. The results obtained by
the three-dimensional buckling equations, as presented in this work, are more accurate in
comparison with the results based on the Donnell shell theory.

• The critical buckling temperature Tcr increases linearly with an increase in the thickness
to mid-surface radius ratio h/a.

• For functionally graded cylindrical panels under various thermal loads, an increase in the
volume fraction of the ceramic constituent increases the critical load.
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The mobile robot presented in the article is a hybrid system combining efficient travel
on wheels on a flat terrain with the capability of surmounting obstacles by walking. The
research is focused on designing a control system maintaining the robot chassis at a constant
position to the ground. The aims of this research are: creation of the computational model
of the control system for the levelling system of designed mobile robots and realization of
simulation studies on the robots travel in terrain with obstacles. The simulations aimed at
determination of basic dynamic and kinematic properties.
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1. Introduction

The research on mobile robots has intensified in the recent years, especially to meet the demand
for automating the transport process and for inspection (chemically, biologically) of contamina-
ted areas and those exposed to hazard of fire explosions (Tchoń et al., 2000; Trojnacki et al.,
2008).
Studies focused on mobile robots have been carried out in many research centers (universities,

military and industrial centers). They deal with wheeled robots, walking robots, tracking robots,
crawling robots, flying robots, floating robots and their hybrids. The research has been calculated
on variety of such vehicles differing in their way of traveling: wheeled systems (WalkPartner,
see Halme et al., 2003), tracked systems (INSPECTOR Robot, see Hołdanowicz, 2008), walking
systems (PetMan, see Boston Dynamic, 2014), floating and flying systems (Hermes RO 900, see
Elbit Systems, 2014).
The dominant contemporary form of vehicles motion is riding on wheels. In an urban area,

where the surface is smooth, the wheels are the most effective. However, the biggest disadvantage
is that they have no ability to overcome obstacles in form of a substrate discontinuity – curbs,
stairs, slopes. The most common form of motion by living organisms of the Earth is treading.
This type of transportation is especially effective with moving around non-urbanized irregular
surfaces containing obstacles (Bałchanowski and Gronowicz, 2012a,b; Zielińska,2003).
Mobile wheel-legged robots are hybrids that combine efficient travelling on a flat terrain by

wheels with the capability of surmounting obstacles by walking. A major challenge in designing
such systems is to develop its wheel suspension allowing the robot both to move on wheels and
to walk, and automatically level its chassis during travelling on an uneven surface (Bałchanowski
and Gronowicz, 2012a,b; Gronowicz and Szrek, 2009a,b; Szrek and Wójtowicz, 2010).
One such system is a wheel-legged mobile robot (Fig. 1) designed and built at Wroclaw

University of Technology (Bałchanowski, 2012; Bałchanowski and Gronowicz, 2012a,b). The
robot is equipped with a unique wheel suspension which allows it to drive, walk, rise, lower and
self-level the chassis. In this paper, the design of this device is described.
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Fig. 1. A general view of a mobile robot and a view of the walking phase

2. Design of a mobile robot

In the framework of the project realized at Wroclaw University of Technology the design of a
robot whose schematic is shown in Fig. 2 has been developed. It is assumed that the wheels with
suspensions are symmetrically arranged in relation to the longitudinal and transverse axis of
the robot. Such a position of the wheels ensures a level playing field for driving of the front and
rear axles. The major design challenge was to develop a suspension mechanism which should
provide the robot with ability to walk with a view system to overcome obstacles on the track
and enabling automatic self-levelling of the chassis (Fig. 3).

Fig. 2. A general scheme of the wheel-legged mobile robot (1-4 – wheel suspensions, 0 – ground,
k – chasis)

Fig. 3. A schematic showing the execution of suspension i motions: hip – lifting, h
i
w – ejecting
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The wheel suspension is a complex mechanism with 4 degrees of freedom in relation to the
body. Such a mechanism (Fig. 3) must ensure the full range of motion in order to fulfill the task
of driving (turning and twisting wheels – two degrees of freedom) as well as lifting and ejecting
the wheels (two degrees of freedom).

As a result of the design work on the suspension structure and then on the geometric syn-
thesis, main dimensions of system have been chosen (Bałchanowski, 2012; Bałchanowski and
Gronowicz, 2012c; Gronowicz et al., 2012; Sperzyński et al., 2010; Szrek and Wójtowicz, 2010).
A view of the right front side of the robot with wheel suspension mechanism 1 robot is given
in Fig. 4. For a single suspension, the lifting of the wheel hip is realized by a linear actuator q

i
p.

The ejecting of the wheel hiw is by means of linear actuators q
i
w.

Fig. 4. The kinematic scheme of mobile robot suspension (front right side)

The robot is designed for inspection work both outdoors and indoors (e.g. buildings, pro-
duction halls, etc.). Since it is designed to move inside rooms, to pass through typical doorways
(less than 0.9m wide) and to be able to surmount an obstacle with a height equal to that of a
typical stair step (the wheel lifting height greater than 0.2m), its overall dimensions have to be
limited. The chosen axle base ra is 0.8m and the wheels base rw is 0.65m (Fig. 2). The rest of
basic parameters of geometric wheel suspension 1 is shown in Table 1.

Table 1. Geometric parameters of wheel suspension 1

Parameter Value Parameter Value Parameter Value

xA1 0.11m yA1 −0.65m zA1 0m
xB1 −0.04m yB1 −0.65m zB1 −0.152m
xG1 0.518m yG1 −0.65m zG1 0.005m
DS1 0.253m A1F 0.17m A1C 0.303m
CS1 0.5m CD 0.162m h0 0.335m

The lifting and ejection can be achieved with linear drives, e.g. electric actuators
LINAK LA36. Solid rubber-steel wheels with a motor and a gear integrated with a hub
(GOLDENMOTOR HUB24E) have been chosen as the travelling drives (Bałchanowski, 2012;
Bałchanowski and Gronowicz, 2012a,b). The main specifications of the wheel drives as well as
the lift and ejection-protrusion actuators are shown in Table 2.

On the basis of the developed conceptual design and documentation, a prototype of a mobile
wheel-legged robot has been made (Fig. 1).

When driving on uneven ground, the robot chassis is rotated along the longitudinal and
transverse axes. The implementation of the levelling aims to maintain a constant orientation of
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Table 2. Main parameters of the drives

Actuator LINAK LA36

qw, qp (stroke length) 0.35-0.5 m
vw, vp (speed) 0.068m/s
Fw, Fp (force) 1700N
ms (mass) 4.9 kg

Wheel GOLDENMOTOR HUB24

dqn/dt (angular velocity) 13.08 rad/s (125 rpm)
Mn (nominal torque) 13.5Nm
kr (radial stiffness) 9.5 · 105 N/m

mk (mass) 5 kg
rk (radius of wheel) 0.105m

the robot body above the ground according to the scheme shown in Figs. 2 and 3, which means
maintaining the value of the given angles of orientation

αx = 0 αy = 0

Raising or lowering the individual wheels can bring the robot to the assumed level. This
function can be accomplished solely by lifting the chassis by means of the lifting actuators qip
(Fig. 4), while the other drives (ejection, turn and rolling) remain fixed.
For the given values of wheels radii rk and suspension height h0, the height hik of the robot

chassis above the ground may be presented in the form (Fig. 3)

hik = rk + h0 + h
i
p(q
i
p) (2.1)

The graph in Fig. 5 shows changes of the height hip for the suspension as a function of the
actuator extension qip (Bałchanowski and Gronowicz, 2012a,b,c). For the adopted actuator stroke
qip = 0.35-0.5 m (Table 2), the defined range of changes of the wheel lifting h

i
p is

0 ¬ hip ¬ 0.26m = hp (2.2)

where hp is the maximum height of the suspension lifting.

Fig. 5. Elevation of the robot chassis hik versus extension of the lifting actuator q
i
p

The maximum value of the wheel lifting height hp determines the possibility of overcoming a
certain unevenness. The mechanism shown in side and front views on uneven ground is presented
in Fig. 6. The maximum angles of the ground inclination αmaxx along the robot longitudinal x axis
as well as αmaxy along the robot transverse y axis, can be determined from the relationship

αmaxx = arctan
hp
rw
= 21.8◦ αmaxy = arctan

hp
ra
= 18.0◦
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Fig. 6. Side and front views of the robot on uneven ground. The schematic shows the maximum angles
of the ground inclination αmaxx and αmaxy along the robot longitudinal x and transverse y axis

If the area has larger values of the inclination angles, then the lifting mechanisms do not
provide sufficient levelling of the chassis.

3. Numerical model of the mobile robot

In order to perform simulations, a computational model of the wheel-legged robot shown in
Fig. 7, has been created in the LMS DADS (Haug, 1989) dynamic analysis system. The robot
has 22 DOF, with the body having 6 DOF and each wheel suspension having 4 DOF relative
to the body. Sixteen kinematic excitations are defined in the robot: 8 rotational excitations qin
and qis (wheel rolling and turning) as well as 8 linear excitations q

i
p and q

i
w (wheel lifting and

ejecting) for each suspension (i = 1, 2, 3, 4) (Bałchanowski, 2012; Bałchanowski and Gronowicz,
2012a,b).

Fig. 7. The model of the wheel-legged mobile robot (main view)

The wheel/base interactions are modelled using a tire/ground interaction force model (TIRE)
(Haug, 1989). The mass of the wheels is quite large due to the fact that the motor and gear are
incorporated in the hub, and because of their high radial and longitudinal stiffness (Table 2).
The total weight (deadweight + payload) of the wheeled-legged robot is estimated at 100 kg.

The mass and geometry of the suspension, wheel and actuator parts are assumed as in the
design. The weight of the body (comprising deadweight of the frame bearer, steering system,
batteries, current generator as well as payload) is appropriately matched to obtain the assumed
total weight of 100 kg, with the center of gravity located in the body center.
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3.1. Design of the control system for the levelling mechanism of the robot chassis

When the robot travels on an uneven substrate, the robot chassis changes its orientation
relative to the ground. The changes in orientation of the chassis are described by the angles
of inclination αx (the angle of the body rotation relative to the robot transverse axis) and
the steering angle αy (the angle of the body rotation relative to the robot longitudinal axis,
Fig. 2). In a real robot, both angles (Fig. 1) are measured using inclinometers (Bałchanowski
and Gronowicz, 2012b; Gronowicz and Szrek, 2009a,b; Szrek and Wójtowicz, 2010).
The plane of the robot chassis will be twisted as a result of rotations αx and αy. The twisting

can be described by means of h1, h2, h3 and h4 vertical displacements of points P1, P2, P3 and P4
(Figs. 2 and 8). For angles αx, αy, the position of points P1 in the global coordinate system xyz,
described by the vector rPi = [xPi , yPi , zPi ]

T, can be calculated using the following formula

rPi = AxAy
krPi (3.1)

where i is the number of suspension, i = 1, . . . , 4, Ax – matrices of rotation from the k-th system
to the xyz system about the angle αx along the x‘ axis, Ay – matrices of rotation from the k-th
system to the xyz system about the angle αy along the y axis

Ax =




1 0 0 0
0 cosαx − sinαx 0
0 sinαx cosαx 0
0 0 0 1


 Ay =




cosαy 0 sinαy 0
0 1 0 0

− sinαy 0 cosαy 0
0 0 0 1




and krPi – position vector of point Pi on the chassis in the xkykzk coordinate system

krP1 = [ra/2, rw/2, 0, 1]
T krP2 = [ra/2,−rw/2, 0, 1]T

krP3 = [−ra/2, rw/2, 0, 1]T krP4 = [−ra/2,−rw/2, 0, 1]T

Finally, the value of hi is described by the zPi coordinate of the vector rPi from formula (3.1)

hi = zPi i = 1, . . . , 4 (3.2)

In order to bring the robot chassis plane to the level, the points P1, P2, P3 and P4 need to
be moved to the designated values of h1, h2, h3, h4. The displacements hi are the disruptions
for the leveling control system of the robot chassis. The control system has to set the proper
wheel elevation hi using the linear actuators qip to bring the robot chassis to the level (αx = 0
and αy = 0).

Fig. 8. The scheme of the robot chassis orientation angles

This requires controlling of only wheel lifting drives qip i.e., forcing the suspension displace-
ment of qip by using forces F

i
p from the actuators.

For a mobile robot on four wheels equipped with mechanisms for raising and lowering, the
all-wheel task of setting a specific orientation of the chassis for uneven ground can be realized in
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many ways (Fig. 9) for different settings of the wheel height hik in the permissible range of the
stroke hp. In the proposed algorithm of automatic positioning and orientation of the chassis, in
order to obtain one solution, it is assumed that the suspensions of three wheels are active and
the forth one is the leading wheel with a predetermined height hl (Fig. 10).

Fig. 9. A schematic showing examples of robot positions on uneven ground for different settings of the
wheel heights hi∗k and h

i∗∗
k

Fig. 10. The robot on the uneven ground with leading wheel 2 in side and front views. A schematic
showing the maximum angles of ground inclination αhx, α

l
x and α

h
y , α

l
y

In the work, it is assumed that the leading wheel is wheel 2 (left front). For such a proposed
method of levelling, only one solution of searched heights hi will always be obtained for a given
position of the body. The height hl of the leading wheel can be set in the range of

0 ¬ hl ¬ hp (3.3)

For the adopted height hl, the leading wheel possible changes in the orientation angles can be
determined by formulas (Fig. 10)

αhy = arctan
hl
ra

αly = arctan
hp − hl
ra

αhx = arctan
hl
rw

αlx = arctan
hp − hl
rw

(3.4)

The height hl can be dynamically determined depending on the nature of the mobile robot ride
and the existing uneven ground. In driving the robot on grounds with a positive angle (uphill),
in order to increase the possibility of levelling the body, hl should have values close to zero in
order to get the angle αly according to (3.4), reaching its maximum value.
When driving the robot on the ground with a negative angle (down), hl value should be close

to hp to obtain the angle αhy reaching the maximum value. When driving in the area with an
undetermined uneven ground, hl should have a value of hp/2.
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As a result of the control model with leading wheel 2 (front left) having the fixed height hl
while levelling displacement of the body, the values hi should be corrected about the value hl

hc1 = h1 − hl hc3 = h3 − hl hc4 = h4 − hl (3.5)

The corrected values hci will be disruptions to the regulators which control the raising of
active wheel 1, 3 and 4 (front right, rear left and right). The regulators of the active wheels will
reset the disruption hci to zero. In the structure of the levelling algorithm, there are three active
regulators that control the raising and lowering of the active wheels 1, 3 and 4. In Fig. 11, a
block algorithm of the platform levelling system of the robot chassis is shown.

Fig. 11. A general diagram of the levelling control system

The inclinometers mounted on the robot body measure the distortions in form of orientation
angles αrx, α

r
y of twisting of the chassis while driving. These values will be used for calculation

from formula (3.5) the displacement hci needed to bring the chassis to the level. The output of the
regulator wheel is the force F ip which causes the displacement q

i
p of the actuator which controls

raising and lowering of the active wheel i. The proposed control system has a closed structure
with three feedback loops controlling the elevation hik. The regulators control the actuators q

i
p by

determination of the active force F ip. The heights h
c
1, h
c
3, h
c
4 of the active wheels 1, 3, 4 relative

to the chassis will be controlled in closed loops.
In this control system, an external control loop computes the difference between the prescri-

bed robot chassis elevation hsi (h
s
i = 0 in the case of levelling) and the actual chassis elevation h

c
i

calculated on the basis of the angles αrx, α
r
y read from the chassis location. The computed eleva-

tion deviation ∆h passes through proportional controllers with constants K1,K2,K3, generating
a signal specifying the required demand for the active lifting force F ip, which is applied to the
driving link of the robot. The control system incorporates blocks limiting the generated value
of the force F ip to the maximum values (−Fmaxp < Fp < Fmaxp = 1700N) which the lifting actu-
ator is capable of generating. Besides the robot, a computational model of the designed control
system has been created in LMS DADS in order to study its dynamics.
The control parameters, i.e. constantsK1,K2 andK3 of the controllers need to be defined and

matched. The parameters depend on the character of the object (the controlled mechanism). In
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control theory, there are many methods of matching such parameters. In this work, a numerical
parameter matching procedure based on the Ziegler-Nichols method has been carried out. The
simulations have been run in LMS DADS. The results of the controller parameter matching are:
K1 = 600, K2 = 100 and K3 = 100.

4. Simulation examinations of the mobile robot with a leveling control system

In order to determine dynamical properties of the mechanism and to verify the control system
matching, motion of the system on an uneven surface has been simulated. A schematic of the
simulation is shown in Fig. 12. The surface bumps are built of wedge-shaped obstacle drive-ons
and drive-offs. The variation in the route height along the direction of motion for left and right
side wheels is shown in Fig. 13.

Fig. 12. The model of the mobile robot and a general scheme of simulation

Fig. 13. Variation of heights h of the uneven ground under the left and right wheel along the
axis of motion

The parameters of the control system are orientation angles αx = αy = 0 of the robot chassis
with respect to the ground. They are constant during movement. It is assumed that the system
would move at constant speed vk = 1.0m/s (3.6 km/h). Wheel 2 is adopted as the leading wheel
with the height hl = hp/2. The terrain uneveness does not exceed the range of possible changes
in the orientation angles αhx, α

l
x, α

h
y and α

l
y defined by formula (3.4). It is expected that during

driving, the robot chassis will be kept at a given level. One of the aims of the simulations is
to determine the control system response for the adopted excitations of motion. In particular,
the accuracy of setting the orientations αx, αy and the determination of active forces F ip in the
actuators qip have been ensured and executed.
The diagrams in Figs. 14 to 20 show the results of simulations in LMS DADS. Figures 14

and 15 show the variation in the real elevation hik of the robot chassis (coordinates z of points Pi
– Fig. 2 and 8) and the trajectories of the centres zis of wheels 1, 2, 3 and 4 .
The quality of the control is illustrated in the next diagram where the errors αx and αy in

the execution of the chassis levelling are shown (Fig. 16). The accuracy of the chassis orienta-
tion angles αx and αy below 0.5 deg has been achieved. The control system quickly reacts to
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Fig. 14. Variation of the real elevations hik of the robot chassis during movement

Fig. 15. Displacements of the centers zis of wheels 1, 2, 3 and 4 during movement

Fig. 16. Angles of orientation αx, αy of the robot chassis found from simulations

disturbances in the surface bumps (points for t = 0.3, 0.6, 1.4, 1.7, 2.6,3.4, 4.4, 4.8, 4.9, 5.1 s in
figures). The control system handles well the uneven ground, quickly stabilizing the robot.
The next figures show parameters of the lifting actuator. Figures 17 and 18 show the

variation in length qip and velocity v
i
p of the lifting actuator while Fig. 19 shows diagrams

of the computed active force F ip in these actuators. The wheel-ground interaction forces F
i
k

(i = 1, 2, 3, 4) are presented in Fig. 20.
The analysis of the levelling system reveals that its performance of the latter mainly depends

on height of the obstacle and robot travelling speed vk. These quantities determine the vertical
velocity component z of the wheel which must be cancelled out by the opposite vertical motion
of the chassis effected by the lifting actuator qip moving with an appropriate velocity v

i
p (Fig. 17)

and generating an appropriate active force F ip (Fig. 19). The choice of a proper lifting actuator
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Fig. 17. Extension qip of the lifting actuators (i = 1, 2, 3, 4)

Fig. 18. Velocity vip of the lifting actuators (i = 1, 2, 3, 4)

Fig. 19. Active forces F ip in the actuators qp (i = 1, 3, 4) determined by the control system

Fig. 20. Wheel-base interaction forces F ik (i = 1, 2, 3, 4)
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whose dynamics would ensure that the required operating parameters can be exceeded is the
guarantee for correct operation of the robot levelling system. As it appears from Table 2, the
electric drives LINAK LA36 adopted for lifting and ejecting meet dynamic requirements since
the driving forces F ip (Fig. 19) do not exceed the nominal forces specified by the manufacturer,
even during overcomming of extreme obstacles.

5. Final remarks

Dynamic and kinematic parameters of a wheel-legged mobile robot have been determined as
a result of simulation studies. For that purpose, a numerical model of the robot and a model
of the levelling control system in a computer system have been built. Robots of this kind are
subject to considerable loads generated during travel on a bumpy surface. In order to build an
efficient and reliable suspension system, one needs to identify the state of loading of the robot.
The research has concentrated on the modelling of the leveling control system maintaining a
constant orientation of the robot chassis during travel on an uneven terrain.
The analysis of the levelling system has revealed that its performance mainly depends on

height of the obstacle and robot travelling velocity. The simulations validated the structure of
the control system adopted for the levelling of the robot chassis and confirmed the controller
parameter values to be correct. The numerical results have been used to design and build a
wheel-legged robot.
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The paper presents a concept of a magnetic coil launcher for unmanned aerial vehicles of
mass up to 25 kg. The idea is not new, nevertheless in the paper, an innovative application of
magnetic launcher technology for selected class of unmanned aerial vehicles is presented. So
far, at Bialystok University of Technology, a magnetic coil launcher for micro aerial vehicles of
mass up to 2.5 kg has been investigated. In the article, simulations of a conceptual multi-coil
launcher with a magnetic core system are presented. The finite element method has been used
in calculations. Moreover, in the paper, the concept of a magnetic support for transmission
of mechanical power from the magnetic core to the launched payload is proposed. The
applied methodology, computational results and potential technical difficulties of practical
applications are also widely discussed.

Keywords: electromagnetic launcher, EML, magnetic support, permanent magnet, FEM

1. Introduction

Fast development and constantly increasing industrial applicability of unmanned aerial vehicles
(UAVs) require new solutions as far as their operation systems are concerned. For instance,
modern engineering associated with UAVs focuses especially on developing innovative navigation
systems (Gosiewski et al., 2011; Kownacki, 2013), robust control of flight (Mystkowski, 2014),
reliable security solutions, efficient electrical engines and power cells, formation of flight control
algorithms (Gosiewski and Ambroziak, 2012), adaptive aerodynamics structures (Mystkowski,
2013), applications of so-called intelligent materials, etc. Generally speaking, most works are
being carried out in order to increase the level of UAVs autonomy. There is also a major need
for applying systems of assisted take-off and landing.
Starting launchers are used for many classes of UAVs from micro planes of mass up to a few

kilograms to large military drones. Systems assisting take-off procedures increase the level of
operators’ safety, ensure recurrence of starts, decrease periods of time between consecutive starts,
protect onboard equipment and UAV construction from undesired vibration and acceleration
pulses. Employment of automatic launchers for UAV may also considerably increase the level
of their autonomy and gives new possible applications, for example to autonomous systems
for monitoring of countries boarders as well as unmanned systems of forest fire protection or
unmanned aerial post services.
Presently, many different constructions are used as launching devices. Main solutions invo-

lve devices based on pneumatic (Perkowski, 2008) and hydraulic technology or are equipped
with rubber or steam drive systems. Since the early 50’s, advanced research on electromagnetic
launchers (EML) have been conducted in the world. In some publications, the knowledge of
magnetic launchers was clearly systematised, e.g. Kolm et al. (1980). Electromagnetic launchers
are a completely different group of starting devices basing on conversion of stored electrical
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energy into kinetic energy of the launched object. Generally, there are two main types of EMLs:
rail launchers and coil launchers. Moreover, coil launchers can be divided into synchronous and
asynchronous (inductive) devices. More specified nomenclature and theory were presented in
the following publications by Kondratiuk (2013), Tomczuk and Waindok (2009), Tomczuk et al.
(2012). The idea of application of magnetic technology for aircraft launch is not new. Interesting
papers concerning such topics have been already published (Patterson et al., 2002; McNab, 2007).
Among others, very innovative research was carried out on electromagnetic launch systems for
large airplanes. The investigations were conducted in the frame of big European project called
GABRIEL (Sibilski et al., 2014). GABRIEL’s research team proposed a system based on pheno-
mena of superconducting levitation. As a result, the system can be capable of launching airliners
such as Airbus A320. In the frame of the project, a magnetic drive system has been developed.
The investigations involved numerical models, vibration analysis, CAD and design optimiza-
tion procedures. Moreover, successful laboratory tests of a small scale launch system have been
carried out and the outcomes were published, see Ładyżyńska-Kozdraś etal (2014a,b). Conse-
quently, system GABRIEL has been designed for a large class of planes – commercial airliners.
The concept of an electromagnetic linear drive for launching a medium class of UAVs significan-
tly differs from solutions proposed by GABRIEL’s research team. Main differences involve the
type of magnetic linear drives, scale of the device, target performance, field of applications and
approach to design.
In this paper, investigations on a synchronous coil launcher are described. Such a device

consists of several serially located driving coils (usually made of a copper isolated wire) and a
cylindrical core moving inside those coils. The core may be made of a ferromagnetic material, or a
permanent magnet may be used. Comparing to pneumatic and rubber catapults, the synchronous
coil launcher has many advantages, for instance, a quick recharging process and readiness for
another shot, control of the launching force, modular construction and lack of complicated
constructional parts exposed to damage.
So far, at Bialystok University of Technology (BUT) the electromagnetic launcher for micro-

-unmanned aerial vehicles (MAVs) has been developed and investigated (Kondratiuk, 2013).
The construction of this device consists of ten serially located copper coils with a ferromagnetic
core placed inside. The controlled magnetic field of the solenoids affects the core, and, in that
way, the magnetic driving force is produced. The core is connected by means of a diamagnetic
pusher to the carriage to which the launched plane is attached. The whole system is controlled
by the open-source Arduino MEGA platform (ATMEGA2560) with the implemented algorithm
of feedback control of MAV’s position and acceleration. The construction, conducted design
works and control structure were widely described in the previous papers by Kondratiuk and
Gosiewski (2013a,b, 2014).
The main goal of the present work is to investigate and test some technical concepts of a

multi-coil EML for middle class of UAVs. As tools for the testing, numerical simulations have
been applied. Moreover, the article involves modifications, adaptation and scaling procedures of
the previously constructed coil EML in order to launch objects of mass up to 25 kg.

2. Main assumptions

Among different types of UAVs, there are various requirements for start conditions. The most
important one is connected with the initial speed which is necessary to generate a proper lift
force. Because of different UAVs geometries (shape, wing configuration, wingspan, etc.) different
initial speed values are required. For instance, 25 kg delta wing planes require much greater
velocity (about 25m/s) than 25 kg gliders (about 15m/s). In the paper, the design of an EML
for 25 kg UAVs which ensure starting speed on the level of at least 20m/s is described. That
value has been chosen arbitrarily as the goal to achieve.



Concept of the magnetic launcher for medium class... 165

Another aspect connected with UAVs catapults concerns the source of power. In pneumatic
and hydraulic launchers, the working fluid is accumulated under pressure in special tanks or
containers. On the other hand, rubber launchers require an external force to stretch the elastic
material while steam catapults need a whole complex system for preparing vapour of proper
parameters. In EMLs, electrical energy should be accumulated in a suitably large storage from
which it can be rapidly released by the launcher driving system. Previous investigations clearly
showed that the capacitor bank perfectly meets this requirement.
In the proposed EML for 25 kg UAVs there can appear the necessity of switching very high

currents flowing through driving coils (even up to 200A). From the practical point of view,
for current control, IGBT transistors can be used in electronic switching circuits. During FEM
simulations, data sheets of such electronic devices as transistors and capacitors are strictly taken
into account.
Launchers for UAVs should also ensure sufficient stability, vibration and a safety level under

take-off circumstances. These factors should be taken into account during design procedures.
One of the main assumptions connected with the coil EML for 25 kg UAVs is that initial

investigations will be carried out on the already existing EML model for micro UAVs. Thus,
this paper starts from possible modifications of the construction described in the PhD Thesis
by Kondratiuk (2013).

3. Model of the coil-core system

The first possible modification is connected with the application of a permanent magnet as a
driving core instead of the ferromagnetic one. Force characteristics of the coil-core system with
the ferromagnetic and with the magnetic cores were computed by means of the finite element
method, (Tomczuk et al., 2007). COMSOL Multiphysics software is employed as the ready-made
computer program for electromagnetic computations. In the FEM model of the coil-core system,
the advantage of the axial symmetry is used. The partial differential equation (PDE) describing
the distribution of static magnetic field in the coil-core system is called Ampère’s law, and in
the ferromagnetic core domain it takes the following form

∇×
( ∇×A
µ0µr(|B|)

)
= Je (3.1)

where∇ denotes the nabla operator;A – magnetic vector potential, [Wb/m]; µ0 = 4π ·10−7 H/m
– permeability of vacuum; µr(|B|) – relative permeability of a nonlinear ferromagnetic material,
[dimensionless]; |B| – magnetic flux density, [T]; Je – external current density, [A/m2].
In the cylindrical coordinate system, the vector A can be written as

A = Ar r̂+Aϕϕ̂+Az ẑ (3.2)

where Ar, Aϕ, Az are components of the vector A, [Wb/m]; r̂, ϕ̂, ẑ – unit vectors.
Thus, rotation of A is equal

∇×A =
(1
r

∂Az
∂ϕ
− ∂Aϕ

∂z

)
r̂+

(∂Ar
∂z
− ∂Az

∂r

)
ϕ̂+
1
r

(∂(rAϕ)
∂r

− ∂Ar
∂ϕ

)
ẑ (3.3)

Ampère’s law for the magnet domain has a different form than (3.1)

∇×
(∇×A
µ0µr

−Br
)
= Je (3.4)

where Br is the magnet remanent flux density vector, [T].
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Coil and ferromagnetic core parameters used in the simulation are taken from the real EML
model previously described by Kondratiuk (2013), Kondratiuk and Gosiewski (2013a,b, 2014).
The catalogue value of remanent magnetic flux density of the simulated magnet is equal to 1.24 T.
Relative permeability of the magnet material is equal to µr ≈ 1.05, but it can be modelled as
close to 1 because, in order to generate a magnetic force, the magnet should be remagnetized
so the external magnetic field produced by the coils increases magnetic induction in the magnet
according to the following constitutive relation

B = µ0µrH+Br (3.5)

where H is the magnetic field vector, [A/m].
Differences in the values of magnetic flux density for µr = 1 and µr = 1.05 obtained in a

freely chosen point located inside the magnet are shown in Fig. 1.

Fig. 1. Magnetic flux density in the magnet material during remagnetization

In fact, relative permeability of a permanent magnet decreases under influence of very strong
external field and finally achieves the value of 1. Then, both lines in Fig. 1 line up parallelly. In
the model, this effect is neglected.
A permanent magnet has been proposed instead of a ferromagnetic one in order to increase

the magnetic force. In the FEMmodel, the Maxwell surface stress tensor method (MSST) and the
virtual work (VW) method have been tested. Generally, both methods give similar results and
they are applied alternatively. In order to present the advantage of application of a permanent
magnet, the computed magnetic forces acting on both cores (magnetic and ferromagnetic) under
influence of coil current ic = 1A and ic = 3A are compared in Fig. 2.

Fig. 2. Comparison of magnetic forces acting on the ferromagnetic and magnetic core

The calculations clearly show that the magnetic core can provide much greater magnetic
force than the ferromagnetic core. The computed results for the ferromagnetic core have been
experimentally verified and high level data similarity has been revealed (Kondratiuk, 2013).
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In Fig. 3, 3D and 2D views of the modelled coil-magnet system are presented. Both repre-
sentations are developed from the 2D axi-symmetric model by 2D revolution and 2D mirror
functions respectively applied to the FEM solution.

Fig. 3. Development of the FEM axi-symmetric solution for the coil-magnet system into 3D and 2D
views: (a) magnetic flux density for the system under coil current ic = 10A and with the magnet

position zm = −12 cm, (b) magnetic field distribution (z-coordinate) around the system without current
and with the magnet inside

In order to model motions of the core along the coil z-axis the Euler method has been applied
(Kondratiuk, 2013). In the FEM model, a function of core length has been introduced. That
function multiplied by remanent magnetic flux density, magnet permeability or conductivity
describes properties of the core along the z-coordinate. In the model, isotropy of the above
mentioned parameters has been assumed. In Fig. 3b, the evaluation line is drawn. Along this
line, some crucial model parameters have been calculated and the results are presented in Fig. 4.

Fig. 4. Distribution of crucial parameters of the model along a selected line in the z-coordinate (coil
current ic = 20A, coil position pc = 0, magnet position zm = −12 cm)

Positions of the core/magnet (zm) or the coil (pc) are defined as locations of their centres in
the global coordinate system. The magnetic flux density distribution presented in Fig. 4 comes
from the magnet (higher pick) and from the coil (lower pick). This also explains from where the
magnetic force comes from. The magnetic field tries to retain uniformity and always acts in the
opposite way to any changes, for example in the coil current value or in the system geometry.
When the coil generates an external field, the magnet and solenoid are attracted to each other
because only in that way the total magnetic field can become more uniform.

4. Multi-coil EML model

The model of a multi-coil EML can be divided into two strongly related parts: electromagnetic
and mechanical.
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4.1. Electromagnetic part of the multi-coil EML

The first model of EML with a permanent magnet as the core is based on the previously
constructed and widely investigated 10-coil EML with a ferromagnetic core. Parameters of that
construction were presented in previous publications by Kondratiuk (2013), Kondratiuk and
Gosiewski (2013a,b, 2014). It is worth noticing that the investigated coils were made of a 0.8mm
isolated copper wire in configuration 27 per 52 turns (1391 turns in total). In the paper, a code
for coils description was proposed. For instance, the aforementioned solenoid can be coded as
0.8 × 27× 52.
Each coil in the model affects the magnetic core through magnetic field. Strength and di-

stribution of the field depend on coils configuration and currents intensity flowing through the
wires. However, the magnetic force is directly proportional to the current value, so in order to
simplify the model, it is possible to compute the magnetic force distribution for different core
positions in relation to the coil centre and only for one current value ic = 1A. It incorporates
the function F (1A, [zm − pn]) in the multi-coil EML model as follows

Fn(in, zm) = inF (1A, [zm − pn]) (4.1)

where Fn(in, zm) is the magnetic force generated by the n-th coil, [N]; in – coil current flowing
through the n-th coil, [A]; pn – n-th coil position, [m].
The total force acting on the magnet can be defined as

Fm =
N∑

n=1

Fn(in, zm) (4.2)

where N is the number of coils located serially.
As the core, an assembly of 6 ring-shaped magnets of remanenceBr = 1.24Tmade of material

N38 (Arnold, 2014) is proposed. Dimensions of selected magnets are the following: 27mm – outer
diameter, 5mm – inner diameter, 10mm – magnet height. Each magnet is magnetized along
10mm dimension. The assembled core is 60mm long. The number and shape of magnets are
selected arbitrarily. Similarly to the coils, in the paper, a code for core description is proposed.
The above described core can be coded as 6×RSM-27×5×10-N38 where RSM means a ring-
shaped magnet. Visualization of the proposed core in front of two coils 0.8×27×52 is presented
in Fig. 5.

Fig. 5. Cross-sectional visualization of the core 6×RSM-27×5-10-N38 in front of the two coils
0.8× 27× 52

Stationary calculations for the coil 0.8× 27× 52 and the assembled magnetic core 6×RSM-
-27×5×10-N38 have been carried out and the function F (1A, [zm−pn]) calculated (Fig. 6). The
function presented in Fig. 6 has been used according to equation (4.1) in the 10-coil EML model.
Regarding the power source in the model, a single bank of capacitors connected parallelly

has been applied. First calculations have been conducted for the system voltage of 340V and the
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Fig. 6. Function F (1A, [zm − pn]) calculated for pn = 0

total capacity of 94mF. In the simulation, the capacitor discharging process has been modelled
according to the following equations

uc(t) = uc0 −
1
C

t∫

0

ic(t) dt ic(t) =
N∑

n=1

in(t) (4.3)

where uc(t) is capacitor voltage, [V]; uc0 – initial capacitor voltage, [V]; C – capacity of the
bank, [F]; ic(t) – total capacitor discharging current, [A]; in(t) – current flowing through n-th
coil, [A].

4.2. Mechanical part of the multi-coil EML

In the mechanical part of the model, the damping force (Fd) is introduced

Fd(vm) = bdvm︸ ︷︷ ︸
holds always

or Fd(vp) = bdvp︸︷︷︸
holds during
acceleration
(vm=vp)

(4.4)

where bd denoted the damping coefficient, [N·s/m]; vm, vp – magnet and payload (UAV) veloci-
ties, respectively, [m/s].
A simplified mechanical scheme of the system is presented in Fig. 7.

Fig. 7. Mechanical scheme of the investigated system

During simulations, the damping coefficient value has been arbitrarily chosen as constant
bd = 5N·s/m. Dynamic behaviour of the multi-coil EML with magnetic core and a 25 kg payload
(launching UAV) is described by the following equations:
— for zp < braking coil centre

d2zm
dt2
=
d2zp
dt2
=
Fm − Fd(vm)
Mm +Mp

(4.5)
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— for zp ­ braking coil centre

d2zm
dt2
=
Fm − Fd(vm)

Mm

d2zp
dt2
= 0 (4.6)

where zm, zp are magnet and payload positions, [m];Mm,Mp – magnet and payload masses, [kg];
Fm – magnetic force, [N].
Equations (4.5) and (4.6) mean that during the launch phase both magnet and UAV masses

are accelerated. When the acceleration changes its sign to minus, the braking phase starts. The
UAV disconnects from the magnet and after that, only the magnetic core mass takes part in the
braking process (no acceleration acts on the payload). Mass of the core 6×RSM-27×5×10-N38
is equal to 0.25 kg, but in the model Mm = 1kg. In that way, any masses contained in necessary
constructional pushers, screws, fixings, etc., are taken into account.

4.3. Characteristics of the non-modified multi-coil EML model

In this Subsection, the results of simulations conducted on the non-modified multi-coil EML
are presented. ‘Non-modified’ means that the calculations have been carried out for a construc-
tion consisting of 10 serially located coils 0.8 × 27 × 52 designed for micro UAVs and widely
described by Kondratiuk (2013), Kondratiuk and Gosiewski, 2013a,b, 2014). The core 6×RSM-
27×5×10-N38 has been applied. In Fig. 8, the power source characteristics come from simulation
of the EML with the magnetic core and launching a 25 kg UAV are presented.

Fig. 8. Characteristic of the capacitors bank voltage (340V/94mF) and characteristic of the total
discharging current from simulation of the launch of a 25 kg UAV by means of the EML with

magnet core

Fig. 9. Currents flowing through particular coils of the EML during simulation of the 25 kg UAV launch

In Fig. 9, the time evolutions of coil currents are presented. The last coil works until the
magnetic core stops in its centre. The characteristics show that in the model electromagnetic
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induction is taken into account. Changing currents in particular coils generate electromotive
force in the neighbouring solenoids.
In the model, current can flow through wires in both directions. In reality it can be com-

pensated by introducing switching transistors (IGBT) and safety rectifying diodes into control
electronic systems. In the model, a semi-coil system has been applied. Two neighbouring coils
are powered on simultaneously. When the core achieves the centre of the first coil, it is turned
off and the next is powered on. This method is directly visible on the current characteristics
in Fig. 9. Moreover, an influence of the capacitor power source can also be noticed because the
maximum amplitude of currents decreases with time like as the capacitor voltage. This effect
is caused by the finite capacity introduced into the model and directly shows how the power
source parameters are significant.
In Fig. 10, characteristics of the magnetic force acting on the moving system of the magnet

with payload are presented. The last coil can be recognized as a magnetic brake. Moreover,
the damping force (Fd) value is also shown. That force can reach considerable values for higher
velocities.

Fig. 10. Forces generated by particular coils of the EML during simulation of the 25 kg UAV launch

In Fig. 11, velocity characteristics are presented. The simulation reveal that the construction
of 10 serially located coils 0.8× 27× 52 with the core 6×RSM-27×5×10-N38 can ensure a 25 kg
UAV only a 2.5m/s initial speed. It is less by an order than the assumed 20m/s.

Fig. 11. Velocity characteristics from simulation of the 25 kg UAV launch

5. Modification of the EML

The computed results presented in the previous Section indicate that in order to increase the
starting velocity, some modifications in the structure of the investigated EML should be intro-
duced.
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5.1. EML consisting of 4 parallel 20-coil (0.8× 27× 52) modules

As the first natural improvement, an increase in the coil number has been proposed (up
to 20). Another modification is based on the parallel connection of a few of 20-coil modules
(mechanical and electrical connection). In the modified FEM model, a single capacitor bank
is used as the power source for all coils and modules. Thus, the capacitor voltage is increased
up to 1 kV. Four modules consisting of 20 coils 0.8 × 27 × 52 and mechanically connected in
parallel have been investigated. The magnetic force generated by the module and coil currents
are totalized. The electromagnetic interaction between each module is neglected. The whole
system of 4 driving modules is coupled by common dynamic equations (4.5) and (4.6).
In Fig. 12, simulation characteristics of the capacitor bank (1 kV/94mF) of four modules

consisting of 20 0.8× 27× 52 coils each and connected in parallel as shown. It is worth noticing
that the maximum value of the total discarding current increased by factor of 2.5.

Fig. 12. Simulation characteristics of the capacitors bank (1 kV/94mF) of four modules consisting of 20
0.8× 27× 52 coils each connected in parallel

Velocity characteristics of the modified EML are presented in Fig. 13. Improvements intro-
duced into the model give an increase in the starting velocity up to 8.5m/s. It is still not enough.
The decision of coils configuration and the core structure modification has been made.

Fig. 13. Velocity characteristics from simulation of the launch of 25kg UAV by means of the 4 EML
module with magnet core connected in parallel

5.2. EML consisting of 6 parallel 20-coil (1.0× 10× 150) modules and the core
17×RSM-28×10×10-N52

In order to achieve the previously assumed velocity of 20m/s a few modifications in the coils
configuration and the core (magnet) structure have been proposed.
Firstly, the core 6×RSM-27×5×10-N38 has been replaced by 17×RSM-28×10×10-N52. It

comprises 17 ring-shaped magnets made of material N52 (Arnold, 2014) and with remanence
Br = 1.45T. Secondly, the coils 0.8× 27× 57 have been replaced by 1.0× 10× 150 made of an
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isolated copper wire of 1mm diameter. The distance between the coils is set to 1 cm, thus the
driving part of the EML is about 3.3m in length. The core and coils configurations are chosen
arbitrarily. Thirdly, the number of parallel modules is increased up to 6. Finally, the capacity of
the electrical energy bank is changed to 825mF. It is a high value but can be simply achieved
by the parallel and serial connection of a few hundreds of electrolytic capacitors (450V/3.3mF).
In the new model of the EML capacitor bank, the voltage is set to 1 kV. Initial simulations
reveal that more than one coil should be used to stop the core. In the final model, the last three
solenoids act as magnetic brakes.
In Fig. 14, simulation characteristics of the capacitor bank (1 kV/825mF) of six modules

consisting of 20 1.0× 10× 150 coils each and connected in parallel are presented. The maximum
value of the total discarding current significantly has increased up to 2.2 kA. However, currents
of that value flow only in a short period of time, so it can be practically applied in the real
device. Moreover, the currents flowing out from the electrical energy bank are spread over all
capacitors. The simulated currents flowing through particular coils are shown in Fig. 15. Their
maximum values are not higher than 190A.

Fig. 14. Characteristics of the capacitor bank (1 kV/825mF) supplying six modules consisting of 20
1.0× 10× 150 coils each and connected in parallel

Fig. 15. Forces generated by particular coils of the single EML module (20 coils 1.0× 10× 150)

In Figs. 16 and 17, the force characteristics are presented. They clearly show that the last
three coils act as a magnetic brake. Influence of the introduced damping force is also visible.
In Fig. 18, the velocity characteristics are shown. The modification introduced into the EML
model enables the starting velocity to achieve the previously assumed value of 20m/s.

6. Magnetic support

In the paper, a project of the magnetic slideway track for launched objects is also proposed.
During the start, the supporting UAV of mass up to 25 kg may be a challenging task because of
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Fig. 16. Currents in particular coils of each module

Fig. 17. Forces of the modified EML (6 modules)

Fig. 18. Velocity characteristics of the modified EML (6 modules)

gravity, friction and material elastic buckling. The designed support solution consists of several
permanent magnets of different sizes. The proposed solution creates a magnetic spring on which
friction forces are minimized and the gravity is compensated for by magnetic repulsion. This
system has also been modelled by means of FEM. The calculations have been conducted for
different magnets and, as a result, the geometry configuration and magnet properties suitable
for this particular type of support have been determined.
In Fig. 19, the concept of a magnetic track is presented. The construction consists of six

downside (main) magnets BM-80×20×10-N35H (BM – board magnets, length [mm] × width
[mm] × height [mm], N35H – magnet material (Arnold, 2014)) and ten upside (stabilizing)
magnets BM-40×10×4-N35. The carriage moving in the x-direction comprises four magnets
BM-80×20×10-N35H.
From the FEM models, the magnetic forces acting on the carriage consisting of 4-magnet

have been computed. In Fig. 20, the force acting in the z-direction is presented as a function of
the carriage position in the z-direction (zero position means contact between the carriage and
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Fig. 19. The proposed magnetic track with the distribution of magnetic vector potential

Fig. 20. Magnetic force acting on the 4-magnet carriage in the z-direction

downside magnets, 13mm means contact with the upside magnets) and in the y-direction (zero
means central location of the carriage).
In Fig. 21, the magnetic force acting on the 4-magnet carriage in the y-direction is presented

as a function of the carriage position in the y-direction.

Fig. 21. Magnetic force acting on the 4-magnet carriage in the y-direction

The computed results are very optimistic and prove that the proposed magnetic support
can be an applicable part in the real model of the coil EML for UAVs of mass up to 25 kg.
Nevertheless, the magnetic force is strongly dependent on the carriage position and may cause
instability of the slideway. In real objects, a bearing system in the y-direction should be applied.

7. Remarks and future works

The nearest future works should be connected with experimental verification of the magnetic
forces generated by the investigated coils and acting on the proposed magnetic core. The im-
portant part is also CAD design of the EML construction consisting of six driving modules
(each having 20 coils). The problems of power transmission from the core to the carriage and
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the launched UAV should also be deeply investigated and solved. Moreover, other construc-
tional aspects should be taken into design considerations, for instance, shape and materials of
the frame, transport possibilities, system assembly and disassembly, power system connections,
electronic control systems, safety conditions, fixing UAV on the launcher, mechanical strength of
the crucial elements, etc. So far, the conducted research has revealed that the described project
is quite challenging and very multidisciplinary. The obtained results and designed solutions are
optimistic and give a real chance for practical realisation of the magnetic coil EML for UAVs of
mass up to 25 kg.
Works conducted so far on magnetic launchers, assisted start procedures and UAVs autonomy

inspired authors to think on the design of a fully operational autonomous system for observation
and inspection of extensive territories and regions such as forests, swamps, deserts or even border
zones. The main assumption is that the proposed system should operate and perform its missions
without any human assistance. Such a system should consist of an operational micro or medium
class wing-plane adjusted to particular missions, coil magnetic launcher, landing subsystem,
generator or battery used as the power source and control system. An airplane with wings can
cover much longer distance than quadro-, hexa- or octocopters in the same amount of time
and with lower energy cost. In order to carry out a mission, such an UAV can be launched in
precisely defined periods of time, for example, minutes, hours or days. A hard and challenging
task is to accomplish the UAV landing process after which the airplane should almost instantly
be prepared for another launch without any human assistance. In our opinion, development of
the landing subsystem is crucial for practical application of the proposed autonomous system.
First conceptual ideas have been already born and they will be investigated in the near future.
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This paper aims at planning an optimal point to point path for a flexible manipulator under
large deformation. For this purpose, the researchers use a direct method and meta-heuristic
optimization process. In this paper, the maximum load carried by the manipulator and the
minimum transmission time are taken as objective functions of the optimization process to
get optimal path profiles. Kinematic constraints, the maximum velocity and acceleration,
the dynamic constraint of the maximum torque applied to the arms and also the constraint
of final point accuracy are discussed. For the optimization process, the Harmony Search (HS)
method is used. To evaluate the effectiveness of the approach proposed, simulation studies
are reviewed by considering a two-link flexible manipulator with the fixed base. The findings
indicate that the proposed method is in power of dealing with nonlinear dynamics of the
system. Furthermore, the results obtained by rigid, small and large deformation models are
compared with each other.

Keywords: meta-heuristic optimization, harmony search, large deformation, flexible mani-
pulator

1. Introduction

In order to increase the efficiency and economy of manipulators, finding an optimal trajectory
by maximum dynamic load capacity and minimum transmission time between two points is of
particular and high importance. When planning a point to point path, there are many comple-
xities, so different methods should be used to solve the problem. All used methods are a subset
of two main methods, namely direct and indirect methods. In general, the indirect methods are
based on the optimal control theory and the minimum principle of Pontryagin. The planning
of a two-link rigid manipulator is done via using the optimal control by Korayem et al. (2009).
To calculate Dynamic Load Carrying Capacity (DLCC) in a manipulator, the optimal control
method is studied through considering complete dynamics of the system and nonlinear terms.
Boundary conditions are exactly satisfied and the optimization problem is numerically solved
with sufficient accuracy. Korayem and Nikoobin (2009) studied the optimal path planning for
rigid and fixed-base two-link manipulators with the help of the optimal control method. By
using Pontryagin optimality conditions, the determination of the maximum load capacity will
be changed to the standard two-point boundary value problem (Korayem and Nikoobin, 2009).
Korayem et al. (2011) planned an optimal path for a two-link mobile manipulator by using the
indirect method. They proved that the implementation of the optimal control considering full
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nonlinear dynamics of the system caused by Hamiltonian gradient calculation, the existence of
a two-point boundary value problem and the use of a multiple shooting numerical method are
not so easy.

In all activities mentioned using the indirect methods and the optimal control theory to plan
the optimal path, there are the following limitations. Path planning by the optimal control needs
nonlinear numerical techniques such as multiple shooting methods. These techniques require
a good initial guess and are sensitive to it. These methods also require an analytical form
of the Hamiltonian gradient and an optimum value of state variables obtained by using the
Hamiltonian gradient. In these methods, the state variables are used to solve the problem that
in the general case (especially by considering the flexibility) it is very difficult to estimate them.
Furthermore, precise determination of weight functions for different objective functions will make
some problems in the implementation of the methods presented. To resolve the defects, direct
approaches are recommended to plan the path. Direct methods are based on discretization of
dynamic variables of the system (state variables and control variables) in which ultimately, to
provide the parameters, the problem of planning a path will result in a parametric optimization
problem. In these methods, the profile of joints motion is represented directly by polynomial,
Spline and B-spline functions. By the profile of joints motion, the path planning will be changed
to the optimization problem to determine the optimality of profile constant coefficients. To
solve the optimization problem, meta-heuristic approaches speeding up the convergence and
decreasing the sensitivity to the initial guess can be used. To implement these methods, there
is no requirement for linearization and simplification of dynamic equations of the system, and
so complete dynamics of the system can be considered.

When planning a trajectory, different functions are considered as objective functions in opti-
mization. The most important ones are the minimum transmission time (Haddad et al., 2005),
minimum energy consumption (Spangelo and Egeland, 1992) and minimum jerk in joints (Piazzi
and Visioli, 2000). Different methods are developed to study the path planning by the direct
method presented such as Genetic Algorithm method (GA) (Garg and Kumar, 2002; Saravanan
and Ramabalan, 2008; Saravanan et al., 2008), Simulated Annealing (SA), Sequential Weight
Increasing Factor Technique (SWIFT) and Sequential Quadratic Programming (SQP) method
(Chettibi et al., 2004). In (Chettibi et al., 2004), SQP method is used to plan the path. It is
clear that SQP may get a local optimum, and for convergence of this optimal solution, it is
necessary to select the initial guess appropriately. Haddad et al. (2007) studied a point to point
path planning problem for a mobile base manipulator. They used the direct method and ran-
dom optimization to plan the path. The path was generated based on the objective function
of minimum transmission time and the kinematic constraints of velocity, acceleration as aell as
the dynamic constraint of torque of the motors. Furthermore, the path planning was also done
based on the stability constraint of the manipulator by ZMP method. Tangpattanakul and Ar-
trit (2009) paid attention to path planning of the manipulator based on the objective function
of minimum transmission time in the point to point case. The optimization problem was solved
by considering kinematic constraints using Harmony Search. The simulation results showed that
HS method converged faster than SQP method to the optimal solution, and the sensitivity of
this method was less toward the initial guess. Tangpttanakul et al. (2010) investigated the pro-
blem of point to point path planning by using HS optimization method. The simulation results
proved that HS was a better method for solving the problem of robot path planning. Zanotto et
al. (2011) considered the minimum transmission time and jerk as the objective function in the
optimization problem. Experimental results were also elaborated to compare with the theoretical
results. Chettibi and Lemoine (2007) planned a point to point path by using SQP. They offered
a single-link manipulator considering full dynamics of the manipulator and the driving motor.
To solve the problem of optimization, the objective function of minimum transmission time and
electro-mechanic constraints were used.
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This paper includes the following aspects of innovations. An optimal path is designed for a
manipulator by considering the most complete nonlinear dynamics, large deformation model and
Timoshenko beam model. In previous papers, direct methods were used and the effects of the
flexibility with the large deformation model were rarely considered in manipulators. In addition,
by using the optimal control method, simplification of non-linear equations is non-avoidable due
to the excessive complexity of the solution process. In most papers employing direct methods, the
minimum transmission time, minimum energy consumption and minimum jerk are considered as
the objective function. However, in this paper, the minimum transfer time besides the maximum
load carrying capacity of manipulators is assumed as the objective function. In this paper, the
Harmony Search method is used to determine the load carrying capacity of the manipulators
that have no restrictions to nonlinear dynamics of the systems. The methods like the optimal
control have some difficulties when dealing with such issues. So, here, the most complete process
is used to design an optimal path using HS method. The proposed optimization method has
the following advantages: (1) a global optimal solution is possible, (2) it is easy to program and
implement efficiently, (3) it ensures that the resulting optimized trajectory is smoother, faster,
and nonsingular, (4) it can also be extended to get optimized trajectories for other types of
robots, (5) it considers both kinematic and dynamic aspects of the robot, (6) it considers the
payload constraint, and (7) it is computationally superior and faster. The paper is thus organized
in the following Sections. In Section 2, dynamic modeling of the manipulator is investigated in
the large deformation case. In Section 3, the problem of path planning is discussed by a direct
method. Section 4 deals with the extraction of the optimization problem arising from path
planning. The method proposed for solving the optimization problem and a flowchart of optimal
path planning are presented in Section 5. Finally, the simulation results are presented for a
two-link flexible manipulator.

2. Dynamic analysis of a flexible manipulator under large deformation

Consider an m-link manipulator (Fig. 1) by n degrees of freedom (n > m) that should move
from the initial position Xini to the final position Xfin in space of end effector (assume qfinr , qinir
are corresponding joint variables). For dynamic modeling, arms are based on the Timoshenko
beam model, and also shear effects are considered. The movement of the arms will be described
by the rotation angle of the links θi, flexible displacement wi(xi, t) and rotation caused by the
flexible displacement ψi.

Fig. 1. m-link flexible manipulator with a fixed base

The displacement field for the Timoshenko beam with large deformation is as follows

ux = −Z sinψ(x, t) uz = w(x, t) + Z cosψ(x, t) (2.1)
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where Z is the distance to the neutral axis of the beam. Non-zero elements of the Green strain
tensor in the case of large deformation can be written as follows

E11 = E0 + ZKb =
1
2
(w2,x)
︸ ︷︷ ︸
E0

+Z [−ψ,x(cosψ +w,x sinψ)]︸ ︷︷ ︸
Kb

E12 =
1
2
(− sinψ + w,x cosψ) = Λ

(2.2)

where E0 is axial strain, Kb – curve occurred in the beam element by large deformation, Λ –
shear strain.
In the above expression, w,x = ∂w(x, t)/∂x. Kinetic energy of the system equals to kinetic

energy of the arms KEarm and tip KEtip mass

KE = KEarm +KEtip (2.3)

where

KEarm =
m∑

i=1

KEi,arm KEi,arm =
1
2

∫
ρi[ṗTi (xi, t)ṗi(xi, t)] dvi

KEtip =
1
2
mtip(ṗTtipṗtip) +

1
2
Itip

(
m∑

j=1

θ̇j

)2

where pi(xi, t) is the position of a small element on the i-th flexible arm and ptip is the position
vector of tip mass with respect to the absolute coordinates {X0, Y0, Z0} defined as follows

pi(xi, t) =
i−1∑

j=0

Bj(lj , t) +Bi(xi, t)

Bi(xi, t) = [xi cos(θi−1 + θi)− wi(xi, t) sin(θi−1 + θi)]I
+ [xi sin(θi−1 + θi) + wi(xi, t) cos(θi−1 + θi)]K

ptip =
m∑

j=1

Bj(lj , t) (i = 1, 2, . . . ,m) B0 = 0 θ0 = 0

(2.4)

Potential energy of the system consists of strain energy and gravitational potential energy

PE =
1
2

m∑

i=1

li∫

0

(EiAiE2i,0 + EiIiK
2
i,b + kGiAiΛ

2
i ) dxi

+
m∑

i=1

ρiAig

(
i−1∑

j=0

Hj(lj , t) +

li∫

0

Hi(xi, t) dxi

)
+mtipg

m∑

j=1

Hj(lj , t)

Hi(xi, t) = xi sin(θi−1 + θi) + wi(xi, t) cos(θi−1 + θi) H0 = 0 θ0 = 0

(2.5)

where g is the acceleration of gravity.

3. Problem statement

By separating the joint and flexibility variables and applying the extended Hamilton method,
the general form of the m-link manipulator equations is as follows

[
Mf Mr

] [q̈f
q̈r

]
+

[
Cf (q, q̇)
Cr(q, q̇)

]
+

[
Qf (q)
Qr(q)

]
=

[
0
τ

]
(3.1)
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where Mf is the inertia matrix for flexibility degrees of freedom in the manipulator, Mr –
inertia matrix for rigid degrees of freedom, the vector q contains generalized coordinates, qr,qf
are vectors of the flexibility coordinates and joint coordinates, respectively, Cf (q, q̇),Cr(q, q̇) –
Coriolis and centrifugal force vector for flexible and for rigid degrees of freedom, Qf (q),Qr(q)
– gravity vector for flexible and for rigid degrees of freedom, τ – torque applied to the joints.
By having both initial and final points of the end effector, the main purpose is to determine the
maximum load capacity, transmission time, joint variables vector, the corresponding velocity
and torque vector applied to the manipulator so that to satisfy all the constraints in the system.
To solve the problem by thr direct method, the profile of the joints path will be approximated
directly through interpolation functions such as polynomial, Spline and B-Spline functions, and
the problem of path planning will be changed to a parametric optimization problem in order to
calculate the constants of interpolation functions. Then, the optimization problem can be solved
by using meta-heuristic optimization.

3.1. Optimization by the objective function of maximum load carrying capacity

In this case, the objective of path planning in the point to point case is to calculate a
trajectory for the robot end effector in which the manipulator can carry the maximum dynamic
load and the kinematic constraints of the joints, velocity and acceleration, torque dynamic
constraint and end point accuracy constraint will be satisfied. In addition, the optimal path
must be planned not to meet manipulator singularity configurations. The problem of planning
an optimal path by considering the objective function and above the constraints will be presented
in the form of an optimization problem as follows

fobj = max(mtip, Itip) (3.2)

subject to (i = 1, 2, . . . ,m)

{ |qr,i(t)| ¬ qmaxr,i |q̇r,i(t)| ¬ kvi |q̈r,i(t)| ¬ kai
|τi(t)| ¬ τmaxi |qfinr,i − qr,i(T )| ¬ ε

where mtip, Itip are the concentrated mass and moment inertia of the end manipulator, τmaxi –
maximum torque applied to the joints.

3.2. Optimization by the objective function of minimum transmission time

In this case, minimization of the transmission time between the initial and final points is
the aim of optimal path planning. Assume q̃r(t) as a candidate selected for the profile of the
joints path. By using a change in the variable ζ = t/T (0 ¬ ζ ¬ 1), any kinematic and dynamic
constraints presented in the previous Section are discussed as bands of the transmission time.
The constraints governing joint velocity and acceleration can be converted into the following
formulas by applying the derivation chain rule

T ­ Tv ⇒ Tv = max
i=1,2,...,m

[
max
ζ∈[0,1]

|q̃′r,i(ζ)|
kvi

]
q̃′r,i(ζ) =

dq̃r,i(ζ)
dζ

T ­ TA ⇒ TA = max
i=1,2,...,m

[
max
ζ∈[0,1]

|q̃′′r,i(ζ)|
kai

] 1
2

q̃′′r,i(ζ) =
d2q̃r,i(ζ)
dζ2

(3.3)

Dynamic constraints determination the motors torque may be changed to constraints of two
bands in terms of the transmission time so that T ∈ [TL, TR]. By examining the bands time
obtained, finally, the end band [Tlower, Tupper] will be find for the transmission time. The optimal
transmission time for each profile of the trajectory can be obtained by minimizing the objective
function based on the transmission time of the period. By using a change in the variable ζ = t/T ,
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the differential equation of motion for the i-th variable of the joint in the m-link manipulator
will be as below

τ i(ζ) =
1
T 2
hr,i(ζ) +Qr,i(ζ) ζ ∈ [0, 1] i = 1, 2, . . . ,m

hr,i(ζ) =
m∑

j=1

Mr,ij q̃
′′
r,j(ζ) + Cr,i(q̃(ζ), q̃

′(ζ))

hr,i(ζ) =
hr,i(ζ)
τmaxi

Qr,i(ζ) =
Qr,i(q̃(ζ))
τmaxi

τ i(ζ) =
τi(ζ)
τmaxi

(3.4)

So, the dynamic constraints will be changed to the following equation

−1 ¬ 1
T 2
hr,i(ζ) +Qr,i(ζ) ¬ 1 −bi(ζ) ¬

1
T 2
hr,i(ζ) ¬ ai(ζ)

ai(ζ) = 1−Qr,i(ζ) bi(ζ) = 1 +Qr,i(ζ)

(3.5)

Thus, for any ζ ∈ [0, 1], the time bands T related to the torque constraint are given in Table 1.

Table 1. Transmission time bands of the path profile selected for dynamic constraints

hr,i(ζ) ­ 0 hr,i(ζ) < 0

ai(ζ) < 0 ai(ζ) ­ 0 bi(ζ) < 0 bi(ζ) ­ 0

bi(ζ) < 0 bi(ζ) ­ 0 ai(ζ) < 0 ai(ζ) ­ 0

∅ TL,i =

√
hr,i(ζ)
ai

TL,i =

√
hr,i(ζ)
ai

∅ TL,i =

√
hr,i(ζ)
ai

TL,i =

√
hr,i(ζ)
−bi

TR,i =

√
hr,i(ζ)
−bi

TR,i → +∞ TR,i =

√
hr,i(ζ)
−bi

TR,i → +∞

In general, the problem of optimal path planning by objective function of minimum transmis-
sion time and the presented constraints are developed in the form of the optimization problem

fobj = min(T )

subject to





T ­ Tv Tv = maxi=1,2,...,m
[
maxζ∈[0,1]

|q̃′r,i(ζ)|
kvi

]

T ­ TA TA = maxi=1,2,...,m
[
maxζ∈[0,1]

|q̃′′r,i(ζ)|
kai

] 1
2

TL ¬ T ¬ TR Table 1

|q̃finr,i − q̃r,i(T )| ¬ ε

(3.6)

4. The method of solving the optimization problem

To solve the problem of optimization, HS meta-heuristic method will be used. For designing the
end effector trajectory, it is necessary to model the path profile for any joint by using the profile
of a smooth trapezoid or a cubic Spline. For example, the overall form of a smooth trapezoidal
profile is always as follows
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q̃r,j =





qinir,j +Dj
1

1 + ζb − ζa
(2ζ3

ζ2a
− ζ4

ζ3a

)
0 ¬ ζ < ζa

qinir,j +Dj
2ζ − ζa
1 + ζb − ζa

ζa ¬ ζ < ζb

qinir,j +Dj
[
1− 1
1 + ζb − ζa

(2(1 − ζ)3
(1− ζb)2

− (1− ζ)
4

(1− ζb)3
)]

ζb ¬ ζ ¬ 1

(4.1)

where

Dj = q
fin
r,j − qinir,j

Therefore, by the initial and final points of the trajectory and optimal determination of the
variables (ζb, ζa) (by observing the condition 0 ¬ ζa, ζb ¬ 1), the optimal form of joint motion
will be determined. A flowchart of optimal path planning is represented in Fig. 2 with the help
of Harmony Search for the m-link manipulator.

5. Numerical simulation

Generalized coordinates of a two-link flexible manipulator with a fixed base is considered as the
vector q = [θ1, θ2, w1, ψ1, w2, ψ2]. w1 and w2 are transverse vibration variables of the first and
second arm, respectively. Also, ψ1 and ψ2 are rotations caused by transverse vibrations of the
first and second arm. By using the finite element method and dividing the arms into multiple
elements, the flexibility variables of the i-th element of the first arm and the flexibility variables
of the j-th element of the second arm are presented as follows

w1i = [N1(x), N2(x)]{w̃1i(t)} ψ1i = [N1(x), N2(x)]{ψ̃1i(t)} i = 1, 2, . . . , n1

w2j = [N1(x), N2(x)]{w̃2j(t)} ψ2j = [N1(x), N2(x)]{ψ̃2j(t)} j = 1, 2, . . . , n2

[N1(x), N2(x)] =
[
1− x

l
,
x

l

]

(5.1)

where n1 and n2 are equal to the nodes of the elements network of the first and second arm. So,
the closed form of dynamic equations of the flexible two-link manipulator is as follows




m11 m12 m13 m14 m15 m16
m22 m23 m24 m25 m26

m33 m34 m35 m36
m44 m45 m46

sym m55 m56
m66







θ̈1
θ̈2
˜̈w1i
˜̈
ψ1i
˜̈w2j
˜̈
ψ2j




+




C1
C2
C3i
0
C5j
0




+



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Q2
Q3i
Q4i
Q5j
Q6j




+




D1
D2
D3i
D4i
D5j
D6j




=




τ1
τ2
0
0
0
0




i = 1, 2, . . . , n1 j = 1, 2, . . . , n2

(5.2)

where the vector Q represents the effects of gravitational and potential energy of the system.
The vector D is a disturbance torque or a force vector. It should be noted that D has different
meanings. For example, it can be a friction and reaction torque or force. The end effector position
can be offered by the following equation

Xe = [l1 cos θ1 + l2 cos(θ1 + θ2)]i+ [l1 sin θ1 + l2 sin(θ1 + θ2)]j (5.3)

To optimally plan a path for a two-link manipulator in the point to point case, the optimi-
zation problems should be solved as follows:
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Fig. 2. Optimal path planning flowchart by Harmony Search method
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— Path planning based on the minimum transmission time

fobj = min(T )

design variables = (ζa1, ζb1, ζa2, ζb2)

θi(t) = q̃r,i from Eq. (4.2)
[
τ1
τ2

]
=

[
m11 · · · m16
m21 · · · m26

] [
θ̈1
θ̈2

]
+

[
C1
C2

]
+

[
Q1
Q2

]
from Eq. (5.2)

subject to






T ­ Tv Tv = maxi=1,2
[
maxζ∈[0,1]

|q̃′r,i(ζ)|

kvi

]

T ­ TA TA = maxi=1,2
[
maxζ∈[0,1]

|q̃′′r,i(ζ)|

kai

] 1
2

TL ¬ T ¬ TR from Eq. (3.6) and Table 1
|Xe(T )−Xfin| ¬ ε

— Path planning based on the maximum load capacity

fobj = max(mtip)

design variables = (ζa1, ζb1, ζa2, ζb2)

θi(t) = q̃r,i from Eq. (4.2)
[
τ1
τ2

]
=

[
m11 · · · m16
m21 · · · m26

] [
θ̈1
θ̈2

]
+

[
C1
C2

]
+

[
Q1
Q2

]
from Eq. (5.2)

subject to





|θi(t)| ¬ θmaxi
|θ̇i(t)| ¬ kvi
|θ̈i(t)| ¬ kai i = 1, 2
|τi(t)| ¬ τmaxi
|Xe(T )−Xfin| ¬ ε

To validate the results, simulation of a planar two-link manipulator described by Heidari
(2011) will be done and compared with the results obtained by the optimal control method.
Table 2 shows the parameters of the manipulator assumed.

Table 2. Parameters of the flexible two-link manipulator (Heidari, 2011)

Parameter (unit) Value Parameter (unit) Value

Length of links [m] l1 = l2 = 0.5 Moment of inertia [m4] I1 = I2 = 2.5 · 10−9
Mass [kg] m1 = m2 = 3 Young’s modulus of E1 = E2 = 2 · 1010material [N/m2]

The initial position of the end effectors, when t = 0, is at the point (0.5, 0) and when t = 1 s,
is at the point (0.5, 0.5). The end effector velocity at the beginning and end of the path is
also assumed to be zero. To get rid of the singularity case in the manipulator, the constraint
θ2(t) 6= 0◦ and 180◦ is considered in the optimization problem. The maximum torque of the
motors is equal to τmax = 8Nm. The results of joints torque and the path paved by the end
effector by considering the minimum of torque as the objective function for three cases including
rigid arms, arm with small deformation and an arm with large deformation are shown in Figs.3
and 4. Figures 3a,b indicate that by taking the effect of flexibility of the arms into account,
the torques resulting from the large and small deformation exhibit fluctuation behavior to the
rigidity, and the torque resulting from large deformation is slightly greater than that from small
deformation. Figure 4 indicates that the paths obtained by small and large deformation models
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do not reach the end point and deviation occurs. The deviation at the start point is large, and
the fluctuations of the end effector path are increased by greater flexibility. The results obtained
are in good agreement with the results reported by Heidari (2011).

Fig. 3. Torque applied to the (a) first link and (b) second link

Fig. 4. End effector trajectory for the planar two-link manipulator

5.1. Results of path planning by the maximum load carrying capacity

This Section addresses the planning of an optimal path by considering the maximum load
capacity as the objective function. For this purpose, a two-link manipulator is taken on the plane
XZ in which the end effector moves from x1 = 1.6m, z1 = 0m and after the time t = 2 s stops
in the point x2 = 1.2m, z2 = 1.2m. For HS optimization method, harmony memory size also is
HMS=10, the harmony memory considering rate is HMCR=0.75 and the pitch adjustment rate
is PAR=0.25. The maximum velocity and acceleration equal to kv = 3 rad/s, ka = 10 rad/s2

respectively, and the maximum torque is τmax = 230Nm. The allowed error from the final point
is ε = 2 cm as well. Manipulator parameters specified in this Section is are given in Table 3. In
all following figures, a smooth trapezoidal profile is considered as profile 1 and a cubic Spline
profile as profile 2. By solving inverse kinematics, the values of position and joints velocity at
the beginning and end of the path are obtained as follows

θ1(0) = −1.4455 rad θ2(0) = −0.4240 rad
θ1(2) = 1.6961 rad θ2(2) = 1.4455 rad

θ̇1(0) = θ̇2(0) = θ̇1(2) = θ̇2(2) = 0

(5.4)

The results of these three cases including rigid arms, arms with small deformation and arms
with large deformation are presented. The results of the maximum load by considering kinematic
and dynamic constraints for both profiles are presented in Table 4. By studying the figures related
to the angular displacement and arms torque, it is clear that wherever the slope of torque figure
is greater, the corresponding angular displacements will change more quickly, and any change
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Table 3. Parameters of the two-flexible link manipulator

Parameter Value (unit) Parameter Value (unit)

Length of links l1 = 0.4m, l2 = 1.6m Cross-section area A1 = A2 = 2.5 · 10−3m2
Density of links ρ1 = ρ2 = 3000 kg/m3 Moment of inertia I1 = I2 = 5.2 · 10−7m4
Young’s modulus E1 = E2 =

0.3 · 1011 N/m2
Shear modulus G1 = G2 = 16 · 105 N/m2

of material

Fig. 5. Angular displacement of the (a) first link and (b) second link

Fig. 6. Torque applied to the (a) first link and (b) second link

in the torque direction will alter the angular displacement of the arms. Figure 7 indicates that
the path obtained for profiles in different cases are smooth. By studying the figures and the
results obtained in this Section, it can be seen that the flexibility of the arms has a significant
effect on the problem of manipulator path planning so that the load capacity of the manipulator
for both profiles is less than the rigid one by taking into account the flexibility of the arms.
This difference is due to the limitation of the engine torque caused by torque fluctuations in the
small and large deformation models. A more careful flexibility analysis of the model developed
to be carried out and more complete nonlinear terms to be considered makes the results for
the load carrying capacity to decrease. Therefore, small deformation is no longer a complete
model for studying the effects of flexibility. Harmony Search method is appropriately consistent
with nonlinear dynamics of the system and for implementing this method. There is no need to
simplify the dynamic equations of the system. The results indicate superiority of the smooth
trapezoidal profile over the cubic Spline profile. Since, the load carrying capacity for the smooth
trapezoidal profile is greater than that for the cubic Spline profile. According to the results
obtained, it can be said as far as the capabilities of the method proposed are concerned that
this method has no problem with nonlinear dynamics of the manipulator, and the optimal path
will be obtained with appropriate convergence speed. It has potential to consider all kinematic,
dynamic, and singularity constraints as well as the end point accuracy constraint at the same
time in the optimization process.
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Table 4. Results of optimally path planning by the maximum load capacity

Profile Model DLCC [kg]

Smooth
trapezoidal

rigid 8.4
small 6.9
large 5.6

Cubic
spline

rigid 8.4
small 3.3
large 2.4

Fig. 7. The end effector trajectory in rigid, small and large deformation models

5.2. The results of planning the optimal path by minimum transmission time

The planning of an optimal path will be investigated here by considering the minimum
transmission time as the objective function. The results are presented in form of a figure for the
cubic Spline profile only. By reviewing the previous Section and taking mtip = 1.5 kg, the results
of path planning are presented in Figs. 8 and 9 for arms corresponding to the large deformation
model. Since, the angular displacement of the first arm during motion is larger than the angular
displacement of the second arm, as shown in Fig. 8b, the angular velocity of the first arm is
greater than that of the second arm. Similarly, the torque applied to the first arm is greater than

Fig. 8. Angular displacement (a) and angular velocity (b) of the first and second links in the large
deformation model

that in the second arm, and the engine of the first arm will reach its saturation point sooner.
The optimal path planned for all three models are shown in Fig. 10. By studying this figure, it
is clear that the path planned for the small and large deformation models does not reach the
end point, and there is a distance equal to the allowed amount ε = 2 cm. The results of the
transmission time by considering kinematic and dynamic constraints and HS method for both
profiles are given in Table 5. It shows that HS method is efficient enough to solve the optimal
robot trajectory planning. What is presented in the table indicates that the flexibility of the
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arms increases the time of transmission for both profiles. The transmission times obtained for
the manipulator through the rigid and small deformation models are not much different. But,
the value of this parameter in the large deformation model is greater than that in rigid and
small deformation models. In this case, the results obtained from the smooth trapezoidal profile
are even better than the results of the cubic Spline profile.

Fig. 9. Torque applied to the first and second links in the large deformation model

Fig. 10. Optimal path paved by the end effector for the minimum transmission time in rigid, small and
large deformation models

Table 5. Results of the optimal path planning by the minimum transmission time

Profile Model
Minimum transmission

time [s]

Smooth
trapezoidal

rigid 0.8794
small 0.9152
large 1.5603

Cubic
spline

rigid 1.6583
small 1.7562
large 2.2011

6. Conclusion

The problem of optimal path planning for a flexible manipulator has been studied by using the
direct process and HS meta-heuristic optimization method in the point to point case and the
open-loop mode. The maximum of dynamic load capacity and the minimum transmission time
as two criterions determining the efficiency of manipulators have been considered as objective
functions in path planning of end the effecter. Full dynamics of the manipulator has been studied
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by taking large deformation of the arms into account. By using smooth trapezoidal and cubic
Spline profiles as joint path profiles, the planning of the optimal path has changed to a nonlinear
optimization problem through the direct process. To solve the problem of nonlinear optimization,
HS efficient method has been used as being appropriate for optimization problems with multiple
dimensions and having a high speed of convergence. The proposed method is more effective
for path planning than indirect methods (optimal control theory). This is because there is no
need to linearize and simplify nonlinear equations of motion which enables the dynamics of the
system to be considered completely. The limitation of selecting appropriate weight functions
does not exist in the proposed method, and there is no need for suitable initial guess to get
faster convergence. To evaluate the effectiveness of the proposed method, optimal path planning
for a two-link flexible manipulator has been performed for a trajectory between two points given.
Also, comparison has been made between the results obtained for the arms of the rigid, small
deformation and large deformation models. The results prove that the proposed method has a
good compatibility with all models, and is also applicable to multi-link manipulators.
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The study presents results of experimental examination of a model representing a fragment
of an aircraft wing structure with the skin made of a glass fibre/epoxy composite. For
such a system, the deformation pattern has been found and the representative equilibrium
path determined. The finite element method has been used to develop the corresponding
numerical model, the correctness of which has been then verified by comparing the obtained
results with the course of the relevant experiment. Conformity of the results allowed one to
determine usefulness of the applied methods in the assessment of mechanical properties of
modified solutions involving integral skin stiffening elements.

Keywords: skin, loss of stability, finite element method, composite, equilibrium path

1. Introduction

Contemporary aircraft structures represent a group of devices that are, and, for many years
have been invariably expected to meet the highest requirements in the area of their properties,
fulfil exorbitant economical criteria and comply with particularly rigorous safety-related rules.
To meet the latter, design engineers are compelled to continuously improve the design processes
the fundamental portion of which is nowadays realised in the space of virtual objects by using
sophisticated numerical tools. Among a number of software types utilised commonly in vario-
us stages of designing and fabrication of new structures, a specially important role should be
attributed to programs based on the finite element method (FEM).
One of the problems related to application of such programs that, despite continuous progress

in the aircraft technology, still lacks the ultimate solution, consists in imperfections of the utilised
numerical models and the resulting divergences between the results obtained by means of them
and behaviour of actual objects (Ramm and Wall, 2004). While the general knowledge and
available databases containing results of experimental research for typical isotropic materials
used in the aviation industry, such as e.g. titanium and aluminium alloys, allow one to define
the above-mentioned models with sufficient precision, the structures based on composites of
various types, although utilised more and more frequently, are still particularly troublesome
objects to analyse (Seresta, 2007). It follows from the fact that results pertaining to experimental
studies on composite structures, especially those dealing with their behaviour under cyclic load
conditions and at occurrence of large deformations, are in general considered trade secrets of
aerospace corporations and are disclosed only in a fragmentary scope in commonly available
scientific publications.
A feature that is highly distinctive for aircraft structures in comparison with other groups

of thin-walled systems is the admissibility of occurrence of post-critical deformation in their
elements (Dow et al., 1954), provided that the related loss of stability has an elastic nature and
occurs locally within the area of skin segments limited by components of the skeleton (Taylor and
Eckford, 1968). The principle is used commonly with respect to metal structures (Niu, 1988).
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In the case of composite structures, the rule applicable for many years provided the obligatory
use of solutions making the occurrence of skin buckling impossible, e.g. by means of using
interlayers in the form of foamed plastics or cellular cores (Federal Aviation Administration,
2009). The above-mentioned rule in combination with the stiffness-based composite structure
designing criterion can be applied to light aircraft structures (gliders, light-sports aircraft), but
it must be considered inapplicable to extensive structures such as wings of large transportation
aeroplanes in which large deformations are inevitable. In the process of designing contemporary
transportation aircraft, in aspiration to minimise the overall mass of the structure, the use of
composite skins are becoming more and more popular among designers constructing load-bearing
demanding elements in the case of which a local stability loss is admissible. Examples of such
solutions can be found in such aeroplanes as American Boeing 787 and European Airbus 350. In
the case of the former, the main cause of delay in realisation of the project were problems with
finding an appropriate design solution for the composite bearing structure. The scale of research
projects necessary to realise undertakings of that scope can be partially illustrated by the input
provided by projects POSICOSS and COCOMAT financed within the European Commission
Framework Programme. However, there is always a serious fear that as a result of bending,
relative high stress gradients may appear in outer layers of the skin that in turn may become a
cause of its premature destruction (Arborcz, 1985; Nemeth, 2013).
Application of the above design principle involves therefore absolute necessity to perform

experiments aimed at precise determination of mechanical properties of individual components
of the structure in cyclic post-critical deformation conditions (Kopecki, 2019; Kopecki and Ma-
zurek, 2013). It should be noted at this point that the results obtained in the case of composites
may depend both on the skin thickness resulting from the number of fabric layers and the
manufacturing process, type and properties or components as well as and fibre orientation. In
view of multitude of such factors having the effect on the structure properties, the possibility to
generalise experimental results concerning mechanical properties of composites is very limited.
Regardless of the composite type, advisability to strive after limitation of magnitude of post-

critical deformations occurring in operating conditions seems to be obvious. Solutions aspiring to
obtain such a target include employment of integral stiffening elements of various types as well
as changing proportions and reducing dimensions of skin segments at risk of loosing stability.
Realisation of relevant experiments with the use of models representing selected variants of

solutions of that type can constitute a basis for development and making more specific numerical
models formulated in terms of the finite element method thanks to which it would be possible
to determine effects of a number of further modifications of the examined structures.

2. Purpose and scope of the research

Considerations presented in this study represent the first stage of a planned series of
experimental-numerical analyses of thin-walled composite aircraft structures. The research pro-
gram is aimed at determination of the effect of selected variants of integral skin stiffening
elements on the critical load value and post-critical deformation magnitude in combination
with mass analysis, the effect of which should be a structure with the most effective total
mass/durability ratio.
The research stage described in this paper involves realisation of an experiment with the

use of a model of a representative aircraft structure, and then the development of an adequate
numerical model of the structure the nonlinear analysis of which, carried out with the use of the
finite element method, would allow one to obtain a distribution of deformations corresponding
to actual ones both qualitatively and quantitatively.
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The subject of the analysis was a fragment of a monospar wing structure with a constant
chord along the whole span and the stiffened front torsion box (Fig. 1). The examined variant
constituted the simplest possible system of that type and lacked any integrated longitudinal
skin stiffening elements, playing the role of a reference structure for subsequent variants with
modified geometry and stiffness planned to be examined.

Fig. 1. An overall outline of the examined structure

The model was manufactured in the wet lay-up method and handmade formed in moulds.
The composite consisted of Interglass 02037 and 92110 glass fabrics and MGS L285/H286 epoxy
resin and was characterised by E11 = 22000MPa, E22 = 22000MPa, ν12 = 0.11, G12 = 4600
constants. The upper and lower wing surfaces were connected to the spruce box spar and plywood
web of 1mm thickness. Additionaly, the roots were reinforced by plywood ribs with joints. The
whole wing was manufactured from two halves attached together in mouldings and then cured
in the LPC process.

3. Experimental research

The skeleton portion of the model used in the experiment was made of plywood and wooden
slats with known mechanical parameters. The skin was an epoxy composite reinforced with glass
fibre (GFRP).
As the composite reinforcement, Interglass glass fibre fabrics were used with the weight ratios

of 50 g/m2 and 163 g/m2. The matrix was a permeating mix based on epoxy resin MGSL285.
The skin of the model in the torsion box zone was made as a laminar structure comprising three
layers of a symmetric fabric. The main directions of the composite ortotrophy were oriented at
the angle of 45 degrees with respect to the direction of the spar flanges. The remaining portion of
the structure contained two layers of the fabric (Fig. 2). Such a solution was aimed at protecting
the torsion box surface against the loss of stability and creation of conditions favourable to the
occurrence of post-critical deformations in the skin part between the spar and the trailing edge.
The reinforcement coefficient of the composite was 50% in mass. The “mother” specimen for
each composite type was fabricated in the same process, additionally. Analysis of the specimen
weight allowed one to calculate the reinforcement coefficient, knowing weight of the fabric prior
to fabrication.
In the course of experiment, the model was subjected to simultaneous bending and torsional

deflection (Fig. 3) on a specially constructed experimental set-up (Fig. 4). Influence of friction
in the bearing roller was neglected.
The load was applied gravitationally. In the course of the experiment, displacements of selec-

ted reference points were measured for subsequent stationary deformation states of the structure.
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Fig. 2. Schematic representation of lamination of the considered structure

Fig. 3. An outline of the model fastening and load application (TL)

Fig. 4. The research set-up

Fig. 5. (a) PONTOS measuring system; (b) selected reference points
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To measure the displacements, PONTOS measuring system by GOM Optical Measuring Techni-
ques was used (Fig. 5). As a result, a representative equilibrium path was obtained constituting
a relationship between the structure total torsion angle and the load value (Fig. 6).

Fig. 6. Model deformations determined by means of ATOS scanner; (a) upper skin, (b) lower skin

Moreover, for the target load value, the whole surface of the deformed model was scanned with
the use of ATOS scanner. As a result, the deformation fields was obtained (Fig. 6) constituting
the base for qualitative verification of the results obtained numerically.

4. Numerical analyses

During the computational stage of the study the necessary question to be answered was, with the
nature of deformations taken into account, the possibility of developing an adequate numerical
model of a composite structure with the use of commercially available software. The decisive
phase of the model creation stage is the use of an algorithm the purpose of which is to determine
properties of the laminate based on sets of constants corresponding to its individual layers. In
the case of MSC PATRAN/MARC software used in this study, any interference of the user to
the structure of the program is not possible.
A distinctive feature of composite structures making the development of their numerical

representation very difficult is their inhomogeneity resulting not only from conditions in which
individual layers are laminated but also from assembling operations, i.e. presence of local excesses
of resin and diversified thickness of bonded joints. Such factors can induce local skin stiffness
variations and have an effect on post-critical deformation patterns. Even small errors in selection
of geometric parameters for the numerical model, introducing definite deviations from actual
boundary conditions characterising a skin segment, generate significant errors in the course of
nonlinear analyses.
The fundamental relationship in the numerical problem determining quantitatively the link

between conditions of a structure and the load applied to it is the so-called equilibrium path
of the system in question constituting, in general, a hypersurface in the hyperspace of states
(Ramm, 1987). The relationship fulfils the matrix equation of residual forces (Felippa, 1976)

r(u, Λ) = 0 (4.1)

where u is the state vector containing components of displacements of nodes of the structure
corresponding to its current geometrical configuration, Λ is the control parameter corresponding
to the current load level, and r is the residual vector containing non-balanced force components
related to the current system deformation state. The set of control parameters can be represented
by a single parameter being a function of the load. Equation (4.1) takes then the form

r(u, λ) = 0 (4.2)

called the single-parameter equation of residual forces.
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The prediction-correction methods of determining the consecutive points of the equilibrium
path used in contemporary software routines contain also a correction phase based on the requ-
irement that the system satisfies an additional equation called the increment control equation
or the constraints equation (Bathe, 1996; Kopecki and Mazurek, 2014)

c(∆un,∆λn) = 0 (4.3)

where the increments

∆un = un+1 − un ∆λn = λn+1 − λn (4.4)

correspond to transition from the state n to the state n+ 1.
In view of the lack of possibility to represent equilibrium paths for systems with more than

2 degrees of freedom in a form of easily readable plots, in practice, for the purpose of comparison,
the so-called representative equilibrium paths are used which represent a functional relationship
between a selected parameter characterising deformation of the system and a single control pa-
rameter related to the applied load. Reliability of results obtained from FEM-based nonlinear
numerical analyses is usually accepted when a satisfactory convergence is found between two
representative equilibrium paths, namely the actual one determined in the course of an expe-
riment and that obtained numerically. It is also necessary to obtain convergence between the
forms of deformations following from calculations (Ramm and Wall, 2004) with the results of a
corresponding experiment. On the grounds of the solution uniqueness rule, according to which
a specific deformation pattern may correspond to one and only one stress distribution pattern,
the reliability can be then attributed also to the reduced stress distributions in the deformed
skin (Marcinowski, 1999).
As the nonlinear numerical analysis is an iterative process aimed at finding successive equili-

brium states, its correctness is to a large degree determined by correct choice of the prognostic
method, the correction strategy, and a number of control parameters. In the case described here,
the Newton-Raphson method has been used in combination with the Crisfield hyperspherical
correction strategy.
By contrast with numerical analyses where the goal is to obtain the number of finite elements

as high as possible, the use of an excessively dense grid of elements in nonlinear analyses leads
sometimes to faulty results with the calculation time becoming significantly longer. After a series
of numerical tests aimed at selection of a proper topology of the model, it has been decided to
use a model comprising 4838 bilinear, four-node shell elements. The necessity to employ such an
element resulted from the fact that other types available in the MSC MARC software library, to
which the properties of laminated composites could be assigned, do not offer the possibility to
reproduce geometrically complex objects, in view of the type and number of degrees of freedom.
Mechanical properties of the numerical model have been taken from the experimental data

set, as decribed in Section 3. Boundary conditions of the numerical model have been simulated
by fixed degrees of freedom in certain nodes of the root rib. Moreover, the loading has been
simulated by a relevant beam, as in the experimental setup (Fig. 7).
The first version of the model, reproducing faithfully geometry of the actual object, turned

out to lead to an incorrect form of post-critical deformations despite appropriate selection of the
set of nodes and correct application of the load (Fig. 8).
In the case of the obtained results, although the representative equilibrium path of the system

proved to be satisfactorily similar to this determined in the course of the experiment, it was no
longer possible to rely on the above-mentioned solution uniqueness rule.
Usually, the reasons of incorrect determination of deformation pattern corresponding to the

minimum energy states can be usually sought in excessively idealised reproduction of geometrical
parameters of the structure. The encountered problem can be attributed to the above-discussed
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Fig. 7. Boundary conditions and load application of the numerical model

Fig. 8. Resultant displacement distribution in the first version of the numerical model found to be
inconsistent with real behaviour (in mm)

Fig. 9. Resultant displacement distribution in the corrected version of the model - the upper surface
(in mm)

issue of geometrical inhomogeneity of the real object. In the analysed case, it turned out that
the source of error consisted in too low stiffness of the rear fragments of the skin located in
the vicinity of the spar. In the actual object, the feature resulting in additional stiffening of
this fragment of the structure is the epoxy resin joint connecting the spar with the skin and
contributing to a local increase in skin thickness.
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Fig. 10. Displacements in the direction normal to the surface – the skin area between the girder and the
trailing edge (in mm)

Fig. 11. Resultant displacement distribution in the corrected version of the model - the lower surface
(in mm)

Fig. 12. A comparison of the representative equilibrium paths
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After application of appropriate corrections, the displacement distribution satisfactorily con-
sistent with the actual one has been finally obtained (Fig. 9).
At the same time, a satisfactory conformity has been observed of the equilibrium path obta-

ined numerically with that determined in the course of the experiment (Fig. 12). The difference
in the representative parameter value has not exceed 23%. Therefore, on the grounds of the rule
of uniqueness of the solutions, the calculated stress distributions can be considered sufficiently
reliable (Fig. 13).

Fig. 13. Equivalent stress distributions according to σmax hypothesis (in MPa)

5. Summary and conclusions

The results presented above and observations based on them should be considered in the context
of a wider research program aimed at determination of properties of a series of aircraft compo-
site skins subjected to post-critical deformation under permissible load conditions. A necessary
complement to the experimental phase allowing one to obtain information about stress distri-
bution patterns in the examined skins consists in the development of appropriate and effective
FEM-based calculation models.
The satisfactory similarity found in this study between the deformations patterns and the

courses of representative equilibrium paths obtained from the experiment on one hand and nu-
merically on the other allows one to apply the rule of uniqueness of the solutions and consider the
obtained stress distributions reliable. This way it can be stated that the properties of composites
attributed to finite elements by PATRAN software, determined by the program based on data
for individual layers of the composite, may be considered correct and corresponding to actual
characteristics. However, it should be emphasised that in the case of occurrence of any defects
in the real structure that may arise in the process of lamination, it is necessary to introduce
an appropriate correction in the numerical model accounting for the effect of such flaws on the
local stiffness of the skin.
Once a verified reference numerical model is at disposal, it is possible to apply a methodolo-

gy constituting in introducing design changes to it by employing different stiffening variants. A
criterion for selection of the target solution can be the highest possible value of the critical load
or the lowest possible magnitude of critical deformation adopted as the representative one. The
last step must consist in performing an experiment with the use of a model corresponding to the
selected variant. This follows from the absolute necessity to verify the numerical model. Howe-
ver, this way of conduct allows one to eliminate the experimental phase involving intermediate
solutions identified as failing to meet the selected criteria.
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The quasi-static thermal stress state within the linear uncoupled elasticity is studied. The
calculations were performed using the finite element method (MSC.Patran/MSC.Nastran).
In order to examine smooth stress changes in a brake disk during braking, based on the
temperature fields at particular time steps, additionally the script using Python program-
ming language was developed. The numerical three-dimensional FE model of the brake disk
for calculation of the transient temperature field was adopted from the previous author’s
study. A single braking process at linear deceleration and constant contact pressure was
simulated. The evolutions and the contours of the components of the stress tensor as well as
the equivalent Huber-Mises stress were examined. The most important aspects of the stress
state during braking were discussed.

Keywords: frictional heating, temperature, thermal stresses, pad-disk brake system, finite
element method

Nomenclature

B,D,K – matrix of differential operators, elasticity matrix and stiffness matrix
c, h – specific heat [J/(kgK)] and heat transfer coefficient [W/(m2K)]
e – dilatation
E – Young’s modulus [MPa]
f – coefficient of friction
F – nodal force vector due to initial strain
J2 – second invariant of the deviatoric stress tensor [MPa2]
k,K – thermal diffusivity [m2/s] and thermal conductivity [W/(mK)]
p0 – contact pressure [MPa]
q – heat flux density [W/m2]
r, z – radial and axial coordinate, respectively [m]
r,R – inner and outer radius, respectively [m]
t, ts – time and braking time [s]
T, Ta, T0 – temperature, ambient temperature and initial temperature [◦C]
T – temperature vector
u – column vector including components of displacements of the point
ur, uz – displacement components in radial r and axial z direction, respectively [m]

Greek symbols

αT – thermal expansion coefficient [K−1]
Γ – area of the friction surface on the disk (within the pad)
δ – thickness [m]
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ε – strain
εrr, εθθ, εzz – shear strain components in cylindrical coordinates
εT – column vector of initial strain due to non-uniform temperature distributions
η – heat partition ratio
θ – circumferential coordinate
θ0 – cover angle of the pad [deg]
λ, µ – Lamé’s first parameter and the shear modulus (Lamé’s second parameter)
ν – Poisson’s ratio
ρ – density [kg/m3]
σ – stress vector
σrθ, σθz, σrz – shear stress components in cylindrical coordinates [MPa]
σr, σθ, σz – normal stress components in cylindrical coordinates [MPa]
σHM – equivalent Huber-Mises stress, σHM =

√
3J2 [MPa]

ω, ω0 – relative and initial relative angular slip speed, respectively [s−1]
Ωi – areas on the disk, i = 1, 2, 3, 4

Subscripts
d – disk, p – pad

1. Introduction

Temperature due to friction is one of the utmost importance factors affecting performance of
brake systems. A review of studies on the methods of numerical evaluation of temperature
field in a pad-disk brake system encloses the work by Yevtushenko and Grzes (2010). In that
paper, the drawn conclusions indicated that numerical analysis by using FEM most frequently
refers to two different models. The first of them is an axisymmetric (2D) model, allowing, in
particular, determination of the average temperature on the friction surface of the disk (Talati
and Jalalifar, 2008; 2009; Grześ, 2010; Yevtushenko and Grzes, 2012). The advantage of using two
dimensionality is the ability of immediate evaluation of the average (axisymmetric) temperature
field and the corresponding thermal stresses. The drawback of the model is lack of possibility of
accounting for the oscillating behavior of the contact temperature change of the brake disk during
operation, which means impossibility of calculation of its maximum value. In order to determine
the highest value attained, spatial FE models of the brake disk were developed (Adamowicz and
Grzes, 2011a,b, 2013).
Non-uniformity of the time-spatial temperature field induces thermal stresses due to thermal

expansion (Ranaker, 2001). It may, in turn, initiate micro-cracks on the friction surface of the
disk, their growth and the disabling of proper and safe exploitation of a disk brake system
(Mackin et al., 2002).
A review of studies on FE modeling of thermal stresses in disk brakes and clutches was given

by Yevtushenko et al. (2014). It was shown that the vast majority of papers was devoted to
the equivalent stress (Huber-Mises) only. However, the application of some fracture criterions
enforces estimation of the evolution and spatial distribution of each component of the stress
tensor in the disc brake (Norlander, 2005).
The axisymmetric quasi-static thermal stress state induced in the disk was studied using the

finite element method in the first part of that research (Adamowicz, 2015). Accordingly, some
papers on the development of 3D models of calculation of thermal stresses will be enclosed in
this study.
Thermal fatigue fracture mechanisms of brake disks using FEM were studied by Gao et al.

(2007). Temperature and thermal stresses based on the thermomechanical 3D contact model of
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a pad-disk brake system were calculated using the FE based software ANSYS 8.1. The authors
discussed in detail the correlations between the obtained results and the outcomes of other
studies on FE calculations of thermal stresses in disk brakes. An attempt was made to identify
the cause of the thermal fatigue. Temperature distributions on the contact surface of the disk
at specific time steps were shown. Radial, circumferential and equivalent Huber-Mises stresses
versus braking time were presented and analyzed.
Other FE calculations for a brake disk of a high speed rail (TGV) were carried out by

Tirovic (1998). Shape optimization preventing from excessive deformations was conducted. A
linear elastic range of material behavior and temperature-dependent properties were imposed in
the computations. A three-dimensional section (7.5◦) of a ventilated type of a disk brake was
analyzed. Spatial temperature, displacement, and equivalent Huber-Mises stress distributions
for one specific point time were shown.
A coupled thermoelasticity problem for a pad-disk brake system during multiple braking

at a constant deceleration was considered by Choi and Lee (2004). Normal stress components
were determined. The influence of physical (specific heat, thermal expansion coefficient, thermal
conductivity) and mechanical properties (Young’s modulus) of materials on the temperature
field and the real contact area were studied. It was found that the maximum value among the
stress components was reached for circumferential stress which increased with temperature and
the number of brake applications.
The problem of thermal cracking of cast-iron disks of trucks was studied by Bagnoli et

al. (2009). Based on macro-fractography, optical and scanning electron microscopes, several
radial cracks were identified. In order to eliminate one of the source of cracking originated from
material defects, measurements of chemical composition, structure and hardness were made.
Further numerical calculations using the finite element method also revealed a relatively high
temperature and the equivalent Huber-Mises stress. It was established that the dominant factor
leading to the propagation of radial macro-cracks in the heating area of semi-elliptic shape,
which grew from the contact surface into the disk, was the thermal fatigue mechanism.
Thermal stresses in a ventilated brake disk induced at a uniform and non-uniform distribution

of the contact pressure were analyzed by Kim et al. (2008). The contact three-dimensional
computational model incorporating only mechanical interactions was developed to calculate
contact pressure distributions. Further analysis of the stress field revealed that the highest
values of the equivalent stress occurring for the case of the nonuniform pressure distribution was
attained in the contact region. At the uniform pressure distribution, the maximum equivalent
stresses were slightly higher (about 3%) and were reached in the contact surface near the inner
cylindrical surface of the disk.
Spatial FE models of three different types of ventilated and one solid disks were developed

to analyze the stress field during braking (Yildiz and Duzgun, 2010). For each of the studied
geometrical types of the disk, the influence of variable loading on the brake pads was also
analyzed. The stresses resulted from nonuniform temperature distribution were not taken into
account. In order to minimize the resulting stress, modifications of the loading of the pad were
made.
Temperature distributions, equivalent Huber-Mises stresses and strains in a mine hoist brake

disc were studied by Scieszka and Zolnierz (2014). The calculations were carried out both for a
solid and divided disc (2, 4 and 8 sections) using a 3D thermomechanical finite element contact
model. The model was validated by infrared measurements of the temperature field in real
industrial conditions.
In this paper FE analysis of thermal stresses induced in a brake disk using fully three-

-dimensional model is carried out. The emphasis is placed on comprehensive examination of
spatial distributions of each component of the stress tensor as well as their changes throughout
the entire braking process. In order to simulate nonuniform heating of the rubbing path of the
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disk due to the fact that the cover angle of the pad is smaller than 2π, an approach to program
the boundary conditions has been adopted from the previous authors’ study (Yevtushenko and
Grzes, 2011). Quasi-static thermal stresses are determined based on the computed transient
temperature fields at the specified time moments to obtain their smooth changes during braking.
The script code has been written using Python programming language and the input files to the
FE based software (MSC.Nastran) have been generated. Relevant conclusions regarding thermal
fatigue cracking are drawn and discussed.

2. Statement of the problem

A scheme of a pad-disk system given in cylindrical coordinates r, θ, z is shown in Fig. 1. All of
the values and parameters, which refer to the pad and the disk in the following considerations
will have subscripts p and d, respectively. It is assumed that:

Fig. 1. A schematic diagram of a pad-disc brake system with boundary conditions and a section of the
3D FE mesh

• initially (t = 0), the pad is pressed to the rubbing path of the disk within the region
Γ = {rp ¬ r ¬ Rp, 0 ¬ θ ¬ θ0, z = 0}. The distribution of pressure in the contact area Γ
is uniform and equals p0;

• angular speed of the disk decreases linearly from the speed of ω0 at the initial time moment
t = 0 to standstill at t = ts

ω(t) = ω0(1− t/ts) 0 ¬ t ¬ ts (2.1)

• due to friction, heat generation takes place in the contact region Γ . The heat flux densities
directed along the normal into the pad and the disk (within Γ ) are equal to qp(r, t) =
(1− η)fω(t)rp0 and qd(r, t) = ηfω(t)rp0, respectively. Thus, the sum of these densities is
equal to the specific power of friction q(r, t) = fω(t)rp0, rp ¬ r ¬ Rp, 0 ¬ t ¬ ts (Ling,
1959);

• influence of the pad on temperature of the disk is incorporated through the heat partition
ratio η, while calculating this parameter in pad-disk brake systems, Charron’s formula can
be used (Charron, 1943)

η =
√
Kdρdcd√

Kdρdcd +
√
Kpρpcp

(2.2)
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• during single braking, the heat transfer through convection and radiation on the free
surfaces of the disk is negligibly small (Adamowicz and Grzes, 2011a,b). Therefore, in this
study, convective cooling and thermal radiation was omitted;

• due to geometric and loading symmetry of the problem about the mid-plane of the disk,
the computational region is restricted to the half δd of the disk thickness;

• materials of the pad and the disk are homogeneous and isotropic. Their physical and
mechanical properties are temperature independent.

On these assumptions, the distribution of the transient 3D temperature field T (r, θ, z, t) in
the disk was obtained on the basis of the FE solution to the spatial boundary heat conduction
problem of the parabolic type in the paper by Adamowicz and Grzes (2013). The objective of
that study was to evaluate the corresponding components of thermal stress σij, i, j = r, θ, z in
the disk volume from the solution to Navier’s equations for uncoupled thermoelasticity given in
the cylindrical coordinate system (Noda et al., 2003)

(λ+ 2µ)
∂e

∂r
− 2µ

(1
r

∂ωz
∂θ
− ∂ωθ

∂z

)
= αT

∂T

∂r

(λ+ 2µ)
1
r

∂e

∂θ
− 2µ

(∂ωr
∂z
− ∂ωz

∂r

)
= αT

1
r

∂T

∂θ

(λ+ 2µ)
∂e

∂z
− 2µ

r

(∂(rωθ)
∂r

− ∂ωr
∂θ

)
= αT

∂T

∂z

(2.3)

where

e ≡ εrr + εθθ + εzz =
∂ur
∂r
+
ur
r
+
1
r

∂uθ
∂θ
+
∂uz
∂r

ωr =
1
2

(1
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∂uz
∂θ
− ∂uθ

∂z

)
ωθ =

1
2

(∂ur
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− ∂uz

∂r

)
ωz =

1
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(∂(ruθ)
∂r

− ∂ur
∂θ

)

λ =
νE

(1 + ν)(1− 2ν) µ =
E

2(1 + ν)
αT =

αE

1− 2ν

(2.4)

A system of partial differential equations (2.3) and (2.4) will be solved for the following
homogeneous (tractions free) boundary conditions (Fig. 1):
— on the surface of friction (the working surface) Γ ∪Ω1 = {rd ¬ r ¬ Rd, 0 ¬ θ ¬ 2π, z = 0}

σz = σrz = σzθ = 0 (2.5)

— on the outer cylindrical surface of the disk Ω2 = {r = Rd, 0 ¬ θ ¬ 2π, 0 ¬ z ¬ δd}
σr = σrθ = σrz = 0 (2.6)

— on the inner cylindrical surface of the disk Ω3 = {r = rd, 0 ¬ θ ¬ 2π, 0 ¬ z ¬ δd}
σr = σrθ = σrz = 0 (2.7)

— on the plane of symmetry Ω4 = {rd ¬ r ¬ Rd, 0 ¬ θ ¬ 2π, z = −δd}
uz = 0 σrz = σzθ = 0 (2.8)

where (Noda et al., 2003)

σii = 2µεii + λe− αTT, σij = 2µεij i, j = r, θ, z i 6= j
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∂ur
∂r

εθθ =
ur
r
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1
r

∂uθ
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2

(∂uθ
∂z
+
1
r

∂uz
∂θ

)
(2.9)

The solution to the boundary-value problem of quasi-static thermoelasticity, Eqs. (2.3) and
(2.9)-(2.12) has been obtained using the finite element method.
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3. FE discretization

A general FE procedure to obtain the solution to the boundary-value heat conduction problem
under consideration was presented by Adamowicz and Grzes (2013). Therefore, below we shall
present in general the form of the computational scheme of the solution by means of FEM for
the corresponding problem of thermoelasticity.
Taking into account formula (2.4)3, relationships between stress and strain for Eqs. (2.9),

may be written in the following matrix notation (Huebner and Thornton, 1982)

σ = DBu−DεT (3.1)

where

D =
λ

a




1 a a 0 0 0
a 1 a 0 0 0
a a 1 0 0 0
0 0 0 b 0 0
0 0 0 0 b 0
0 0 0 0 0 b




B =




∂/∂r 0 0
0 ∂/∂z 0
r−1 0 r−1∂/∂θ
∂/∂z ∂/∂r 0
0 r−1∂/∂θ ∂/∂z

r−1∂/∂θ 0 ∂/∂r − r−1




σ = [σr, σz, σθ, σrz, σzθ, σrθ]T u = [ur, uz, uθ],T εT = αTT [1, 1, 1, 0, 0, 0],T

(3.2)

and

a =
ν

1− ν b =
1− 2ν
2(1 − ν) (3.3)

and T is the temperature increase relative to the reference temperature T0 for which thermal
strains are zero. Taking into account Eqs. (2.4) and using the variational principle of minimiza-
tion of the functional of total potential energy, the boundary problem, Eqs. (2.3) and (2.5)-(2.8),
leads to the system of linear algebraic equations (Zienkiewicz et al., 2005)

Ku = F (3.4)

where K is the stiffness matrix, F – nodal force vector due to initial strain.
Thermal FE analysis contrary to the foregoing structural analysis is a scalar field problem.

The temperature field of the FE model is continuous within elements and across interelement
boundaries. Temperature gradients, similarly to strains in the stress analysis, are typically not
interelement-continuous (Cook, 1995). Therefore, the mesh adequate for thermal analysis might
not be adequate for stress analysis unless sufficient refinement of the grid or higher order elements
are imposed. In this study, to assure appropriate accuracy of the solution using the same mesh
for two studied problems, a relatively fine mesh using ‘CHEXA8’ type eight-node finite elements
has been generated. The total overall mesh consists of 86040 elements and 102960 nodes (Fig. 1).
In the preliminary analysis, two FE meshes have been tested. Robust thermal load trans-

ferred through the pad-disk interface during a short time results in a high axial component of
the temperature gradient. Thus, to assure precise and reliable outcomes, a reasonably small di-
mension of the element in the axial direction near the friction surface (plane) ought to be used.
However, an increase in the overall total number of elements of the model obviously requires
larger computational resources and lengthens the time of computations. Accordingly, different
meshes have been constructed and the differences between the obtained temperature changes on
the contact surface during braking have been analyzed. Figure 2 shows the results determined
using two grids consisting of 360 and 1080 elements in the circumferential direction. The number
of the elements in the radial direction is chosen so as to maintain the square shape of an element.
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As can be seen, an increase in the number of elements does not cause significant temperature
differences for the grid, therefore, its smaller number is chosen.
However, the FE based software chosen (MSC.Patran/MSC.Nastran, 2002) allowed one to

conduct transient thermal analysis, it did not provide a possibility to automatically calculate
stress changes based on the previously calculated temperature fields. In order to obtain stress
distribution at the specified time step of the braking process, individual static stress analysis
for each time step is necessary. Aiming at obtaining smooth changes of the stress fields, extre-
mely large amount of data ought to be processed. Thus, the original code consistent with the
commands used in MSC.Patran to automatize the calculations has been developed using Py-
thon programming language. The computations have been performed without the interference
of MSC.Patran at the pre-processing stage. Finished input files to the FE solver (MSC.Nastran)
with temperature fields at specific time steps have been generated based on the reports derived
from thermal analysis.

4. Numerical analysis

Calculations are made for a metal-ceramic (FMC-11) pad and a cast iron (ChNMKh) disk (Chi-
chinadze, 1967). Dimensions, properties of the components of the brake system and operating
parameters of the process are listed in Table 1.

Table 1. Dimensions (Adamowicz and Grzes, 2011b), properties of materials (Yildiz and Du-
zgun, 2010) of the pad-disk system and operating parameters

Parameter Disk (cast iron ChNMKh) Pad (FMC-11)

inner radius, r [mm] 66 76.5
outer radius, R [mm] 113.5
thickness, δ [mm] 5.5 10
pad arc length, θ0 [deg] 64.5
thermal conductivity, K [W/(mK)] 51 34.3
density, ρ [kg/m3] 7100 4700
thermal diffusivity, k · 105 [m2/s] 1.44 1.46
Young’s modulus, E [GPa] 99.97
Poisson’s ratio, ν [–] 0.29
thermal expansion coefficient, αT [K−1] 1.08 · 10−5
initial angular speed of the disk, ω0 [s−1] 88.464
braking time, ts [s] 3.96
contact pressure, p0 [MPa] 1.47
coefficient of friction, f 0.5
initial temperature, T0 [◦C] 20
ambient temperature, Ta [◦C] 20

The FE model of the brake disk is shown in Fig. 1. The mesh shown has been generated
automatically by the code developed to evaluate boundary conditions prescribed on the rubbing
path of the disk. As can be seen, the established time step for FE analysis of temperatures
(Figs. 2a and 3a) as well as thermal stress components (Figs. 2bcd and 3bcd) give sufficient
smoothness of their changes during the entire braking process. Therefore, neither the mesh
refinement nor time step reduction has been necessary.
The time profiles of temperature in Fig. 2a as well as the non-zero components of the stress

tensor in Figs. 2b,c and Huber-Mises stress in Fig. 2d are presented for four specific radial
locations on the friction surface (z = 0) of the disk at θ = 0: rd = 66mm – inner radius of
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Fig. 2. Temperature (a), radial stress (b), circumferential stress (c) and equivalent Huber-Mises
stress (d) changes for fixed locations on the contact surface of the disc r ∈ {rd, rp, rm, Rd = Rp}, θ = 0,

z = 0 during braking

the disk, rp = 76.5mm – inner radius of the pad, rm = 95mm – mean radius of the pad, and
Rp = Rd = 113.5mm – outer radius of the pad and the disk.

Since the pad covers the rubbing path of the disk partly, as expected and seen in Fig. 2a,
the temperature evolutions on the contact surface for fixed positions reveal fluctuations of the
temperature. Only the temperature change on the inner edge of the disk varies uniformly. The
average values of temperature within the rubbing path increase gradually until the maximum
temperature is reached, then its slight decrease takes place. The amplitude of temperature
variation during one disk revolution is attained at the beginning of the process ∆T = 37.6◦C.
The maximum temperature of the entire process occurs on the outer edge of the disk and equals
T = 115.1◦C (t = 2.728 s).
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The evolutions of thermal stresses corresponding with the temporal temperature profiles
from Fig. 2a, are shown in Figs. 2bcd.
The radial stress σr is negative during almost the entire period of braking, and only while

approaching the stop moment, the stress changes sign to positive (Fig. 2b). The highest value
σr = −57.80MPa is reached for the mean radius rm = 95mm at t = 0.466 s. According to
boundary conditions (2.7), the radial stress σr on the inner radius of the disk (r = 66mm)
equals zero. The non-zero values of σr at r = 113.5mm stem from deformations of the outer
surface of the disk.
The circumferential stress σθ is negative on the outer edge (r = 113.5mm) and inside

(r = 95mm) the area of heating (Fig. 2c). While approaching the inner edge r = 76.5mm
of this area in a certain moment of time, there is a change in sign of this stress to positive.
Note that the lack of the change in the sign in the article by Gao et al. (2007) was explained
by insufficient decrease in temperature of the disk. In contrast to the radial stress, the cir-
cumferential stress reaches significant (≈ 40MPa) positive (tensile) values on the inner radius
r = 66mm of the disk. The maximum absolute values of the radial and circumferential stresses
are approximately the same (≈ 60MPa).

Fig. 3. Temperature (a), radial stress (b), circumferential stress (c) and equivalent Huber-Mises
stress (d) distributions in the radial direction on the contact surface of disc distributions, rd ¬ r ¬ Rd,

θ = 0, z = 0
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Fig. 4. Equivalent Huber-Mises stress contours on the contact surface of the disc z = 0 at specific time
moments during braking: t = 0.084 s, 0.232 s, 0.988 s, 2.018 s, 2.982 s and 3.96 s

The Huber-Mises stress σHM rises rapidly at the beginning of the process and fluctuates
according to rotations of the disk/wheel (Fig. 2d). The heating (the pad covers the considered
node) and cooling (the pad out of the considered node) periods may be distinguished similarly to
the time profiles of temperature from Fig. 2a. Out of the rubbing path but on the friction surface
(66mm¬ r ¬76.5mm) that effect weakens. An interesting fact is that while the average values
of the stress σHM on the rubbing path decrease after reaching the maximum value at t ≈ 0.5 s,
the average values σHM on the inner radius of the disk increase steadily almost to standstill.
The maximum value σHM ≈ 60MPa on the friction surface is reached at r = 95mm and the
time moment t ≈ 0.5 s. Comparable qualitative results, namely the evolutions of stresses on the
friction surface and the location of the maximum value, are obtained for the thermomechanical
contact FE model of the pad-disk brake system analyzed by Gao et al. (2007). However, the stress
near the inner radius of the disk, unlike the considered FE model of the brake disk is relatively
insignificant. This, among other things (e.g. contact pressure, properties of materials, operating
parameters) may be attributed to different inner radii of the disk, since other dimensions of the
pad and the disk are similar (Fig. 3a).
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Fig. 5. Equivalent Huber-Mises stress contours in the cross-section (rz plane) of the disc at specific time
moments during braking: t = 0.084 s, 0.232 s, 0.988 s, 2.018 s, 2.982 s and 3.96 s

Temperature distributions and thermal stresses on the friction surface of the disk in the
radial direction at selected time moments (t = 0.084 s, 0.232 s, 0.988 s, 2.018 s, 2.982 s, 3.96 s) are
shown in Fig. 3. Since the relative sliding speed of the pad and disk varies with distance from
the axis of revolution z, the heat flux density applied on the contact surface q = fV p affects the
temperature distribution in the radial direction.

The distributions of stress component σr in radial direction r for the abovementioned time
moments are shown in Fig. 3b. According to the imposed boundary conditions at the outer,
Eq. (2.6), and inner, Eq. (2.7). cylindrical surface of the disk, the computed radial stresses
should be zero. Some inconsistencies appear only on the outer edge. This is due to the software
which does not use the coordinate system attached to normal directions of a deformed surface.
Thus. the effect is noticeable for large stresses and deformations (from the beginning to the half
of the braking process, Fig. 2b). As expected, outside these boundaries the distribution is in
approximate agreement with the thermal load expressed by the product fV p. Additionally, it
should be noted that the radial stress except the time of standstill is compressive.

In the similar way as for the radial stress distribution (within the range of the rubbing path
76.5mm¬ r ¬113.5mm), circumferential stresses in the radial direction reflect the influence of
the thermal load on the friction surface of the disk manifested by a higher value of stress for
a larger distance from the axis of revolution z (Fig. 3c). The circumferential stresses depicted,
however, in contrast to the radial stresses (Fig. 3b) for the area free from heating on the contact
surface are tensile and slightly lower than the highest compressive circumferential stresses (near
the outer disk edge).

The distribution of equivalent Huber-Mises stress in the radial direction for several time
moments are shown in Fig. 3d. The distribution for each time step reveals a minimum near the
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internal edge of the contact region. The location of the minimum slightly moves in the direction
of the outer edge of the disk after reaching a half of the braking time.
Huber-Mises stress contours on the friction surface of the disk at certain time moments

(t = 0.084 s, 0.232 s, 0.988 s, 2.018 s, 2.982 s, 3.96 s) are depicted in Fig. 4. Concentration of
the stresses follows the motion of the heating area (pad) which is particularly evident at the
beginning of the process. The distribution of σHM equalizes in the circumferential direction after
about 3 s.
Distributions of the Huber-Mises stress in the rz plane at selected time moments (t = 0.084 s,

0.232 s, 0.988 s, 2.018 s, 2.982 s, 3.96 s) are shown in Fig. 5. As can be seen, the highest values of
the equivalent stress occur on the friction surface z = 0. Accordingly, these values are consistent
with the results shown in Fig. 2d (the maximum stress is reached at r = 95mm and t ≈ 0.5 s.
We can see also that some abrupt changes in the contour directions would suggest a slight mesh
refinement in these areas.

5. Conclusions

The three-dimensional quasi-static thermal stresses in the brake disk using the finite element
method are evaluated. Based on the obtained results general conclusions about the usefulness of
the developed computational 3D FE model are drawn. This approach allows correct identification
of the most strenuous disk areas. It is proved that these are: the region between the average and
the outer radius of the rubbing path at the beginning of braking and the inner radius of the disk
at the end of braking. Unlike the axisymmetric models, the developed spatial computational
model provides valid and useful information about the stress state not only for one cycle of
braking, but also distinguishes the phases of each disk rotation against the stationary pads.
This may be suitable for predicting fatigue cracking processes occurring near in the zone near
the contact surface of the brake disk. The periodic heating and cooling of the surface layer of the
disk results in cyclic changes in the thermal stress with an amplitude of about 40MPa, which
gives the basis for the use of fatigue cracking criteria. It may be therefore established that the
full thermal and mechanical stress state can only be given using a three-dimensional model.
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The lifting capacity of a crawler crane is limited by its stability and structural strength. This
paper analyzes the stability factor by calculating tipping loads at various load radii for a
particular boom length. It shows that the tipping load decreases with an increase in the load
radius. A new structural frame is proposed to extend out the superstructure counterweight
of the crane. With such a proposed arrangement, it is shown that the lifting capacity of the
crane, limited by stability, increases. Static structural analysis of the proposed structural
frame is performed using ANSYS workbench software.

Keywords: crawler crane, stability, tipping load, lifting capacity

1. Introduction

The requirement for lifting in the construction industry is ever increasing. Crane manufacturers
are constantly working on at achieving new heights in the lifting industry. Although higher
capacity cranes are available, capacity enhancement of the existing cranes especially at longer
radii will reduce the dependency on higher capacity cranes, which in turn will reduce costs of
project construction. This will also cut down the capital investment of construction companies
by avoiding the necessity of purchasing higher capacity cranes and, thereby, having an option
to invest in other areas.
The load lifting capacity of a crawler crane is determined by the crane stability and its

structural strength. There have been previous investigations on the tip over stability of the
cranes and on the crane dynamics. Rauch et al. (2013) investigated the tip over stability analysis
of mobile boom cranes with swinging payloads and presented the process for conducting stability
analysis. Klinger (2014) studied the failure of cranes attributable to wind induced vibrations of
tension bars leading to fatigue fractures. Wang et al. (2015) investigated stability of geometrically
nonlinear slender frame structures of crawler cranes. Trąbka (2014) analyzed the influence of
change in the number of flexible structural components of telescopic cranes. Savkovic et al.
(2014) studied the stress distribution and deformation in the contact zone between segments of
the telescopic boom of a hydraulic truck crane. Kilicslan et al. (1999) determined the maximum
possible payload for a mobile crane that was kept in a fixed position by stabilizing arms while
transferring the payload. Towarek (1998) studied dynamic stability of a boom crane influenced
by flexible soil foundation. Chin et al. (2001) investigated effects of platform motion on the
dynamic stability of a boom crane. Research studies on dynamic responses of a crane during
various motions were demonstrated by Posiadała et al. (1990, 1991), Posiadała (1997), Sun and
Kleeberger et al. (2003), Sun et al. (2005), Sun and Liu (2006), Jerman et al. (2004). However,
it was found that the research study in the area of improving the lifting capacity of cranes had
not developed appreciably.
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In this paper, an effort is made to improve the lifting capacity of a crawler crane limited by
stability conditions. The stability analysis of an 80MT crawler crane with a 18m lattice boom
is carried out to find out the standing moment of the crane. The proposed structural frame
attached to the crane superstructure is modeled to support the counterweight, which can be
extended or retracted. The new lifting capacity of the crane with the extended counterweight is
calculated, and static structural analysis is done for the proposed structural frame using ANSYS
workbench software.

2. Design aspects

2.1. Stability calculations

A three dimensional model of an 80 MT Demag CC280 crawler crane is made using modeling
software ProE as depicted in Fig. 1. To do this, the field work has been carried out to collect the
dimensional data of major structural parts of the machine and two dimensional drawings have
been made using Autodesk Autocad software.

Fig. 1. 3D model of 80MT Demag CC 280 crawler crane

The predominant factor controlling load ratings for cranes is stability against tipping. The
tipping load is the hook load at a specified radius about a line called the tipping fulcrum, which
causes the crane to tip. A crane will tip when the overturning moment (moment of the load
and boom about the tipping fulcrum) becomes close to or equal to the crane resisting moment
(moment of the machine weight about the tipping fulcrum). The crane rating is based on taking
the percentage of the tipping load. As per standard ASME (B30.5, 2011), the crawler crane load
rating is 75 percent of the tipping load.
The crawler tracks are loose cast steel and their purpose is to provide runways for the track

rollers and distribute the machine weight and load to the supporting surfaces. The track rollers
define the position of the side fulcrum. When operating over the front and rear, the tipping
fulcrum is located on the tilting edges defined by the connecting lines between the front and
rear driving or idler sprockets. The sideways tilting edges are the connecting lines between the
outer rollers. For calculation of 360◦ crane working operation, the tilting fulcrum is considered to
be on the tipping circle having radius of the shortest distance between the crane slewing centre
and various tipping edges.
The weight and centre of gravity locations of various crane components are obtained from

the 3D model of the crane. The tilting edges and tipping circle of the crane are obtained as
shown in Fig. 2.
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Fig. 2. Tipping edges and tipping circle of the crane – plan view

The selected crane can be configured with a boom length ranging from the minimum of 9m
to the maximum 54m. For performing stability analysis and considering the complexity of the
larger boom, a boom length of 18m is selected, which is two times basic boom length. Crane
standing moments and stability load ratings are calculated at seven different load radii (R) using
the weights of crane parts and its centre of gravity (C.G.) locations as shown in Fig. 3.

Fig. 3. Weights and centre of gravity (C.G.) locations of various crane parts

Standing moment (MCR [kNm]) of the crane is calculated from the following formula

MCR =WCRDCR +WCWTDCWT +WAFDAF +WBMDBM (2.1)

where WCR is the weight of the crane superstructure and carbody, DCR – distance between
the tipping fulcrum and C.G. of the crane superstructure and carbody, WCWT – weight of the
counterweight, DCWT – distance between the tipping fulcrum and C.G. of the counterweight,
WAF – weight of the A-frame, DAF – distance between the tipping fulcrum and C.G. of A-frame,
WBM – weight of the boom, DBM – distance between the tipping fulcrum and C.G. of the boom.
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The distance (DASM [m]) between the tipping fulcrum and C.G. of the total crane assembly
is obtained from

DASM =
MCR
WASM

(2.2)

where WASM denotes the weight of the total crane assembly.
The tipping load (TL [kN]) of the crane is

TL =
MCR
DP

(2.3)

where DP is the distance between the tipping fulcrum and Hook load centre.
The rated load (P [kN]) limited by stability of the crane is obtained from

P = 75%TL (2.4)

The calculated values of the tipping load (TL) and rated load (P ) are shown in Table 1.

Table 1. Tipping and rated loads of the crane in the red arrangement

Case Unit 1 2 3 4 5 6 7
Boom length m 18 18 18 18 18 18 18
Load radius (R) m 4 5 7 9 11 14 16

A
A
A

Crane super-
structure and
carbody

WCR kN 355.5 355.5 355.5 355.5 355.5 355.5 355.5

DCR m 2.529 2.529 2.529 2.529 2.529 2.529 2.529

Counter- WCWT kN 208.3 208.3 208.3 208.3 208.3 208.3 208.3
weight DCWT m 5.712 5.712 5.712 5.712 5.712 5.712 5.712

A-frame
WAF kN 7.64 7.64 7.64 7.64 7.64 7.64 7.64
DAF m 3.747 3.507 2.992 2.429 1.81 0.742 −0.113

Boom
WBM kN 29.6 29.6 29.6 29.6 29.6 29.6 29.6
DBM m −0.12 −0.67 −1.77 −2.88 −3.99 −5.671 −6.808

Standing moment MCR kNm 2114 2096 2059 2022 1985 1927 1886
Crane WASM kN 601.1 601.1 601.1 601.1 601.1 601.1 601.1
assembly DASM m 3.517 3.487 3.426 3.365 3.302 3.205 3.138

Load distance from tipping
m 1.742 2.742 4.742 6.742 8.742 11.742 13.742

fulcrum DP
Tipping load (TL) kN 1213.6 764.4 434.3 300.0 227.0 164.1 137.3
Rated load (P ) kN 910.2 573.3 325.7 225.0 170.3 123.1 103.0
AAA – Weight of the assembly and C.G. distance from tipping line

The stability of a crawler crane is governed by the standing moment of the crane. To increase
the standing moment of the crane, counterweights (ballasts) are arranged at the rear end of the
slewing platform or superstructure of the crane. The limit of the maximum counterweight is
determined by the backward stability of the free standing crane. The backward stability of
a crane is its ability to resist overturning in the direction opposite to the boom point while
in the unloaded condition. The resistance to backward overturning is reflected in the margin of
backward stability. According to standard ASME (B30.5, 2011), the minimum backward stability
condition for crawler cranes is that the horizontal distance between the centre of gravity of the
crane assembly and the axis of rotation shall not exceed 70% of the radial distance from the axis
of rotation to the backward tipping fulcrum in the least stable direction. Since the counterweight
is designed based on the backward stability of the crane at the minimum possible boom length
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and maximum possible boom angle, the backward stability of the crane increases with an increase
in the boom length and load radius as C.G. of the crane assembly moves towards the forward
tipping fulcrum.
The maximum allowable standing moment (MmaxCR [kNm]) is obtained when the centre of

gravity of the crane lies at the backward stability line

MmaxCR =WASMDBS (2.5)

where DBS is the distance between the forward tipping fulcrum and the backward stability line,
[m].
The backward stability line lies at a distance of 70% of the radial distance from the axis of

rotation to the backward tipping fulcrum

DBS = 2.2575 + 2.2575 · 70% = 3.837 (2.6)

2.2. Stability calculations with the proposed structural frame

In the existing form, the counterweight of the crane is fixed at the rear end of the crane
superstructure. The proposed structural frame is modeled using ProE software, which is attached
to the bottom of the crane superstructure, wherein the counterweight is placed on top of it as
shown in Fig. 4.

Fig. 4. 3D model of the crane assembly with an extended counterweight on the structural frame

This structural frame along with the counterweight is extendable and retractable. For a
particular load radius, the structural frame along with the counterweight is extended correspon-
dingly to the load radius so as to obtain the maximum possible standing moment considering
the backward stability conditions. With an increase in the load radius, the counterweight is
extended outwards and, if the load radius is decreased, the counterweight is retracted to the
position corresponding to that load radius. The structural frame can be extended or retracted
using a hydraulic cylinder with controls correlated with the safe load indicator or load moment
indicator device of the crane. The position of the counterweight can be accurately controlled
using length sensors and load moment indicator devices of the crane.
Considering the proposed structural frame and C.G. of various crane parts as shown in Fig. 5,

where W ′CWT is the weight of the counterweight including the weight of the structural frame,
D′CWT [m] – distance between the tipping fulcrum and C.G. of the counterweight including the
structural frame, W ′ASM – weight of the crane assembly including the weight of the structural
frame, D′ASM – distance between the tipping fulcrum and C.G. of the crane assembly including
the structural frame.
To obtain the maximum possible standing moment, the counterweight is extended outwards

to a distance corresponding to the load radius as shown in Fig. 5.
It is obtained by the following formula

D′CWT =
MmaxCR − (MCR −WCWTDCWT )

W ′CWT
(2.7)
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Fig. 5. Weights and C.G. of various crane parts in an extended counterweight position

The distance D′CWT obtained from Eq. (2.7) satisfies the backward stability condition from
standard ASME B30.5. The centre of gravity of the crane will be inside the backward stability
line when the counterweight is in extended position. When there is a sudden release of load
while the counterweight is in extended position, the backward stability margin will provide the
overturning resistance to withstand the impact of the sudden release of load.
With the counterweight in an extended position, new tipping loads (TL′) and new rated load

(P ′) limited by stability are recalculated as shown in Table 2. The graph showing a comparison
of the new rated load (P ′) with the extended counterweight and rated load (P ) without the
extended counterweight for various load eadius (R) is plotted in Fig. 6.
The calculations are performed for seven cases where the load radius of the crane changes

from 4m to 16m.

Fig. 6. Rated load versus load radius (R) with and without the extended counterweight

2.3. Static structural analysis

The proposed structural frame will be under maximum loading when it is extended comple-
tely outwards with the counterweight as in case 7. The static structural analysis of the structural
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Table 2. Tipping and rated loads of the crane with the extended counterweight

Case Unit 1 2 3 4 5 6 7
Boom length m 18 18 18 18 18 18 18
Load radius (R) m 4 5 7 9 11 14 16

A
A
A

Crane super-
structure and
carbody

WCR kN 355.5 355.5 355.5 355.5 355.5 355.5 355.5

DCR m 2.529 2.529 2.529 2.529 2.529 2.529 2.529

BBB
W ′CWT kN 215.6 215.6 215.6 215.6 215.6 215.6 215.6
D′CWT m 5.667 5.667 5.667 5.667 5.667 5.667 5.667

A-frame
WAF kN 7.6 7.6 7.6 7.6 7.6 7.6 7.6
DAF m 3.747 3.507 2.992 2.429 1.81 0.742 −0.113

Boom
WBM kN 29.6 29.6 29.6 29.6 29.6 29.6 29.6
DBM m −0.12 −0.669 −1.77 −2.876 −3.988 −5.671 −6.808

Crane WASM kN 608.4 608.4 608.4 608.4 608.4 608.4 608.4
assembly DASM m 3.528 3.498 3.438 3.377 3.315 3.219 3.153

Load distance from tipping
m 1.742 2.742 4.742 6.742 8.742 11.742 13.742

fulcrum DP
Max. possible standing

kNm2334.3 2334.3 2334.3 2334.3 2334.3 2334.3 2334.3
moment (MmaxCR )
New counterweight distance
w.r.t max. standing m 6.540 6.624 6.794 6.966 7.140 7.409 7.596
moment (D′CWT )
New tipping load with

kN 1340.0 851.3 492.3 346.2 267.0 198.8 169.9
exten. counterweight (TL′)
Rated load with extended

kN 1005.0 638.5 369.2 259.7 200.3 149.1 127.4
counterweight (P ′)
AAA – Weight of the assembly and C.G. distance from tipping line
BBB – Counterweight with extendable frame

frame is performed in this condition using ANSYS workbench software. The material properties
of the structural frame are described in Table 3 (ThyssenKrupp Steel, 2005). The stress analysis
of the structural frame is shown in Fig. 7.

Table 3. Material properties of the structural frame

Steel grade
Minimum yield Tensile strength Modulus of Density
strength [MPa] [MPa] elasticity [kN/mm2] [103kg/m3]

N-A-XTRA (M) 700 700 770-940 210 7.85

3. Results and discussions

Table 1 reveals that the rated load limited by stability of the crane decreases with an increase in
the load radius. As the load radius increases, the moment from the weight of the boom reduces
the standing moment of the crane. Proportionately, the tipping load also decreases resulting in
a reduction in the rated load capacity.
The calculated values described in Table 1 show that the standing moment of the crane is

much below the maximum allowable standing moment calculated from Eq. (2.5). The difference
between the maximum allowable standing moment (MmaxCR ) and the standing moment (MCR)
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Fig. 7. Stress analysis of the proposed structural frame

of the crane increases with the load radius (R) and boom length. It is mainly due to fact that
the counterweight is designed and optimized to obtain the maximum possible standing moment
when the crane is equipped with the minimum boom length and maximum boom angle. The
difference in this case is due to the same reason that the counterweight has been designed for the
crane boom length of 9m, which is the basic boom length of this crane, and at the maximum
angle. In the present case, the crane is equipped with a 18m boom length. Hence, the moment
due to the weight of the additional 9m boom reduces the standing moment of the crane, and it
is further reduced with an increase in the load radius.
The graph shown in Fig. 6 reveals that the rated load of the crane, limited by the stability,

increases by using a sliding structural frame. The structural frame is extended or retracted
with respect to the corresponding load radius. When the counterweight is extended outwards
using the structural frame, C.G. of the crane assembly moves backwards closer to the backward
stability line. It is observed that the standing moment of the crane increases to the maximum
allowable standing moment by extending the structural frame with the counterweight. Finally,
the tipping load and rated load are increased due to improvement of the standing moment of
the crane.
The structural stress analysis of the proposed structural frame shown in Fig. 8 reveals that

the maximum value of stress obtained is 365N/mm2, which is below the permissible limit of
466N/mm2 accorging to standard SAE J987 (2003).

4. Conclusions

Based on the three dimensional model of a crawler crane and standard ASME B30.5 (2011),
the standing moment and tipping loads of the crane are obtained. The maximum allowable
standing moment of the crane is obtained from the backward stability condition specified in
standard ASME B30.5. The proposed structural frame is modeled for extending and retracting
the crane counterweight corresponding to the particular load radius. The tipping loads and
lifting capacities of the crane with the extended counterweight at various radii are recalculated.
It is shown that the lifting capacity limited by the stability increases with making use of the

proposed structural frame. By changing the fixed counterweight into a movable counterweight
placed on the proposed sliding structural frame, the standing moment of the crane is improved to
the maximum allowable standing moment. This furtherly enhances the tipping load and finally
the lifting capacity of the crane. The lifting capacity of the crane, limited by stability, increases
to the range of 10% to 24% with the use of the extended counterweight. It is also found that
the percentage of the lifting capacity enhancement increases with increase of load radius. The
compliance of the backward stability condition, according to standard ASME B30.5, ensures
safety and stability of the crane with the extended counterweight.



Lifting capacity enhancement of a crawler crane... 227

Acknowledgements

The authors appreciate the support provided by M/s. S. D. Material Handlers Pvt. Ltd. for this work.

References

1. Chin C., Nayfeh A.H., Abdel-Rahman E., 2001, Nonlinear dynamics of a boom crane, Journal
of Vibration and Control, 7, 199-220

2. Jerman B., Podrzaj P., Kramar J., 2004, An investigation of slewing-crane dynamics during
slewing motion-development and verification of a mathematical model, International Journal of
Mechanical Sciences, 46, 729-750

3. Kilicslan S., Balkan T., Ider S.K., 1999, Tipping load of mobile cranes with flexible booms,
Journal of Sound and Vibration, 223, 4, 645-657

4. Klinger C., 2014, Failure of cranes due to wind induced vibrations, Engineering Failure Analysis,
43, 198-220

5. Posiadała B., 1997, Influence of crane support system on motion of the lifted load, Mechanism
and Machine Theory, 32, 1, 9-20

6. Posiadała B., Skalmierski B., Tomski L., 1990, Motion of the lifted load brought by a kine-
matic forcing of the crane telescopic boom, Mechanism and Machine Theory, 25, 547-555

7. Posiadała B., Skalmierski B., Tomski L., 1991, Vibration of load lifted by a truck crane with
consideration of physical properties of rope, Machine Dynamics Problems, 2, 85-104

8. Rauch A., Sighose W., Fujioka D., Jones T., 2013, Tip – over stability analysis of mobile
boom cranes with swinging payloads, Journal of Dynamic Systems, Measurement, and Control,
135, 3, 0310081-6

9. Savkovic M., Gasic M., Pavlovic G., Bulatovic R., Zdravkovic N., 2014, Stress analysis
in contact zone between the segments of telescopic booms of hydraulic truck cranes, Thin-Walled
Structures, 85, 332-340

10. Standard ASME B30.5-2011, Mobile and Locomotive cranes, Safety standard for Cable-ways, Cra-
nes, Derricks, Hoists, Hooks, Jacks, and Slings

11. Standard SAE J987, 2003, Lattice Boom Cranes – Method of Test

12. Sun G., Kleeberger M., 2003, Dynamic responses of hydraulic mobile crane with consideration
of the drive system, Mechanism and Machine Theory, 38, 1489-1508

13. Sun G., Kleeberger M., Liu J., 2005, Complete dynamic calculation of mobile crane during
hoisting motion, Mechanism and Machine Theory, 40, 447-466

14. Sun G., Liu J., 2006, Dynamic responses of hydraulic crane during luffing motion, Mechanism
and Machine Theory, 41, 1273-1288

15. ThyssenKrupp Steel, Material Specification 215, 2005-12, 1-4

16. Towarek Z., 1998, The dynamic stability of a crane standing on soil during the rotation of the
boom, International Journal of Mechanical Sciences, 40, 557-574

17. Trąbka A., 2014, Dynamics of telescopic cranes with flexible structural components, International
Journal of Mechanical Sciences, 88, 162-174

18. Wang G., Qi Z., Kong X., 2015, Geometrical nonlinear and stability analysis for slender frame
structures of crawler cranes, Engineering Structures, 83, 209-222

Manuscript received September 26, 2014; accepted for print August 3, 2015





JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

54, 1, pp. 229-238, Warsaw 2016
DOI: 10.15632/jtam-pl.54.1.229

DELAMINATION PROPERTIES OF THE HUMAN THORACIC ARTERIAL
WALL WITH EARLY STAGE OF ATHEROSCLEROSIS LESIONS

Marta Kozuń
Wroclaw University of Technology, Faculty of Mechanical Engineering, Wrocław, Poland

e-mail: marta.kozun@pwr.edu.pl

The aim of this work is to determine mechanical properties of interfaces between layers of
the human thoracic aortic wall with early stages of atherosclerosis lesions. Circumferential
(n = 48) and axial (n = 15) specimens have been prepared and the mechanical properties
of the interfaces between the layers have been determined on the basis of the peeling test.
The results show that the mechanical and dissection properties of the interfaces between
the layers depend on the direction of the tests. The results confirm that the early stage of
atherosclerosis does not affect the mechanical parameters of the layer interfaces and does
not affect resistance of the vessel wall to delamination.

Keywords: peeling test, human arterial wall, thoracic artery, mechanical properties, athero-
sclerosis

1. Introduction

Human arterial wall is a three-layer (the intima, media, and adventitia) laminate reinforced with
long fibres (collagen and elastin fibres), which play a key role in the transfer of mechanical stress.
Collagen and elastin fibres are held together by the extracellular matrix.
Each layer of the arterial wall is characterized by a different structure, orientation of collagen

and elastic fibres, mechanical properties, and function performed in the vessel wall (Holzapfel
et al., 2004). The intimal layer is built mostly of connective tissue (Shekhonin et al., 1985),
and in young and healthy people it is not involved in the transfer of mechanical stress. In the
physiological range of blood pressure. this process is carried out by the media (collagen fibres,
elastin fibres, and smooth muscle cells, see Kobielarz et al. (2013), Gąsior-Głogowska et al.
(2011), Schriefl et al. (2012). The collagen fibres in this layer are arranged circumferentially
(Schriefl et al., 2012). In the case of arterial hypertension, the process of transfer of stress
also involves the adventitia (collagen fibres) (Shekhonin et al., 1985), which protects the vessel
against overstretching and rupture (Holzapfel 2008; Schulze-Bauer et al., 2001). In the adventitia,
collagen fibres are dispersed, and only individual fibres are arranged circumferentially (Schriefl et
al., 2012). The cohesive composite structure of the human thoracic aortic wall ensures its high
mechanical strength and determines its proper functioning, i.e. transfer of mechanical stress
resulting from blood pressure and the ability to deform reversibly (Sommer et al., 2010).
Delamination of the vessel wall may occur spontaneously or as a result of trauma. Spon-

taneous dissection occurs in 5-30 cases per million people/year and depends on a number of
factors (hypertension, atherosclerosis, aortic dilatation, and Marfans and Ehlers-Danlos syndro-
mes (Tong et al., 2011). This kind of dissection is usually the result of structural remodelling
of the aortic wall, which progresses along with the development of vascular diseases, including
atherosclerosis. Degenerative changes that develop along with the progression of atherosclerosis,
in particular the formation of atherosclerotic plaque (Kot et al., 2011), lead to changes in the
mechanical properties of the individual layers of the aortic wall (Teng et al., 2009; Weisbecker
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et al., 2012) and affect the adhesion between them (Karimi et al., 2013). This leads to a loss of
integrity of the vessel wall and, consequently, to its delamination. Aortic dissection of traumatic
origin is, in most cases, the result of a diagnostic or therapeutic procedure performed on the
vascular system, for example insertion of a stent graft or aortic stents. This treatment causes
denudation of the endothelium, disruption of the intima and the atherosclerotic plaque with
frequent separation from or dissection of the media, and overstretching of non-diseased portions
of the arterial wall (Sommer et al., 2008). These intimal defects can cause an imbalance of di-
stribution of mechanical stress on the arterial wall and may be the trigger for propagation of
the aortic dissection. Due to its dynamic progression, diagnostic difficulties, and high mortality,
aortic dissection is a difficult clinical issue. According to statistics, in the first 48 hours of the
onset of dissection, the mortality rate is 1% per hour among untreated patients, about 16-20% of
patients survive 14 days, and only 5% survive 12 months (Szpakowski et al., 2006). Although ar-
terial dissection is a frequently occurring phenomenon, the underlying biomechanical properties
of arterial dissection remain largely unclear.
The research carried out in recent years on cardiovascular biomechanics has concerned ma-

inly the analysis of the impact of pressure on the vessel wall. The interaction between the aortic
wall and blood is also modelled, and the mechanical properties of the vessel wall and its layers
are determined. The mechanical properties (maximum strain, tensile strength, and Young’s mo-
dulus) are determined mostly by a uniaxial tension test (Kobielarz and Jankowski, 2013; Vorp et
al., 1996, 2003) in radial, circumferential, and axial directions (Sommer et al., 2008). The results
of experimental research obtained in this regard are important for description of the mechanism
of vessel wall destruction but they are insufficient to determine pathogenesis of its dissection.
Delamination of the vessel wall as a three-layer laminate reinforced with collagen and elastin
fibres was considered by Sommer et al. (2008) and Tong et al. (2011). The authors proposed a
new experimental method (peeling test), which allows them to determine the mechanical para-
meters of the interfaces between the layers of the vessel wall and the energy required to initiate
and propagate dissection. Sommer et al. (2008) investigated the human abdominal aorta. Only
the medial layer of the vessel wall was assessed in circumferential and axial directions. Tong et
al. (2011) conducted a peeling test of human carotid bifurcations. The authors determined the
mechanical properties and the energy dissipated during the dissection of adventitia-media and
media-intima composites in circumferential and axial directions. Research conducted by Sommer
et al. (2008) and Tong et al. (2011) focused on normal specimens while the problem of dissection
concerned vessel walls with lesions arising due to development of atherosclerosis. Therefore, in
the opinion of the author, the results of the studies on vessel wall delamination conducted so
far have not fully explained the mechanism of this process.
Based on the above, the aim of the study is to determine the mechanical parameters of the

interfaces between the layers of the human thoracic aortic wall in the early stage of atherosc-
lerosis, including energy dissipated during the process of delamination (cracking) of the aortic
wall. The obtained results may serve as the basis for the development of constitutive models of
the arterial wall. None of the currently existing models takes into account the problem of dela-
mination of the arterial wall, which is a major limitation because many diagnostic procedures
as well as flow-related issues are based on the aforementioned models.

2. Material and method

The study has been conducted on human thoracic aortas collected at autopsy within 24 hours
of death. A total of 14 specimens qualified for the study (male; age range: 29 ± 12) showing
early atherosclerotic lesions (stage II of the development of atherosclerosis according to the
classification proposed by Stary (2000, 2004). Each specimen was dissected parallel to the long



Delamination properties of the human thoracic arterial wall... 231

axis of the vessel with a pair of surgical scissors. Next, a blanking tool was used on each aorta to
punch out flat rectangular specimens with fixed dimensions of 5mm (width) by 25mm (length).
The specimens were cut out in two orthogonal directions: in the circumferential direction (C)
(n = 48) and in the axial direction (A) (n = 15) (Fig. 1).

Fig. 1. Directions of specimen preparation: axial (A) and circumferential (C)

The specimens were initially dissected over a length of about 5mm. This way two “tongues”
were obtained for mounting the specimen into the testing machine (Fig. 2). Dissection was
introduced between the following interfaces:
• adventitia (A) → media (M) + intima (I) (interface 1)

• adventitia (A) + media (M) → intima (I) (interface 2)

Fig. 2. Preparation of the material for tests of the mechanical properties – initial dissection of the axial
specimen of the vessel wall. Width was measured for each specimen

The number of specimens prepared for tests is presented in Table 1. Until the performance
of the tests, the specimens were stored in saline solution (0.9% NaCl) at room temperature
(15 minutes).

Table 1. The number of specimens prepared for testing of the mechanical properties

Type of interface Number of specimens

Circumferential direction
interface 1 26
interface 2 22

Axial direction
interface 1 7
interface 2 8

Both sides of the two “tongues” of each specimen were fixed to two grips of the testing
machine. The study used the material testing system (MTS) Synergie 100 machine. The mecha-
nical properties of the interfaces between vessel wall layers were determined on the basis of the
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research methodology proposed by Sommer in 2008, the so-called peeling test (Sommer et al.,
2008, 2010). The load was applied perpendicular to the specimen dissection plane (T-peel test
configuration) (Fig. 3). The test was conducted at a constant crosshead speed of 2mm/min in
two directions: axial and circumferential. The testing was carried out under repeatable condi-
tions at a constant ambient temperature. During the test, changes were recorded in the value of
force (F ) as a function of displacement (d) in the direction of the applied load.

Fig. 3. Schematic illustration of the peeling test: (a) for interface No. 1 and (b) for interface No. 2. The
letters A, M , and I mark layers of the vessel wall: A – adventitia, M – media, and I – intima

2.1. Statistical analysis

A statistical analysis was performed using the nonparametric Wilcoxon test (Statistica 10.0,
StatSoft). This test was performed at a statistically significant level of p = 0.05. The values of
mechanical parameters are presented as median values (Me). Additionally, in order to compare
these results with the data presented in the literature, the values of mechanical parameters are
also presented as arithmetic mean with standard deviation (Xmean ± SD).

3. Results

The peeling test causes slow and controlled delamination propagation of human arteries. Figure 4
shows an example of the force per width [mN/mm] vs the dissection path curve [mm] (Fig. 5)
determined on the basis of the peeling test. All curves obtained for both circumferential and

Fig. 4. The force/width vs the path curve obtained on the basis of the peeling test for interface No. 2 in
the axial direction with the marked method of determining the mechanical properties, i.e. the

stiffness (k) and the average value of the force in relation to the width of the specimen (F/W ) during
dissection
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Fig. 5. Axial specimen of the arterial wall (interface No. 2) tested in the T-peel test configuration; four
images (1,2,3,4) show progression of the peel test until complete separation of the tissue (4). Examples
of where each image (1-4) could fall on the force/width vs path curve (Fig. 4) are indicated by numbers

1, 2, 3, and 4



234 M. Kozuń

axial specimens are characterized by a jagged plateau region. Those curves were divided into
two stages. Stage I is the linear part of the curve, which is characterized by high dynamics of the
change in the force in relation to the change in displacement. This part was used to determine
stiffness (k) (Gregory et al., 2012) of the interfaces between the layers of the human thoracic
aortic wall (Fig. 4). During stage I, the strength of the tested interface is exceeded, and then
stage II begins. At this stage, the aortic wall dissection is propagated as a result of tearing of
individual collagen and elastin fibres, as evidenced by local increases and decreases in the value
of the force (Fig. 4). For stage II, the average force value was determined, obtained during the
process of aortic wall dissection in relation to the initial width of the specimen (F/W ) (Fig. 2),
which was motivated by assuming ideal rectangular geometries and homogeneous mechanical
properties of each specimen (Sommer et al., 2008).
The mechanical properties of both soft tissues (Maksymowicz et al., 2011; Pezowicz, 2010;

Żak et al., 2011) and hard tissues (Nikodem, 2012) are analysed in the literature on the basis
of the power criterion (Żak, 2014). In the presented work, the process of dissection of thoracic
arterial wall has been described as cracking of the three-layer laminate using the energy balance,
as previously proposed by Sommer et al. (2008) and Tong et al. (2011)

WC =
W extC −W storC

LC
WA =

W extA −W storA
LA

(3.1)

where C,A are indications of the direction: C – circumferential, A – axial, L is reference length
of the specimen, W ext – external energy supplied to the system, W stor – energy stored in the
system.
External energy is defined as follows (Tong et al., 2011)

W extC = 2.0FC lC W extA = 2.0FAlA (3.2)

where: F – ratio of the force recorded during the test to the specimen width, l – length of the
specimen prior to dissection (before mounting in the grips of the material testing machine).
The energy stored in the system was calculated as follows (Tong et al., 2011)

W storC = FC(lC − LC) W storA = FA(lA − LA) (3.3)

where: F – ratio of the force recorded during the test to the specimen width, L – length of
the specimen after dissection (after mounting in the grips of the material testing machine).

Table 2. The value (Me) of dissipated energy (W ) during dissection of the human thoracic
arterial wall

Type of interface W [mJ/cm2]

Circumferential direction
interface 1 4.9
interface 2 4.5

Axial direction
interface 1 7.2
interface 2 6.2

Both the stiffness values as well as force/width are significantly higher for axial specimens.
Regardless of the analysed direction, statistically significant differences have been found between
the stiffness of the tested interfaces. For axial specimens, the stiffness values Me are, respecti-
vely, k = 0.17N/mm and k = 0.11N/mm. The energy dissipated during propagation of aortic
wall dissection is higher for axial specimens in the case of both interface No. 1 and interface
No. 2 (6). These values (Me) are, respectively, as follows:W = 7.2mJ/cm2 andW = 6.2mJ/cm2

(Xmean ± SD: 7.6± 1.7mJ/cm2 and 4.7± 0.9mJ/cm2). In the case of both axial and circumfe-
rential specimens, higher energy values were obtained for interface No. 1 (Fig. 6).
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4. Discussion

The present study has been conducted to explain delamination of the human thoracic artery
with stage II atherosclerotic lesions according to Stary (2000, 2004). The study included a pe-
eling test which was used to determine the force per width, stiffness, and dissection energy of
the adventitia-media+intima interface and the adventitia+media-intima interface in the circum-
ferential and axial directions. The obtained results were used to characterise the resistance of
the thoracic aortic wall as a three-layer laminate to propagation of delamination. The problem
of delamination of the vessel wall is a new issue in the literature and only two papers (Sommer
et al., 2008; Tong et al., 2011) attempted to describe the mechanism of this process.
Sommer et al. (2008) and Tong et al. (2011) determined the force per width and the energy

dissipated during the process of delamination of the media of normal vessels: human abdominal
artery and human carotid bifurcation. The analysis was conducted in the circumferential and
axial directions relative to the long axis of the vessel. The results obtained by Sommer et al.
(2008) and Tong et al. (2011) are higher for axial specimens. In this work, the obtained values
of energy and force per width are comparable to the values obtained by Sommer et al. (2008)
and Tong et al. (2011). In each of the analysed cases, the adventitia-media+intima interface
is characterised by higher values of the mechanical parameters (Table 3). These differences are
statistically significant (p = 0.05). None of the previous papers have analysed the values of
stiffness of the interfaces between vessel wall layers, which in this paper, as in the case of other
parameters, is higher for longitudinal specimens. In each of the analysed directions, statistically
significant differences have been found between the stiffness of interface No. 1 and interface
No. 2, with the higher values of this parameter obtained in the second case (Table 3).

Table 3. Comparison of the average values of mechanical parameters: energy (W ), force per
width (F/W ), and stiffness (k) obtained by Sommer et al. (2008) and Tong et al. (2011) and
the results of own research in two directions: axial (A) and circumferential (C)

Type W F/W k
of [mJ/cm2] [mN/mm] [N/mm] Source

interface A C A C A C

A−MI
6.5± 2.7 5.0 ± 1.0 29.1 ± 12.2 22.7± 4.5 – – [25]
7.6± 1.7 5.6 ± 0.9 32.4 ± 6.5 24.5± 7.5 0.20 ± 0.08 0.13 ± 0.05 own research

AM−I 5.2± 3.1 3.6 ± 0.7 23.3 ± 13.8 16.4± 3.3 – – [25]
4.7± 0.9 4.1 ± 1.0 34.2 ± 3.5 26.5± 6.7 0.19 ± 0.07 0.013 ± 0.07 own research

M 7.6± 2.7 5.1 ± 0.6 34.8 ± 15.5 22.9± 2.9 – – [18]
[18] – Sommer et al. (2008), [25] – Tong et al. (2011)

Studies of the mechanical properties of the interfaces between vessel wall layers, conducted
by Sommer et al. (2008) and Tong et al. (2011), concerned normal vessels, while dissection of the
vessel wall is related to the occurrence of lesions, e.g. atherosclerosis. Hypothetically, structural
remodelling of the aortic wall, which occurs even in the early stages of the disease, changes the
mechanical parameters of vessel wall layers (Holzapfel, 2008; Teng et al., 2009; Weisbecker et
al., 2012) and affects the adhesion between them. Consequently, atherosclerosis is believed to
increase the risk of dissection. In the present study, mechanical parameters were designated for
blood vessels in stage II of the development of atherosclerosis. The obtained results are similar
to the distribution characteristics and values of the results obtained for normal vessels (Sommer
et al., 2008; Tong et al., 2011).
On this basis, it can be concluded that the early stage of atherosclerosis does not affect the

mechanical parameters of the interfaces between the layers of the aortic wall and, consequen-
tly, does not affect vessel the wall resistance to delamination. The test results show that the
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Fig. 6. The energy values obtained during dissection of the human thoracic aortic wall depending on the
peeling test direction (A – axial direction, C – circumferential direction): (a) for interface 1 and

(b) for interface 2

mechanical and dissection properties of the interfaces between the layers of the human thoracic
aortic wall depend on the specimen orientation. It is worth noting, however, that in contrast to
the mechanical properties of the vessel wall, lower values of those parameters were obtained for
circumferential specimens. This study demonstrated that lower dissection energy is required in
the circumferential peeling test compared with the axial peeling tests, which may be related to
the multiphase structure of the vessel wall and alignment of collagen and elastin fibres and smo-
oth muscle cells. Dissection disseminates in the circumferential direction along elastic laminae,
while in the axial direction it crosses elastic layers and the external or internal elastic laminae.
In addition, circumferential alignment of smooth muscle cells and collagen and elastin fibres in
the media of the vessel wall leads to stronger resistance to dissection during the peeling test in
the axial direction (Tong et al., 2011). Circumferential specimens are also characterized by a
lower stiffness value. Regardless of the analysed direction, lower dissection energy is needed to
propagate dissection of the adventitia+media-intima interface. The energy values obtained for
the interface between these layers are lower by 38% (axial specimens) and 27% (circumferential
specimens) compared with the dissection energy obtained for the adventitia-media+intima in-
terface. This shows that the adventitia+media-intima interface is most prone to delamination.
In the case of stiffness, regardless of the analysed direction, both interfaces have the same value
of the parameter.
In the experiment conducted in the study, the process of thoracic aortic wall dissection

progressed in a controlled manner, while clinical circumstances of the dissection were more
diverse. As a result, the obtained values of the mechanical and dissection properties might
not be representative for in vivo aortic dissection. Despite this, in the opinion of the author,
the obtained results of the experiments may be useful for the estimation of the response to
the artery dissection and may improve clinical assessment, diagnosis, balloon angioplasty, and
cardiovascular medicine.
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History of strains, stresses and displacements of a rotating cylinder made of polypropylene
reinforced by multi-walled carbon nanotubes (MWCNTs) subjected to magneto-thermo-
-mechanical loading is investigated using Burgers viscoelastic creep model. By making use
of equations of equilibrium, stress-strain and strain-displacement, a constitutive differential
equation containing creep strains is obtained which is solved semi analytically. It has been
found that radial displacement, tangential strain and absolute values of radial strain are
increasing with time at a decreasing rate so that they finally approach the steady state
condition. Effective stresses are decreasing at the inner and increasing at the outer surface
of the cylinder.
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model

1. Introduction

Composite cylinders subjected to thermo-mechanical load are extensively used in aerospace,
pressure vessels and petrochemical industries. Carbon nanotubes reinforced polymer matrix
composites have shown high strength properties and are widely used in manufacturing of com-
ponents exposed to high pressure environment. Even at room temperature, significant creep
deformation is observed for polypropylene tubes. Therefore, creep analysis and creep life as-
sessment of such components are very important. When such vessels are loaded, thermo-elastic
stresses will be developed in the cylinder at zero time. However, because of creep evolution, stress
redistribution occur during life of the component, which can affect its long-time performance.
The analysis of an internally pressurized, homogeneous, orthotropic rotating cylinder sub-

jected to a steady state creep condition was investigated by Bhatnagar et al. (1984). In ano-
ther work, they considered an orthotropic thick-walled cylinder under primary creep conditions
(Bhatnagar et al., 1986). In their second work, the authors presented the analysis of an ortho-
tropic, thick-walled cylinder undergoing creep due to combined action of internal and external
pressures and rotary inertia. As a result, they found that the material which is strong in the
radial direction may be beneficial for design of the cylinder as it gives lower values of the effective
stress. Evaluation of creep compliances of unidirectional fiber-reinforced composites was done by
Moal and Perreux (1994). In that paper, a method based on the model of Laws and McLaughlin
was proposed for the determination of viscoelastic behavior of unidirectional fiber-reinforced
composites. Moreover, the interface problem was taken into account by using anisotropic elastic
coefficients for the reinforcement fiber. The suggested procedure allowed the viscoelasticity of
the resin to be characterized. A variational method was developed by Ohno et al. (2002) for ana-
lyzing the matrix creep induced time-dependent change in fiber stress profiles in unidirectional
composites. They verified the solutions on the basis of an energy balance equation and a finite
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difference computation. They also showed that the solution for the fiber pull-out model agreed
well with an experiment on a single carbon fiber/acrylic model composite if the initial slip at
fiber/matrix interface was taken into account. Singh and Ray (2002) modeled anisotropy and
creep in an orthotropic aluminum-silicon carbide composite rotating disc. They observed that
the anisotropy helped reduction of the tangential strain rate significantly, more near the inner
radius. It was also found the strain rate distribution in the orthotropic disc was lower than that
of isotropic disc following von Misses criterion. Creep deformations and stresses in thick-walled
cylindrical vessels of functionally graded materials subjected to internal pressure were investiga-
ted by You et al. (2007). They examined how variations of material parameters along the radial
direction affect the stresses in the vessels. Yang et al. (2006) carried out characterization of ten-
sile creep resistance of polyamide 66 nano-composites. To develop their works, they presented
both a viscoelastic creep model named Burgers model and an empirical method called Findley
power law. They revealed that the simulation results from both models agreed quite well with
the experimental data. Jia et al. (2011) studied the creep and recovery of polypropylene/multi-
-walled carbon nanotube composites. They showed that the creep strain reduces with a decrease
in temperature and an increase in the content of carbon nanotubes. Magneto-thermo-elastic cre-
ep analysis of functionally graded cylinders was presented by Loghman et al. (2010). The paper
describes time-dependent creep stress redistribution analysis of a thick-walled FGM cylinder
subjected to a uniform magnetic field, temperature field and internal pressure. They calculated
stress redistributions iteratively using magneto-thermo-elastic stresses as initial values for stress
redistributions. The result indicated that the radial stress redistributions were not significant
for different material properties, while major redistributions occurred for circumferential and
effective stresses. A semi analytical solution of magneto-thermo-elastic stresses was suggested
for functionally graded variable thickness rotating disks by Ghorbanpour Arani et al. (2010).
In the paper, stresses and perturbation of magnetic field vector in FG rotating disks were de-
termined using infinitesimal theory of magneto-thermo elasticity under plane stress conditions.
It was found that imposing a magnetic field significantly decreases tensile circumferential stres-
ses. Thus, the fatigue life of the disk would be significantly improved by applying the magnetic
field. They suggested that the results of that investigation could be applied for optimum design
of FG hollow rotating disks with variable thickness. Theory of plasticity for carbon nanotube
reinforced composites was mentioned by Barai and Weng (2011). It was found that, with per-
fect interface contact, the decreasing of the CNT radius would improve the overall stiffness and
plastic strength, but with an imperfect interface the size effect was reversed. Time-dependent
thermo-elastic creep analysis of a rotating disk made of Al–SiC composite using Mendelson’s
method of successive elastic solution was presented by Loghman et al. (2011). They found that
the stresses, displacement, and creep strains were changing with time at a decreasing rate so
that after almost 50 years the solution approached the steady-state condition.
The main objective of this paper is to obtain history of creep stresses and deformations of a

nano-composite rotating cylinder made of polypropylene reinforced by MWCNTs using Burgers
viscoelastic creep model under magneto-thermo-mechanical loadings.

2. Geometry, loading condition and material properties

2.1. Geometry and loading condition

A long rotating thick-walled nano-composite cylinder made of polypropylene reinforced by
MWCNTs with inner radius ri and outer radius ro is considered (Fig. 1). The cylinder is sub-
jected to a uniform magnetic field in the axial direction and a uniform temperature field.
The following data for geometry and loading conditions are used in this paper: ro/ri = 2,
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MWCNTs content = 4.5%, ν = 0.45, T = 80◦C, ω = 52.35 rad/s, µ0 = 4π · 10−7 H/m,
HZ = 1 · 108 A/m.

Fig. 1. Schematic of the rotating thick-walled composite cylinder subjected to uniform magnetic and
thermal fields

2.2. Material properties

Young’s modulus of the polymeric composite cylinder reinforced with different MWCNT
contents is given in Table 1 based on experimental results reported by Jia et al. (2011).

Table 1. Young’s modulus of propylene nano-composite with different MWCNT contents (Jia
et al., 2011)

MWCNTs content [vol.%] Young’s modulus [GPa]

0 1.83± 0.11
0.3 2.10± 0.11
0.6 2.12± 0.03
2.8 2.33± 0.14
4.5 2.42± 0.13

3. Burgers viscoelastic creep model

Burgers four-element model can be used to predict the viscoelastic creep behavior of polymer
based nano-composites. This model is shown in Fig. 2 with Maxwell and Kelvin rheological
elements connected in series.

Fig. 2. Schematic diagram of Burgers four-element model (Yang et al., 2006)
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The creep constitutive model based on the Burgers law is written as follows (Yang et al.,
2006)

ε =
σ0
EM
+

σ0
EK

(
1− e−tτ

)
+
σ0
ηM

t τ =
ηK
EK

(3.1)

in which σ0 is the initially applied stress, τ is the retardation time taken to produce 63.2% or
(1−e−1) of the total deformation in the Kelvin element, EM and ηM are the elastic modulus and
viscosity of the Maxwell spring and dashpot model, Ek and ηk are the elastic modulus and the
viscosity of the Kelvin spring and dashpot model. The Burgers model which includes the essential
elements can be satisfactorily applied to describe behavior of viscoelastic materials practically.
Differentiating Eq. (3.1) with respect to time gives the strain rate constitutive equation of the
Burgers model as

ε̇ =
σ0
ηM
+
σ0
ηK
e
−t
τ (3.2)

The material parameters, ηm, EK and ηk are simulated from the experimental data (Jia et al.,
2011).

Table 2. The simulated parameters of the Burger model with different MWCNT contents for
long term prediction (Jia et al., 2011)

MWCNTs [vol.%] Ek [MPa] ηk [MPa s] ηm [s] τ [s]

0 5.7 9.00E+07 1.50E+10 1.49E+07
0.3 8.5 1.00E+08 2.10E+10 1.53E+07
0.6 9.2 1.50E+08 2.60E+10 1.63E+07
2.8 9.6 1.70E+08 2.70E+10 1.77E+07
4.5 10.4 2.00E+08 2.80E+10 1.92E+07

4. Theoretical analysis

The strain-displacement relationship for a long cylinder under an axisymmetric loading condition
is written as

εr =
∂ur
∂r

εθ =
ur
r

(4.1)

where εr and εθ are the radial and circumferential total strains, and ur is the radial displacement.
Considering the total strains to be the sum of elastic, thermal and creep strains, the stress-

-strain relations may be written as follows

σr = C11εr + C12εθ − λrTr − (C11εcr + C12εcθ)
σθ = C21εr + C22εθ − λθTr − (C21εcr + C22εcθ)

(4.2)

where σr and σθ are the radial and circumferential stresses, εcr and ε
c
θ are the radial and cir-

cumferential creep strains, Tr is the temperature field. and the other coefficients are defined
as

C11 =
E(1− ν)

(1 + ν)(1− 2ν) C12 =
Ev

(1 + ν)(1− 2ν) C21 = C12

C22 = C11 λr =
Eα

1− 2ν λθ =
E

1 + ν

(4.3)
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in which E, ν and α are Young’s modulus, Poison’s ratio and the coefficient of thermal expansion
of nano-composite, respectively.
The equilibrium equation of a thick-walled composite hollow cylinder subjected to a uniform

magnetic field is written as(Loghman et al., 2010)

∂σr
∂r
+
σr − σθ

r
+ fr + ρrω2 = 0 (4.4)

in which ρrω2 is the centrifugal body force per unit volume, and fr is the Lorentz force written
as

fr = µ(r)H
2
z

∂

∂r

(∂ur
∂r
+
ur
r

)
(4.5)

where µ(r) is the magnetic permeability and Hz is the magnetic field intensity in the axial
direction. Substituting the strains from Eqs. (4.1) into Eqs. (4.2), and then substituting the
radial and circumferential stresses into equilibrium Eq. (4.4) and substituting fr from Eq. (4.5),
the following constitutive differential equation for displacement is obtained

(C11 + µ(r)H
2
z )
∂2ur
∂r2
+
(C11
r
+
µ(r)
r
H2z

)∂ur
∂r
+
(C22
r2
− H2z

r2
µ(r)

)
ur

=
λr − λθ

r
Tr + λr

∂Tr
∂r
+
εcr(C11 − C21)

r
+
εcθ(C12 − C22)

r
+

∂

∂r
(C11εcr + C22ε

c
θ)− ρrω2

(4.6)

The above differential equation is summarized as

D11
∂2ur
∂r2
+D12

∂ur
∂r
+D13ur +D14 = 0 (4.7)

in which

D11 = C11 + µ(r)H
2
z D12 =

C11
r
+
µ(r)
r
H2z D13 =

C22
r2
− H2z

r2
µ(r)

D14 =
λr − λθ

r
Tr + λr

∂Tr
∂r
+
εcr(C11 − C21)

r
+
εcθ(C12 − C22)

r
+

∂

∂r
(C11εcr + C22ε

c
θ)− ρrω2

(4.8)

D14 contains creep strains which are time, temperature and stress dependent.
If we ignore the time-dependent creep strains in the coefficient D14, then differential Eq. (4.7)

becomes Navier’s equation, a non-homogenous second-order ordinary differential equation with
variable coefficients the solution to which can be found from magneto-thermo-elastic analysis.
This analysis is done by making use of the division method (Hosseini Kordkheili and Naghda-
bai, 2007). In this method, the cylinder thickness is divided into a finite number of divisions.
Then Navier’s equation for k-th division yields the following differential equation with constant
coefficients

(
D
(k)
11

∂2

∂r2
+D(k)12

∂

∂r
+D(k)13

)
ukr +D

k
14 = 0 (4.9)

The coefficients of Eq. (4.9) are evaluated in each division in terms of constants and the radius
of kth division. The exact solution to Eq. (4.9) can be written in the form of

u(k)r = X
(k)
1 exp(η

(k)
1 r(k)) +X(k)2 exp(η

(k)
2 r(k))− D

(k)
14

D
(k)
13

(4.10)

where

η
(k)
1 , η

(k)
2 =

D
(k)
12 ±

√
(D(k)12 )2 − 4D

(k)
13 D

(k)
11

2D(k)11
(4.11)
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It is noted that this solution to Eq. (4.9) is valid in the following sub-domain

r(k) − t(k)

2
¬ r ¬ r(k) + t(k)

2
(4.12)

where t(k) is the thickness of kth division and X(k)1 , X
(k)
2 are unknown constants for k-th division.

The unknowns X(k)1 and X
(k)
2 are determined by applying the necessary boundary conditions

between two adjacent sub-domains. For this purpose, the continuity of the radial displacement u
as well as the radial stress σr is imposed at the interfaces of the adjacent sub-domains. These
continuity conditions at the interfaces are written as

u(k)r

∣∣∣∣∣
r=r(k)

+
t(k)

2
= u(k+1)r

∣∣∣∣∣
r=r(k+1)

− t(k+1)

2

σ(k)r

∣∣∣∣∣
r=r(k)

+
t(k)

2
= σ(k+1)r

∣∣∣∣∣
r=r(k+1)

− t(k+1)

2

(4.13)

and the global boundary conditions are

σr = 0 at r = ri σr = 0 at r = ro (4.14)

Continuity conditions Eqs. (4.13) together with global boundary conditions Eqs. (4.14) yield a
set of linear algebraic equations in terms of X(k)1 and X

(k)
2 . Solving the resultant linear algebraic

equations for X(k)1 and X
(k)
2 , the unknown coefficients of Eq. (4.10) are calculated. Then, the

displacement component ur and the stresses are determined in each radial sub-domain. Accuracy
of the results will be improved by increasing number of divisions.

5. Time-dependent creep analysis

For time-dependent creep analysis, the creep strains in the coefficient D14 must be considered.
The creep strains are time, temperature, and stress dependent. Creep strain increments are rela-
ted to the current stresses and the material uni-axial creep behavior by Prandtl-Reuss relations.
For problems of a rotating thick-walled composite cylinder with axial symmetry, these relations
(Loghman et al., 2010) are written as follows

ε̇cr =
ε̇c
2σe
[2σr − (σθ + σz)] ε̇cθ =

ε̇c
2σe
[2σθ − (σr + σz)]

ε̇cz =
ε̇c
2σe
[2σz − (σr + σθ)]

(5.1)

where ε̇cr, ε̇
c
θ and ε̇

c
z are the radial, circumferential, and axial creep strain rates, ε̇c and σc are

the equivalent creep strain rate and equivalent stress, respectively. These equivalent or effective
variables are defined as follows

ε̇c =
2√
3

√
(ε̇cr)2 + (ε̇

c
θ)
2 + (ε̇cz)2 σe =

√
1
2
[(σr − σθ)2 + (σr − σz)2 + (σθ − σz)2]

ε̇cz = 0 → σz =
1
2
(σr + σθ)

(5.2)

The material creep constitutive model can be rewritten in terms of the equivalent creep strain
rateand equivalent stress as

ε̇c =
σ0
ηM
+
σ0
ηK
e
−t
τ (5.3)
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Equations (5.1), (5.2), and (5.3) together with differential Eq. (4.9) are used in a numerical
procedure based on Mendelson’s method of successive elastic solution (Mendelson, 1968) to
obtain history of stresses and deformations during creep process. The numerical procedure is
explained by Loghman et al. (2011).

6. Numerical results and discussion

The results presented in this study are based on the data presented in Section 2 for geometry,
material properties and loading conditions. The elastic properties are dependent on the volume
percent of MWCNTs content and are given in Table 1. In this research, a 4.5% volume content
of MWCNTs is considered.
The history of radial displacement, radial and circumferential stresses, effective stress, radial

and circumferential strains, radial and circumferential creep strains are plotted with and without
the effect of magnetic field in Figs. 3 to 10.
Figures 3a and 3b show the radial displacement histories. Generally, the radial displacements

are increasing with time at a decreasing rate during life of the cylinder so that finally approach
the steady state condition. However, in the presence of a magnetic field, the radial displacements
are lower in magnitude.

Fig. 3. Radial displacement of the nano-composite cylinder (a) without and (b) with the effect of
magnetic field (H = 1E+ 8)

Fig. 4. Radial stress of the nano-composite cylinder (a) without and (b) with the effect of magnetic field
(H = 1E + 8)
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Histories of the radial stress are illustrated in Figs. 4a and 4b in which the boundary con-
ditions at the inner and outer surfaces of the cylinder are satisfied. The radial stresses are
decreasing with time during life of the cylinder. The radial stresses with the effect of magnetic
field are of lower magnitudes.
Histories 9f the circumferential stress are illustrated in Figs. 5a and 5b. The circumferential

stresses are decreasing at the inner surface of the cylinder and are increasing at the outer surface
so that the reference point can be identified where the circumferential stress is not changing with
time.

Fig. 5. Circumferential stress of the nano-composite cylinder (a) without and (b) with the effect of
magnetic field (H = 1E + 8)

Histories of the effective stress are demonstrated in Figs. 6a and 6b. The effective stresses are
very similar to circumferential stresses. This is because the circumferential stresses are almost
ten times greater than the radial stresses and therefore are dominant.

Fig. 6. Effective stress of the nano-composite cylinder (a) without and (b) with the effect of magnetic
field (H = 1E+ 8)

Histories of the radial strain are shown in Figs. 7a and 7b. The radial strains are compressive
because of highly tensile circumferential stresses.
Histories of the circumferential strain are shown in Figs. 8a and 8b. The circumferential

strains are positive due to highly tensile circumferential stresses.
Histories of the radial creep strain are shown in Figs. 9a and 9b. It is clear that the radial

creep strains at zero time are zero, however, their absolute values are increasing with time due
to creep. The creep strains are negative because of highly tensile circumferential stresses.
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Fig. 7. Radial strain of the nano-composite cylinder (a) without and (b) with the effect of magnetic field
(H = 1E + 8)

Fig. 8. Circumferential strain of the nano-composite cylinder (a) without and (b) with the effect of
magnetic field (H = 1E+ 8)

Fig. 9. Radial creep strain of the nano-composite cylinder (a) without and (b) with the effect of
magnetic field (H = 1E+ 8)

Histories of the circumferential creep strain are shown in Figs. 10a and 10b. Due to the
incompressibility condition of the material, the circumferential strains are positive. They are
also increasing with time due to creep deformation.
Generally, the stresses, strains and displacements are changing with time at a decreasing rate

during life of the cylinder so that they finally approach the steady state condition. However, in
the presence of a magnetic field they are all lower in magnitude.
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Fig. 10. Circumferential creep strain of the nano-composite cylinder (a) without and (b) with the effect
of magnetic field (H = 1E+ 8)

7. Conclusion

Time-dependent creep stress, strain and displacement analysis of a rotating thick-walled
nano-composite cylinder made of polypropylene reinforced by multi-walled carbon nanotubes
(MWCNTs)subjected to magnetic, thermal and mechanical load is investigated using Burgers
viscoelastic creep model. The results are presented with and without the effect of magnetic field.
It has been found that the radial displacement, tangential strain and absolute values of the ra-
dial strain are increasing with time at a decreasing rate so that they finally approach the steady
state condition. The effective stresses are decreasing at the inner surface and increasing at the
outer surface of the cylinder and approach their steady state condition after 30 years. In the
presence of magnetic field stresses, the strains and radial displacement are lower in magnitude.
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The aim of the article is to discuss the issue of strength of the circumferential backlash
compensating beam in a high-efficiency gear pump. Three geometric versions of the com-
pensating beam structure differing in the wrapping angle are analyzed. The mechanical
model is solved assuming the curved beam model supported at the contact points between
the beam and the gear teeth. The assumed mechanical structure is statically indeterminate.
In order to determine the reactions in the supports and in the beam fixing, the Menabrei
and Castigliano theorems are used. Based on analytical calculation results, the cause of
compensation structure damage during experimental tests of prototype units is identified
and the most favorable variant of beam structure, from the mechanical strength point of
view, is determined.

Keywords: external gear pump, strength calculation, circumferential backlash compensation

1. Introduction

The efficiency of a gear pump is to a large extent determined by clearances between the gears
and the elements limiting the displacement chamber volume of the pump (Chrobot et al., 1997;
Judin, 1958; Kollek, 1996, 2004; Osiński et al., 2013; Osiński and Kollek, 2007; Ragunathan
and Manoharan, 2012; Vacca and Guidetti, 2011; Wang et al., 2011). Two types of clearance,
i.e. radial clearance and frontal clearance, are distinguished. The former is also referred to
as circumferential clearance (backlash). The circumferential gap is formed by the surface of
casing concavities and that of the cylinder with the radius of the addendum circle of toothed
displacement elements. The gap is not constant along the whole circumference the gears often
move within the bearing slackness limits towards the suction space. In conventional pumps
without radial backlash compensation, the circumferential gap assumes the shape of a crescent
widening towards the delivery side. In such a pump design, the gap ranges from 0.01 to 0.3mm.
The circumferential clearance is a gap with one fixed wall and one movable wall moving in the
direction opposite to that of the pressure drop. This is an advantageous configuration as a result
of the rotational motion of the gear the liquid is lifted from the suction space to the delivery
space, thereby reducing the leakages due to the pressure difference between the gap ends (Singal
et al., 2009; Stryczek, 1995).
Frontal clearances have the shape of a ring limited by the diameter of the dedendum circle

and that of the gear shaft. Most of the leakages are used to cool and lubricate the bearings.
After they pass through the bearings, the leakages are directed via special grooves to the suction
chamber, but some of the volume losses pass directly through the gap into the suction space. The
frontal clearance values are by one order of magnitude lower than the radial clearance values. In
typical pumps, frontal clearances are in a range of 0.01-0.05mm. The recommended clearance
also depends on the pump size. Lower values are recommended for units with a lower specific
output.
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Nowadays backlash compensation is used to improve the efficiency of gear pumps (Kollek
and Radziwanowska, 2015). In addition, this treatment contributes to better running in of the
interacting parts and maintenance of a constant gap despite the wear of the parts. In the curren-
tly produced pumps, mainly the axial backlash compensation is carried out. However, if higher
efficiency is required, it is necessary to compensate also the circumferential gap. The latter can
be compensated in two ways. One way consists in compensating backlash locally along a short
distance. It is further referred to as radial backlash compensation (Fig. 1a). Another method,
developed by the authors, consists in ensuring a constant gap along the whole circumference
(Osiński, 2012a,b; Wiczkowski, 2012).The method is called circumferential backlash compensa-
tion (Fig. 1c).

Fig. 1. Schematic showing the way of sealing gears along circumference plus graph of circumferential
pressure measured in the gear root: (a) pump with radial backlash compensation, (b) pump with axial
backlash compensation, (c) pump with circumferential backlash compensation (Osiński et al., 2012a)

The influence of the applied compensation on the overall efficiency of the pump is shown in
Fig. 2. The comparative diagram is based on specifications found in the manufacturer catalogues
of Bosch, Casappa, Marzocchi, Hamworthy, Hidroirma, Orsta, Parker, PZL-Hydral, Rexroth,
WPH, VPS and on the authors’ own studies of prototype pumps with circumferential backlash
compensation (Osiński, 2013).
It appears from the diagram that the application of different methods of backlash compen-

sation considerably increases the efficiency and working pressure of gear pumps. The currently
produced pumps reach working pressures as high as 32MPa. The innovative circumferential
backlash compensation method enables one to increase the pressures by nearly 20%, i.e. to the
level of 40MPa. The increasing of the internal tightness also makes it possible to increase the
total efficiency by about 5% on average.

2. Circumferential compensation structure

There are three versions of the displacement pump structure with a compensating pressure
chamber (Osiński, 2013; Osiński et al., 2012), differing in the design of the compensating chamber
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Fig. 2. Comparison of total efficiency ηc of gear pumps with regard to forcing pressure pt and backlash
compensation (based on catalogues of major manufacturers + own research): 1 – without compensation,
2 – with axial compensation, 3 – with axial and radial compensation, 4 – with axial and circumferential

compensation

(Fig. 3). In this pump, two interacting gears perform rotations in the directions marked in Fig. 3,
forcing the working liquid (oil) from the suction chamber on the left side of the pump (Fig. 3)
through the inter tooth spaces into the delivery chamber on the right side of the pump.

Fig. 3. Schematic of the displacement pump with different compensating beam designs: (a) beam with a
wrapping angle ϕ0 = 102◦, (b) ϕ0 = 132◦, (c) ϕ0 = 169◦

Experimental studies of prototypes of such pumps have shown that during operation under
heavy loads (at pressures p above 20MPa) the beam closing the compensating pressure chamber
is susceptible to failure in the place of its fixing because of too small beam thickness. The aim
of the calculations presented in this paper is to determine (from the strength condition) the
minimum thickness h in the fixed cross section of the beam ensuring that the stresses in this
cross section are carried.
Three geometric versions of the compensating beam structure have been designed. The most

optimal version will be selected on the basis of theoretical calculations and experiments. The
versions differ in the beam length, i.e. its wrapping angle, and so in the number of teeth inter-
acting with the beam. For the statical analysis, a fixed gear position in which one of the teeth
is in contact with the beam fixing cross section is assumed in each of the cases. The versions
include:

a) a beam with a wrapping angle ϕ0 = 102◦, interacting with three teeth of the gear, one of
which is in contact with the beam fixing cross section (Fig. 3a);

b) a beam with a wrapping angle ϕ0 = 132◦, interacting with four teeth of the gear, one of
which is in contact with the beam fixing cross section (Fig. 3b);

c) a beam with a wrapping angle ϕ0 = 169◦, interacting with five teeth of the gear, one of
which is in contact with the beam fixing cross section (Fig. 3c).
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3. Static calculations for the pressure chamber beam

3.1. Beam with a wrapping angle ϕ0 = 102◦

3.1.1. Beam geometry and loading diagram

During the operation of the pump, the compensating chamber beam is loaded from the out-
side with compensating pressure p2 constant along the whole length of the beam, and from the
inside with working pressure p1 (Fig. 4a). The pressure p1 decreases in the successive intertooth
spaces from the initial value p1p = p2 at the inlet to the compensating chamber up to end value
p1k = 0.5p2 in the tooth space at the beam fixing. Thus the pressure difference ∆p = p2 − p1k
constitutes a linearly variable continuous load q(ϕ) for the beam, whose initial value is
q(ϕ = 0) = 0 and its end value is q(ϕ = 2ϕ1 + α) = q0 = ∆pb, where b is the beam width
(Fig. 4b). Then the beam load can be reduced to a flat system.

Fig. 4. (a) Static diagram of the beam with the wrapping angle of 102◦, loaded with working
pressure p1 and compensating pressure p2, (b) diagram after introduction of continuous load replacing

the action of pressures p1 and p2

As a result of the difference between the pressure p2 and p1, the beam comes into contact with
the pump gear teeth, constituting movable supports of the beam, in points A and B (Fig. 2b).
Respective reactions RA and RB and friction forces TA and TB , whose sense is consistent with
the direction of the rotational motion of the pump gear, occur in the supports. Two reactions:
RCx and RCy and fixing moment MC occur in the beam fixing place (point C). The directions
of reactions RCx and RCy correspond to the adopted flat reference system (xy) whose origin is
in the centre of gravity of the fixed cross section and which is connected with the normal and
tangent direction of this cross section (Fig. 4b).
The angles ϕ1 (marked in Fig. 4) between the central surfaces of the teeth amount to

ϕ1 = 360◦/10 = 36◦ (the pump gears have 10 teeth) while the complementary angle between
point A and the beginning of the beam amounts to α = 30◦. The beam width (in the direction
perpendicular to the load surface) is constant and amounts to b = 26.3mm.

3.1.2. Solutions for beam static load system

For the assumed beam loading diagram (Fig. 4b), the static equilibrium equations have the
form

∑
Px = RCx −Qx +RBx +RAx + TC + TBx + TAx = 0

∑
Py = RCy −Qy +RBy +RAy − TBy − TAy = 0

∑
MC =MC +RBr sinϕ1 +RAr sin 2ϕ1 − TB(r − r cosϕ1)− TA(r − r cos 2ϕ1)
−Qr sin(ϕc/3) = 0

(3.1)
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The equations include the reaction force and friction force components amounting to:
RAx = RA sin 2ϕ1, RAy = RA cos 2ϕ1, RBx = RB sinϕ, RBy = RB cosϕ1, TAx = TA cos 2ϕ1,
TAy = TA sin 2ϕ1, TBx = TB cosϕ1, TBy = TB sinϕ1. Moreover, the action of continuous lo-
ad q(ϕ) has been replaced with the concentrated force Q applied to the point corresponding to
angle ϕ = 2/3ϕ0, where: ϕ0 = (2ϕ1 + α) is the maximum angle ϕ value (for the whole beam
span). Then the value of force Q can be calculated from the formula

Q =
1
2
q0rϕ0 (3.2)

and the force components for the axes x and y amount to Qx = Q sin(ϕ0/3) and
Qy = Q cos(ϕ0/3).
It appears from Eqs. (3.1) that the analyzed static system is a double hyperstatic system. The

Menabrei energy method, according to which the derivative of the system elastic energy relative
to the hyperstatic reaction amounts to zero (Zakrzewski and Zawadzki, 1983; Niezgodziński and
Niezgodziński, 1996; Dyląg et al., 1999), will be used to determine reactions in the supports and
in the beam fixing.
The bending moment equations and their derivatives over hyperstatic reactions RA and RB

depending on the angle ϕ for particular beam intervals are as follows:
— interval I (0 < ϕ ¬ α)

M Ig (ϕ) = −
qr2ϕ2

2ϕ0
sin

ϕ

3
∂M Ig
∂RA

= 0
∂M Ig
∂RB

= 0 (3.3)

— interval II (α < ϕ ¬ α2 = α+ ϕ1)

M IIg (ϕ) = −
qr2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TA[r − r cos(ϕ− α)]

∂M IIg
∂RA

= r sin(ϕ− α) ∂M Ig
∂RB

= 0

(3.4)

— interval III (α2 < ϕ ¬ ϕ0)

M IIIg (ϕ) = −
qr2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TA[r − r cos(ϕ− α)]

+RBr sin(ϕ− α2)− TB [r − r cos(ϕ− α2)]
∂M IIIg
∂RA

= r sin(ϕ− α) ∂M IIg
∂RB

= r sin(ϕ− α2)

(3.5)

In the above equations, the expression for the bending moment produced by continuous
load q(ϕ) = q0ϕ/ϕ0 takes into account equation (3.2): Q(ϕ) = 0.5rϕq(ϕ) = q0rϕ

2/(2ϕ0), as-
suming that for any cross section defined by angle ϕ the substitute force Q(ϕ) is applied to
the point situated relative to this cross section at angle ϕ/3: MQ(ϕ) = −Q(ϕ)r sin(ϕ/3) =
[−qr2ϕ2/(2ϕ0)] sin(ϕ/3). Moreover, in order to simplify the notation, the angle α2 = α + ϕ1 is
introduced for determination of the range of variation of angle ϕ in intervals II and III.
According to the Menabrei theorem, hyperstatic reactions RA and RB can be calculated

from the following system of equations
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∂V

∂RA
=

[ α2∫

α

(
−qCr

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)

)
[r sin(ϕ− α)] dϕ

]

+
1
EI

[ ϕC∫

α2

(
−qCr

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α) − TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)]
)
[r sin(ϕ− α)] dϕ

]
= 0

∂V

∂RB
=
1
EI

[ ϕ0∫

α2

(
−qCr

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)]
)
[r sin(ϕ− α2)] dϕ

]
= 0

(3.6)

Having solved the system of equations (3.6), one can calculate reactions RA and RB

RA = 0.2316∆pbr + 0.1915TA − 0.0283TB = 2376.7N
RB = 0.3870∆pbr + 0.8494TA + 0.2997TB = 3978.1N

(3.7)

Then using static equilibrium equations (3.1)one can calculate the reactions in the beam
fixing

RCx = QCx −RBx −RAx − TC − TBx − TAx = 490.4N
RCy = QCy −RBy −RAy + TBy + TAy = 3628.1N
MC = Qr sinϕ03−RBr sinϕ1 −RAr sin 2ϕ1 + TB(r − r cosϕ1)
+ TA(r − r cos 2ϕ1) = 13.35N

(3.8)

3.2. Beam with the wrapping angle ϕ0 = 132◦

3.2.1. Beam geometry and loading diagram

The loading diagram for the beam with the wrapping angle ϕ0 = 132◦ is shown in Fig. 5a,
while its modified version (having pressures replaced with the continuous load) is shown in
Fig. 3b. In the latter version, the beam interacts with four teeth of the gear and the working
pressure p1 decreases from the initial value p1p = p2 for ϕ = 0 up to end value p1k = 0.33p2 for
ϕ = ϕ0. The continuous load acting on the beam, arising due to the pressure difference, and the
resultant substitute force Q is defined the same as for the beam with the wrapping angle 102◦.
Besides the continuous load also the friction forces TA, TB , TC , TD, reactions in the supports (at
the contact with the pump teeth) RA, RB , RC and the reactions in the fixing RDx, RDy, MD
(Fig. 5b) act on the beam.

3.2.2. Solution for beam load static system

For the loading diagram shown in Fig. 5b, the static equilibrium equations have the form
∑

Px = RDx +RCx +RBx +RAx + TD + TCx + TBx − TAx −Qx = 0
∑

Py = RDy +RCy +RBy −RAy − TCy − TBy − TAy −Qy = 0
∑

MD =MD +RCr sinϕ1 +RBr sin 2ϕ1 +RAr cos
ϕ1
2
− TC(r − r cosϕ1)

− TB(r − r cos 2ϕ1)− TA
(
r + r sin

ϕ1
2

)
−Qr sin ϕ0

3
= 0

(3.9)
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Fig. 5. (a) Static diagram of the beam with the wrapping angle of 132◦, loaded with working
pressure p1 and compensating pressure p2, (b) diagram after introduction of continuous load replacing

the action of pressures p1 and p2

The equilibrium equations include the reaction and friction force components amoun-
ting to: RAx = RA cos(ϕ1/2), RAy = RA sin(ϕ1/2), RBx = RB sin 2ϕ1, RBy = RB cos 2ϕ1,
RCx = RC sinϕ1, RCy = RC cosϕ1, TAx = TA sin(ϕ1/2), TAy = TA cos(ϕ1/2), TBx = TB cos 2ϕ1,
TBy = TB sin 2ϕ1, TCx = TC cosϕ1, TCy = TC sinϕ1, Qx = Q sin(ϕ0/3), Qy = Q cos(ϕ0/3).

Since the considered beam is a triple hyperstatic system, in order to calculate the reactions
occurring in the supports and in the beam fixing one should formulate three equations based
on the Menabrei method. Assuming RA, RB and RC as hyperstatic reactions occurring in the
supports, the equations become

∂V

∂RA
=
1
EI

[ α2∫

α

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ−α) − TAr[1− cos(ϕ−α)]

)
[r sin(ϕ−α)] dϕ

]

+
1
EI

[ α3∫

α2

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ−α)− TAr[1− cos(ϕ−α)]

+RBr sin(ϕ−α2)− TBr[1− cos(ϕ−α2)]
)
[r sin(ϕ−α)] dϕ

]

+
1
EI

[ ϕ0∫

α3

(
−q0r

2ϕ2

2ϕC
sin

ϕ

3
+RAr sin(ϕ−α)− TAr[1− cos(ϕ−α)] +RBr sin(ϕ−α2)

−TBr[1− cos(ϕ−α2)] +RCr sin(ϕ−α3)− TCr[1− cos(ϕ−α3)]
)
[r sin(ϕ−α)] dϕ

]
= 0

∂V

∂RB
=
1
EI

[ α3∫

α2

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ−α)− TAr[1− cos(ϕ−α)] (3.10)

+RBr sin(ϕ−α2)− TBr[1− cos(ϕ−α2)]
)
[r sin(ϕ−α2)] dϕ

]

+
1
EI

[ ϕ0∫

α3

(
−q0r

2ϕ2

2ϕC
sin

ϕ

3
+RAr sin(ϕ−α)− TAr[1− cos(ϕ−α)] +RBr sin(ϕ−α2)

−TBr[1− cos(ϕ−α2)] +RCr sin(ϕ−α3)− TCr[1− cos(ϕ−α3)]
)
[r sin(ϕ−α2)] dϕ

]
= 0
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∂V

∂RC
=
1
EI

[ ϕ0∫

α3

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ−α) − TAr[1− cos(ϕ−α)] +RBr sin(ϕ−α2)

− TBr[1− cos(ϕ−α2)] +RCr sin(ϕ−α3)− TCr[1− cos(ϕ−α3)]
)
[r sin(ϕ−α3)] dϕ

]
= 0

Having solved equations (3.10), one can calculate reactions RA, RB and RC

RA = 0.1103∆pbr + 0.2522TA − 0.0259TB + 0.0067TC = 1510.2N
RB = 0.3164∆pbr + 0.7156TA − 0.3009TB − 0.0369TC = 4334.5N
RC = 0.5946∆pbr + 0.6019TA − 0.6787TB + 0.3009TC = 8144.1N

(3.11)

Finally, using static equilibrium equations (3.9), one gets the values of reactions in the beam
fixing

RDx = Qx −RCx −RBx −RAx − TD − TCx − TBx + TAx = 583.8N
RDy = Qy −RCy −RBy +RAy + TCy + TBy + TAy = 3889.9N
MD = Qr sin

ϕ0
3
−RCr sinϕ1 −RBr sin 2ϕ1 −RAr cos

ϕ1
2
+ TC(r − r cosϕ1)

+ TB(r − r cos 2ϕ1) + TA
(
r + r sin

ϕ1
2

)
= 15.98N

(3.12)

3.3. Beam with the wrapping angle ϕ0 = 169◦

3.3.1. Beam geometry and loading diagram

Figures 6a and 6b show the loading diagram and the diagram which takes into account the
replacement of pressures p1 and p2 (acting on both sides of the beam) with continuous load q
for the pump with the compensating chamber with the wrapping angle ϕ0 = 169◦.

Fig. 6. (a) Static diagram of the beam with the wrapping angle ϕ0 = 169◦, loaded with working
pressure p1 and compensating pressure p2, (b) diagram after introduction of continuous load replacing

the action of pressures p1 and p2

In this case, the chamber beam is in contact with five teeth of the gear and the wor-
king pressure p1 decreases from the initial value p1p = p2 for ϕ = 0 down to the end value
p1k = 0.166p2 for ϕ = ϕ0. Besides the continuous load, as shown in Fig. 4b, the friction forces
TA, TB, TC , TD, TE , reaction forces in the supports RA, RB, RC , RD and the forces in the beam
fixing REx, REy, ME act on the beam.
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3.3.2. Solutions for the beam subject to load static scheme

The static equilibrium equations for the considered beam assume the form

∑
Px = REx +RDx +RCx +RBx +RAx + TE + TDx + TCx − TBx − TAx −Qx = 0

∑
Py = REy +RDy +RCy −RBy −RAy − TDy − TCy − TBy − TAy −Qy = 0

∑
ME =ME +RDr sinϕ1 +RCr sin 2ϕ1 +RBr cos

ϕ1
2
+RAr cos

3ϕ1
2

− TD(r − r cosϕ1)− TC(r − r cos 2ϕ1)− TB
(
r + r sin

ϕ1
2

)

− TA
(
r + r sin

3ϕ1
2

)
−Qr sin ϕc

3
= 0

(3.13)

The reaction and friction force components in equations (3.13) are described by the formu-
las: RAx = RA cos(3ϕ1/2), RAy = RA sin(3ϕ1/2), RBx = RB cos(ϕ1/2), RBy = RB sin(ϕ1/2),
RCx = RC sin 2ϕ1, RCy = RC cos 2ϕ1, RDx = RD sinϕ1,RDy = RD cosϕ1, TAx = TA sin(3ϕ1/2),
TAy = TAcos(3ϕ1/2), TBx = TB sin(ϕ1/2), TBy = TB cos(ϕ1/2), TCx = TC cos 2ϕ1,
TCy = TC sin 2ϕ1, TDx = TD cosϕ1, TDy = TD sinϕ1, Qx = Q sin(ϕ0/3), Qy = Q cos(ϕ0/3).
In order to determine the four hyperstatic reactions (assumed here as the reactions in the

supports) one should formulate four Menabrei equations

∂V

∂RA
=
1
EI

[ α2∫

α

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

)
[r sin(ϕ− α)] dϕ

]

+
1
EI

[ α3∫

α2

−q0r
2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)]
)
[r sin(ϕ− α)] dϕ

]

+
1
EI

[ α4∫

α3

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)] +RBr sin(ϕ− α2)

− TBr[1− cos(ϕ− α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]
)
[r sin(ϕ− α)] dϕ

]

+
1
EI

[ ϕ0∫

α4

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]

+RDr sin(ϕ− α4)− TDr[1− cos(ϕ− α4)]
)
[r sin(ϕ− α)] dϕ

]
= 0

∂V

∂RB
=
1
EI

[ α3∫

α2

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)]
)
[r sin(ϕ− α2)] dϕ

]

+
1
EI

[ α4∫

α3

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)] +RBr sin(ϕ− α2)
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−TBr[1− cos(ϕ− α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]
)
[r sin(ϕ− α2)] dϕ

]

+
1
EI

[ ϕ0∫

α4

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)] (3.14)

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ − α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]

+RDr sin(ϕ− α4)− TCr[1− cos(ϕ− α4)]
)
[r sin(ϕ− α2)] dϕ

]
= 0

∂V

∂RC
=
1
EI

[ α4∫

α3

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ − α2)] +RCr sin(ϕ− α3)

−TCr[1− cos(ϕ− α3)]
)
[r sin(ϕ− α3)] dϕ

]

+
1
EI

[ ϕ0∫

α4

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ − α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]

+RDr sin(ϕ− α4)− TDr[1− cos(ϕ− α4)]
)
[r sin(ϕ − α3)] dϕ

]
= 0

∂V

∂RD
=
1
EI

[ ϕ0∫

α4

(
−q0r

2ϕ2

2ϕ0
sin

ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ − α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]

+RDr sin(ϕ− α4)− TCDr[1− cos(ϕ− α4)]
)
[r sin(ϕ − α4)] dϕ

]
= 0

By solving the Menabrei equations one can determine reactions RA, RB, RC and RD

RA = 0.0908∆pbr − 0.4034TA − 0.0255TB + 0.0073TC − 0.0019TD = 1548.2N
RB = 0.2542∆pbr + 0.7128TA + 0.3001TB − 0.0400TC + 0.0104TD = 4352.4N
RC = 0.4593∆pbr + 0.6065TA + 0.6777TB + 0.3127TC − 0.0400TD = 7863.2N
RD = 0.7524∆pbr + 0.6340TA + 0.6126TB + 0.6750TC + 0.3027TD = 12880.2N

(3.15)

Finally, using static equilibrium equations (3.13), one can calculate reactions in the beam
fixing

REx = Qx −RDx −RCx −RBx −RAx − TE − TDx − TCx − TBx − TAx = 877.0N
REy = Qy −RDy −RCy +RBy +RAy + TDy + TCy + TBy + TAy = 3747.4N

ME = Qr sin
ϕ0
3
−RDr sinϕ1 −RCr sin 2ϕ1 −RBr cos

ϕ1
2
−RAr cos

3ϕ1
2

+ TD(r − r cosϕ1) + TC(r − r cos 2ϕ1) + TB
(
r + r sin

ϕ1
2

)

+ TA
(
r + r sin

3ϕ1
2

)
= 23.8Nm

(3.16)
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4. Calculations of the minimal beam thickness in a fixed cross section

The beam thickness h must satisfy the strength condition for the fixed beam cross section. This
cross section is loaded with reaction forces RC , RD or RE for the pump geometric conditions
at ϕ0 respectively 102◦, 132◦, 169◦ and the bending moment MC , MD or ME , respectively. The
loads generate a complex state of stress in the fixed cross section. The shearing stress (produced
by the tangential component of the reaction denoted generally as Ry) reaches the highest value
in central fibres of the cross section while the bending stress reaches the highest value in extreme
fibres.
The strength condition concerning the maximum shear stress has the form

τmax =
3
2
|Ry|
bh
¬ kt (4.1)

thus the minimal beam thickness must satisfy the criterion

hmin(τ) =
3
2
|Ry|
bkt

(4.2)

The strength condition for the allowable normal stress must take into account the simulta-
neous action of the tensile (or compressive) stress produced by the reaction component Rx and
the bending stress generated by the fixing moment Mu in the extreme fibres

σ = |σr|+ |σg| ¬ kr (4.3)

By substituting the normal stress values (calculated as for straight bars when beam curvature
radius r > 6h, the error due to the shift of the neutral beam bending axis does not exceed 0.5%)
σr = Rx/(bh), σg = 6Mu/(bh2) into equation (4.3), one gets the following equation for the
minimal beam thickness hmin

bkrh
2
min − |Rx|hmin − 6|Mu| = 0 (4.4)

The solution of this equation yields the second value of the minimal beam thickness

hmin(τ) =
|Rx|+

√
R2x + 24Mubkr
2bkr

(4.5)

One should adopt the second value of the two values obtained from formulas (4.2) and (4.5)
as the minimal beam width h.
Table 1 shows exemplary minimal beam thickness values calculated for three geometric ver-

sions of the pump, assuming the experimental friction forces generated by teeth of the gears
Ti = 7.96N, safety factor n = 1.4 and permissible stresses: kr = 350MPa and kt = 400MPa.

Table 1. Exemplary load values and the minimal thickness hmin for the beam with the wrapping
angle ϕ0 = 102◦

Beam wrapping
r b p1k p2 hminangle

ϕ0 = 102◦ 26mm 26.3mm 15MPa 30MPa 2.98mm
ϕ0 = 132◦ 26mm 26.3mm 10MPa 30MPa 3.26mm
ϕ0 = 169◦ 26mm 26.3mm 5MPa 30MPa 3.99mm

The results of the static strength calculations show that from among the three versions of
the compensating chamber the most advantageous one is the version with the beam with thw
wrapping angle ϕ0 = 102◦ for which the minimal beam thickness amounts to 2.98mm. In the
case of the other versions, the beam thickness needs to be increased:
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• for the beam with the wrapping angle ϕ0 = 132◦, the minimal thickness amounts to
3.26mm (an increase by 9.4%),

• for the beam with the wrapping angle ϕ0 = 169◦, the minimal thickness amounts to
3.99mm (an increase by 31%).

Experimental studies are planned to be carried out on prototypes of the pump in order to
verify the results of the calculations.
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In this paper, analysis of plastic deformation of high density polyethylene (HDPE) and po-
lypropylene (PP) during an equal channel angular extrusion (ECAE) process is investigated.
The effects of ram speed, number of passes, processing route and temperature are tested
experimentally using a 135◦ die. The results show that the pressing force decreases with an
increase in the number of passes and reaches a saturation state rapidly for routes A and C
compared to routes BA and BC . Furthermore, it is found that the reduced curvature of the
extruded samples is obtained by route C, however, the maximum warping is obtained by
route A. A slight influence of temperature on the reduction of the warping is observed on
the extruded samples. In order to predict the plastic strain inside the extruded samples, an
elastic viscoplastic model is identified using compressive tests at different strain rates and
coupled with the finite element method (FEM). A good correlation is found between the
numerical modeling and experimental findings. FEM results show that the PP samples di-
splay a higher level of plastic strain compared to HDPE samples. However, almost the same
degree of strain heterogeneity is obtained for both polymers. Finally, in order to reduce the
warping and improve the strain homogeneity, a controlled back-pressure with small corner
angle is expected to be an adequate solution.

Keywords: ECAE, polymers, finite element analysis, plastic strain, back-pressure

1. Introduction

Equal channel angular extrusion (ECAE) is an innovative process to improve physical and
mechanical properties of materials by severe plastic deformation (SPD) without alteration of the
geometric shape of workpiece. Moreover, since the cross-section of the workpiece is not modified
after extrusion, the process can be repeated several times, and by changing the orientation of
the workpiece between consecutive extrusions, stylish microstructures can be developed in the
extruded materials. Up to now, the majority of research and development on ECAE have been
conducted on metallic materials (Segal, 1995; Iwahashi et al., 1996; Valiev and Langdon, 2006).
However, for polymeric materials, little work is available to address the mechanical behaviour
during ECAE process (Sue and Li, 1998; Campbell and Edward, 1999; Li et al., 2000; Weon et
al., 2005; Wang et al., 2006).
According to our knowledge, this process was first applied to polymers by Sue and Li (1998).

They showed that the ECAE process is effective in altering the morphology of a linear low
density polyethylene (LLDP). Sue et al. (1999) reported that for ECAE to be effective, it is
necessary that the extrusion be held at temperatures slightly below the glassy transition in the
case of polycarbonate (PC). For the same polymer, Li et al. (2000) confirmed that the mechanical
properties can be tailored by extruding the material via various processing routes and a different
number of passes.
The effect of molecular anisotropy on the impact strength of polycarbonate (PC) was exami-

ned by Xia et al. (2001a). They found that the enhancement of the impact resistance is directly
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related to the changes in molecular orientation induced by the ECAE process. According to Xia
et al. (2001b), the crystallinity and molecular orientation were identified as two important factors
affecting the dynamic mechanical properties of the ECAE-oriented semicrystalline polyethylene
terephthalate (PET). An improvement of the bending and torsional storage modulus was found.
Creasy and Kang (2005) studied fibre fracture during the ECAE process of short fibre-reinforced
thermoplastics. They found that the fibre length can be controlled and oriented by setting the
process temperature below the melting point of the polymer crystallites. On the other hand,
the effect of different ECAE routes on the tensile, fracture toughness, flexural, and ballistic
impact properties of polymethylmethacrylate (PMMA) was investigated by Weon et al. (2005).
A fruitful discussion was reported by Wang et al. (2006) on lamellar formation and relaxation
in simple sheared polyethylene terephthalate (PET) using the in-situ time resolved synchrotron
Small-Angle X-ray Scattering (SAXS) technique. Recently, numerical and experimental investi-
gations were achieved to highlight the effects of the main geometrical and processing parameters
on the viscoplastic behaviour of polymers during the ECAE process (Zäıri et al., 2008; Aour et
al., 2009; Bouaksa et al., 2014).
The findings presented above show that the ECAE process is an effective tool for the impro-

vement of mechanical properties of polymers by inducing molecular orientation in bulk polymers.
This feature enables ECAE to have useful applications for the fabrication of many anti-impact
components, such as fighter-jet canopies, vehicle structures, windshields, and anti-theft trans-
parencies (Xia et al., 2001a). Furthermore, the ECAE technique can be easily incorporated into
the conventional polymer processing setup without much capital investment by attaching, for
example, a conventional injection unit to the entrance channel, which can potentially be used
for extruding pipes, tubes, rods, sheets, plates and other profiles with significantly improved
physical and mechanical properties (Sue et al., 1999).
In this paper, an experimental and numerical investigation of plastic deformation of two semi-

crystalline polymers (HDPE and PP) during the ECAE process using 135◦ die is presented. In
order to achieve this objective, the paper is organised as follows. The experimental procedure
is discussed in Section 2. Section 3 is focused on the presentation of the experimental results
obtained for the effects of processing routes, number of passes and temperature. Section 4 is de-
voted to describe the elastic viscoplastic constitutive law and its identification using compressive
tests at different strain rates. Section 5 is reserved for the presentation of the FEM results. A
particular attention is made on the effect of the back-pressure on the homogeneity and the level
of the plastic strain distribution into the extruded samples. Finally, some concluding remarks
are given in Section 6.

2. Experimental procedure

2.1. ECAE device

After an optimization study of various geometrical parameters (Aour et al., 2008), an ECAE
device with a channel angle Φ = 135◦ and a corner angle θ = 34◦ has been designed and manufac-
tured (Fig. 1a). The die consists of two square channels of cross-sectional area 10.1mm×10.1mm,
which allows one to apply four routes (A, BA, BC and C) as shown in Fig. 1c. The lengths of
the entrance and exit channels are respectively 75mm and 50mm. An electromechanical Istron
5800 testing machine has been used to extrude the samples through the angular die.

2.2. Processing routes

Figure 1b shows a set of material axes referred to the sample, which is useful in describing
the different routes. The X-direction is the zero strain direction (transverse direction: TD), the
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Fig. 1. (a) Photograph of the ECAE device; (b) diagram of the sample showing material axes used to
describe different routes; (c) schematic illustration of the processing routes: A, BA, BC and C

flow direction (FD) is taken as the Y -direction, and the Z-direction (normal direction: ND) is
normal to the plane in which the sample shear occurs. In this study, four different routes are
investigated (Fig. 1c):

• Route A: the sample is re-inserted in the same orientation as the previous pass.
• RouteBA: the sample is rotated alternatively by +90◦ and−90◦ around the Y -axis between
two successive passes.

• Route BC : the sample is rotated by +90◦ around the Y -axis after each pass.
• Route C: the sample is rotated around the Y -axis by 180◦ and then re-extruded.

2.3. Materials and samples preparation

Two semi-crystalline polymers (high density polyethylene HDPE and polypropylene PP) ha-
ve been selected for this study. These polymers have been supplied by the Goodfellow Company.
The crystal content is about 70% for HDPE and 55% for PP. ECAE samples of 10mm×10mm
cross-section and 70mm in length have been cut from commercially plates in the same direction,
then surfaced simultaneously on the cutting facets and polished. The HDPE and PP samples
have been respectively annealed in vacuum at 120◦C and 85◦C for 2 h.
In this work, four parameters are studied experimentally: the ram speed, number of passes,

processing route and temperature effect. The extrusion tests have been performed without lubri-
cation.

3. Experimental results

3.1. Effect of ram speed

Figure 2 illustrates the influence of the ram speed on the evolution of the pressing force using
a 135◦ die in the case of HDPE (Fig. 2a) and PP samples (Fig. 2b). Three different values of
ram speeds (0.7, 0.07 and 0.007mm/s) have been tested without lubrication.
It can be observed that the pressing force required for extrusion increases with an increase

in the ram speed for both polymers. Indeed, when the ram speed is increased from 0.7 to
0.007mm/s, the maximum force required for extrusion of HDPE samples varies from 932 to
1212N (i.e., a difference of 280N), however, for PP samples, a difference of 432N is noticed.
Furthermore, at the stage of the steady state of the plastic flow, different trends are revealed
for each material. In the case of HDPE, the pressing force remains almost constant, however, in



266 B. Aour, A. Mitsak

Fig. 2. Variation of the pressing force versus ram displacement in one ECAE pass using 135◦ die in the
case of (a) HDPE and (b) PP samples

the case of PP, a slight increase is observed. This can be attributed to the flexibility of HDPE
which is higher than that of PP.

3.2. Effect of the processing route and number of passes

The advantage of the ECAE process, in addition to maintaining constant cross-section of
the extruded sample throughout the process, it is possible to generate a number of dissimilar
deformation histories and create various forms of molecular orientations if multiple passes with
a suitable selection of processing routes are carried out. It was demonstrated by Li et al. (2000)
that well-controlled morphology can lead to great improvements in physical and mechanical
properties of the extruded polymer both along and perpendicular to the extrusion direction. In
this subsection, the samples are processed via four ECAE processing routes using a 135◦ die
at room temperature and a ram speed of 0.70mm/s. In order to make a comparison between
the different routes, the evolution of the maximum pressing force versus the number of passes is
plotted in Fig. 3. It can be seen that, for routes A and C, the pressing force decreases with an
increase in the number of passes, however in the case of routes BA and BC , a periodic variation
is noticed for HDPE samples, and a random variation is highlighted for PP samples. These
variations explain that the materials have different strengths in each direction due to anisotropy
and mobility of the crystalline lamellae inside the bulk material with respect to ECAE loading.
Moreover, it can be observed that the routes A and C reach their saturation values after almost
four passes, while the routes BA and BC require a high number of passes to achieve its saturation
state.

Fig. 3. Variation of the maximum force versus the number of passes during extrusion through a 135◦ die
with different routes for (a) HDPE and (b) PP samples
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The warping of the extruded samples due to various processing routes has been also quantified
in this experimental part. Figure 4 shows pictures of HDPE samples that have undergone sixteen
passes of ECAE by different processing routes. The obtained results for HDPE and PP samples
are listed in Table 1. The maximum curvature of the sample (warping) has been quantified by
measuring the height of the sample before and after the ECAE process. For both polymers, it
has been found that the maximum warping is always obtained by route A, however the minimum
warping is obtained by route C. Furthermore, the warping obtained for PP samples is quite high
than that of HDPE samples.

Fig. 4. HDPE samples extruded at room temperature after 16 passes using a 135◦ die with different
processing routes

Table 1. Maximum values of the curvature obtained by different routes using a 135◦ die and a
length of 70mm after 16 passes on HDPE and PP samples

Extruded
material

Height before Height after 16 Curvature
Route ECAE ECAE passes: Cu = Ha −Hb

Hb [mm] Ha [mm] [mm]

A
HDPE 9.85 16.50 6.65
PP 9.77 17.20 7.43

BA
HDPE 10.17 15.00 4.83
PP 9.29 13.50 4.21

BC
HDPE 10.13 13.50 3.37
PP 9.13 13.25 4.12

C
HDPE 9.72 13.00 3.28
PP 9.65 13.15 3.50

3.3. Effect of temperature

According to Sue et al. (1999), the warping is generated due to the existence of residual
stress and the concurrent stress relaxation process on the extruded samples. Moreover, it is
believed that the stress relaxation process can be greatly accelerated at elevated temperatures.
Consequently, in order to highlight the temperature effect on the warping reduction by stress
relaxation, the ECAE process has been carried out on HDPE samples at different temperatures
T = {25◦C, 40◦C, 60◦C} via routes A and C. The obtained results after sixteen passes are
illustrated in Table 2.
It can be seen that a slight reduction of warping is obtained even with several passes and at

elevated temperatures. Noting that, in the case of PC samples, a significant reduction of warping
was found by Sue et al. (1999) via elevation of the extrusion temperature. However, in the case
of HDPE and PP, it is advised to test other parameters such as the use of back pressure which
will be the subject of the last Section.
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Table 2. Maximum values of the curvatures of HDPE samples obtained after 16 passes using a
135◦ die via routes A and C at T = {25◦C, 40◦C, 60◦C}

Tempe-
rature
[◦C]

Height before Height after 16 Curvature
Route ECAE ECAE passes: Cu = Ha −Hb

Hb [mm] Ha [mm] [mm]

25 9.85 16.50 6.65
A 40 9.87 16.50 6.63

60 9.80 15.00 5.20
25 9.72 13.00 3.28

C 40 9.72 13.00 3.28
60 9.75 12.50 2.75

4. Elastic-viscoplastic constitutive model

The constitutive equations governing the behaviour of polymers under the ECAE process lo-
adings must take into account complex phenomena such as viscoplasticity, hardening, relaxation
and strain memory effect. These phenomena were studied by many authors basing on physi-
cal (Arruda et al., 1995; Ahzi et al., 2003; Bouaksa et al., 2014) or purely phenomenological
(Chaboche, 1997; Ho and Krempl, 2002; Colak, 2003) considerations. In this paper, a phenome-
nological constitutive model based upon Chaboche’s model is applied (Lemaitre and Chaboche,
1994; Ambroziak and Klosowski, 2006). This model incorporates the initial linear response, the
non-linear behavior and the rate-dependent yield stress.

4.1. Constitutive equations

One of the fundamental principles that all constitutive equations have to satisfy is the prin-
ciple of objectivity. Tensor rates used in the constitutive equations need to be objective. A
corotational objective rate of a tensor M is denoted by

M̂ = Ṁ+MΩ−ΩM (4.1)

where Ṁ is the material rate with respect to the basis of M. M̂ is the objective rate of M,
and Ω is a skew-symmetric spin tensor. A well-known objective rate is the Jaumann rate. It is
obtained by setting Ω =W in Eq. (4.1)

σ̂ = σ̇ + σW −Wσ (4.2)

where σ̂ is the objective rate of the Cauchy stress tensor σ based upon the spin tensorW.
The strain rate tensor D is decomposed into an elastic part De and a viscoplastic part Dvp

as follows

D = De +Dvp (4.3)

The elastic strain rate tensor De is given by the hypoelastic law

De = C−1σ̂ (4.4)

where C is the fourth-order isotropic elastic modulus tensor

Cijkl =
E

2(1 + ν)

[
(δikδjl + δilδjk) +

2ν
1− 2ν δijδkl

]
(4.5)
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with E, ν and δ are respectively Young’s modulus, Poisson’s ratio and the Kronecker-delta
symbol.
The viscoplastic strain rate tensor Dvp can be written by

Dvp =
3
2
ṗ
σ′ −X′
J(σ −X) (4.6)

where J(σ−X) is a distance in the stress space. For a material meeting the Von Mises criterion,
we use

J(σ −X) =
√
3
2
(σ′ −X′) : (σ′ −X′) (4.7)

where σ and X are the stress and back stress tensors, and σ′ = σ − tr (σ)/3I and X′ are the
stress and back stress deviatoric tensors in the stress space, respectively. ṗ is the equivalent
viscoplastic strain rate written as

ṗ =
〈J(σ −X)−R− k

K

〉n
(4.8)

The brackets are defined by 〈w〉 = wH(w), where H(w) is the Heaviside function (H(w) = 0
if w < 0, H(w) = 1 if w ­ 0). k is the yield stress at zero plastic strain, K is the viscoplastic
resistance, n is the rate sensitivity coefficient and R is the isotropic internal stress or the drag
stress.
The strain hardening of the material is described by isotropic and kinematic hardening rules

which allow both the expansion and translation of the yield.
The isotropic hardening rule is defined by

Ṙ = b(R1 −R)ṗ with R(0) = 0 (4.9)

where R1 is the boundary of isotropic hardening and b defines the rate at which the size of the
yield surface changes as the plastic straining develops.
Equation (4.9) may be replaced by its integrated form as (Lemaitre and Chaboche, 1994)

R = R1[1− exp(−bp)] (4.10)

The nonlinear kinematic hardening is defined from the linear-Ziegler rule by adding the recall
term as shown in the evolution of the back stress tensor below (MSC.Marc, 2005)

Ẋ =
C

R+ k
(σ −X)ṗ− γXṗ with X(0) = 0 (4.11)

where C and γ are two material constants. γ = 0 stands for the linear-kinematic rule.
The evolution law given by (4.11) may be formulated in terms of the objective rate of the

back stress X, say X̂, as follows (Bruhns, 2009)

X̂ = K(τ ,X, κ) : Dvp (4.12)

whereK(τ ,X, κ) is a 4th order tensor-valued constitutive function, τ is the Kirchhoff stress and
κ is a scalar internal variable.

4.2. Identification of the material parameters

The material parameters (E, k,K, n, b,R1, C, γ) of the elastic-viscoplastic constitutive law
have been identified from a least-square regression fitting using the experimental data of com-
pression tests on HDPE and PP specimens at room temperature and under different strain
rates (Aour, 2007). The values of the identified parameters for the studied polymers are listed
in Table 3. Figure 5 shows a fairly good agreement between the identified constitutive model
and experimental stress-strain curves of HDPE and PP. Indeed, the constitutive law is able to
reproduce three main features of the behaviour: the linear elastic response, the rollover to yield
and the post-yield response.
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Table 3. Values of material parameters for HDPE and PP

Parameter Unit
Values for Values for
HDPE PP

E MPa 500 1100
ν – 0.38 0.4
k MPa 10 10
K MPa 15.6 30.2
n – 5.2 6.9
b – 40 65
R1 MPa 10 18
C MPa 50 15
γ – −1.1 −3.2

Fig. 5. Stress-strain curves obtained by compression tests and the constitutive model for (a) HDPE and
(b) PP at room temperature and different strain rates

5. Finite element results

In order to predict the plastic deformation behaviour of HDPE and PP samples during the
ECAE process, finite element simulations have been carried out using the software MSC.Marc CO
under plane-strain conditions. The die geometry, sample dimensions and processing conditions
have been taken similar to those used in the experimental study. The sample has been meshed
with 2800 four-node isoparametric elements. The die and the ram have been assumed to be rigid.

5.1. Estimation of the pressing force during ECAE

Figure 6 shows a comparison between the experimental pressing force-ram displacement
curves and the finite element results using different friction coefficients for the extrusion of
HDPE and PP samples through a 135◦ die at a ram speed of 0.70mm/s. The friction conditions
between the tooling and the samples are modelled using Coulomb’s friction law. As shown in
Fig. 6, the FEM results are closer to the experimental data when the friction coefficient is equal
to 0.075 for HDPE and 0.025 for PP. It is worth noting that the damage mechanisms, which
occur at the elbow of the die (plastic deformation zone), have not been modelled in the present
constitutive model. Thus, the comparison is only made for the stage of steady state of the
material flow during the ECAE process.

5.2. Estimation of the equivalent plastic strain

Figure 7 shows the equivalent plastic strain contour plots of HDPE and PP samples during
the ECAE process with a ram speed of 0.70mm/s considering the friction coefficients which
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Fig. 6. Comparison between the experimental curve and FEM results using different friction coefficients
in the case of (a) HDPE and (b) PP

gave the best agreement with the experimental results, i.e., f = 0.075 for HDPE and f = 0.025
for PP. It can be observed that the plastic strain is not uniform along width of the samples
for both polymers. It should be noted that the effective plastic strain generally decreases from
the top surface to the bottom surface of the samples. This can be attributed to the presence
of the bending mechanisms since the inner part of the sample flows faster than the outer part.
In other words, the deformation mechanism in the bottom region is rather bending than shear.
Furthermore, it can be seen that the fronts of the extruded samples have not undergone a high
level of plastic deformation. This is mainly due to the filling status of the channel when the
sample passed through the elbow.

Fig. 7. Equivalent plastic strain contours for ECAE of (a) HDPE and (b) PP samples using a 135◦ die

In order to quantify the degree of strain homogeneity inside the sample, the distribution of
the equivalent plastic strain along the sample width at the steady state region is presented in
Fig. 8. It can be seen that the equivalent plastic strain in the PP sample is higher than that
of the HDPE sample. However, almost the same degree of strain heterogeneity is obtained for
both polymers, since the variation factor is 24% for HDPE and 22% for PP. Noting that the
variation factor denoted by V is defined as the ratio of the standard deviation s to the average
equivalent plastic strain εpave (Aour et al., 2006)

V =
s

εpave
=
1
εpave

√√√√ 1
N

N∑

i=1

(εpi − εpave)2 · 100% (5.1)

where εpi is the equivalent plastic strain value at a given integration point along the sample
width, εpave is the arithmetic average of the equivalent plastic strain values computed on N
integration points.
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Fig. 8. Distribution of the equivalent plastic strain in HDPE and PP samples extruded by a 135◦ die

5.3. Equivalent plastic strain rate

It is recognized that the stress-strain behaviour of polymers is strongly dependent on the
strain rate due to the viscoplastic nature of polymers (Ward and Hadley, 1995). In order to
highlight the spatial variation of the plastic strain and the trends in the degree of homogeneity,
the strain rate distribution within the plastic deformation zone (PDZ) is addressed here. Indeed,
the more the plastic deformation rate is uniform along the shear plane, the greater is the degree
of homogeneity of the plastic deformation into the sample. Figure 9 shows the distribution of the
equivalent plastic strain rate ε̇p at an intermediate stage of the ECAE process using a 135◦ die
for HDPE and PP samples. It can be seen that the distribution of ε̇p inside the PDZ is neither
uniform nor symmetrical with respect to the shear plane, which justifies the heterogeneity of the
plastic strain distribution. Furthermore, it can be observed that this later decreases significantly
from the inner corner to the outer corner. This aspect can be allotted to the coupled effect of
the viscoplastic behaviour and geometrical features of the die.

Fig. 9. Distribution of the equivalent plastic strain rate inside (a) HDPE and (b) PP samples during the
ECAE process using a 135◦ die

5.4. Effect of the back-pressure

In order to improve the degree of the plastic strain homogeneity and reduce the warping
of the samples, the application of back-pressure seems to be a suitable solution. It consists
in applying a constant load to the sample front at the exit channel using a second ram. The
obtained results for the equivalent plastic strain distribution along width of the HDPE sample by
applying different values of back-pressure are shown in Fig. 10. It can be seen that a significant
improvement in plastic strain homogeneity is obtained when the corner angle θ = 5◦ and the
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back-pressure P = −500N (Fig. 10a), however, when θ = 34◦, a slight effect is highlighted
(Fig. 10b). Indeed, when θ = 5◦, the variation factor is reduced by 11% (from V(P=0N) = 28%
to V(P=−500N) = 17%), however, when θ = 34◦, the variation factor is reduced by 4% (from
V(P=0N) = 24% to V(P=−500N) = 20%). Consequently, in order to improve the plastic strain
homogeneity, it is advised to use a low outer corner angle with an adequate back-pressure. This
allows one to promote shearing deformations and reduction of the bending mechanisms.

Fig. 10. Effect of back-pressure on the evolution of equivalent plastic strain in the case of a 135◦ die

6. Conclusion

In this study, the effects of ram speed, processing route, number of passes, temperature and back-
pressure on HDPE and PP behaviour during the ECAE process using a 135◦ die are investigated
by experimental testing and finite element modeling. The following conclusions can be drawn:

• It is found that the pressing force required for extrusion increases with an increase in the
ram speed, and the pressing force of PP samples is about 200N higher than that of HDPE.

• For both polymers, the significant reduction of warping is obtained by route C, whereas,
the maximum warping is obtained by route A.

• It is found that the pressing force decreases significantly with an increase in temperature,
while a slight reduction of warping is observed as the extrusion temperature is increased.

• A good agreement is noticed between the experimental curves and the FEM results when
the friction coefficients are equal to 0.075 for HDPE and 0.025 for PP. This allows one to
carry out the ECAE process without a lubricant.
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• It is found that PP samples display a higher level of plastic strain than HDPE samples.
However, almost the same degree of strain heterogeneity is obtained for both polymers.

• The distribution of the equivalent plastic strain rate inside PDZ is found to be neither
uniform nor symmetrical about the shear plane.

• It is expected that the use of a low corner angle with an adequate back-pressure can
effectively reduce the warping and improve the strain homogeneity as well as the level of
shear deformation.
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In this paper, the finite element method is used to analyse the crack behaviour in the
orthopedic cement of the total hip replacement by computing the stress intensity factors
(SIFs) arround the crack tip. In this work, three cases are studied: crack emanating from
a cavity, interaction effect of the crack emanating from a cavity with another cavity and
the interaction effect of two cracks emanatingfrom two cavities. The stress intensity factors
under mixed mode problems at the crack tip are computed for three zones of prosthesis:
proximal, median and distal. The obtained results show that the crack initiated from a
micro-cavity in the distal zone of cement can be propagated at the same time by opening
and shearing of its lips. It is contrary to that initiated in the proximal zone which cannot
be propagated. The mechanical behaviour of cracks in the medial zone depends of the crack
initiation position.

Keywords: stress intensity factor, crack, cavity, orthopedic cement

1. Introduction

Over estimated 800 000 total hip replacements are being performed worldwide annually (Jasty
et al. 1991; Leroy 1992). Primary hip arthroplasty is subjected to failure due to the loosening
of the implant or the prosthetic cup. 15% of the hip arthroplasty today are revision operations.
A successful surgical procedure is developed where a ball-socket structure is used to replace the
deceased or damaged hip joint. The replacement cup socket is usually attached to pelvis by
acrylic bone cement which consists of a solid component of polymethylmethacrylate (PMMA)
powder and a liquid component of monomethylmethacrylate (MMA). After mixing, polyme-
rization takes place and within a few minutes of application to the bone cavity, the mixture
becomes solid (Poitout, 1992; Li et al., 2002). The presence of a defect in the cement during
mixing can locally lead to a region of stress concentrations producing possible fracture of the
cement and consequently the loosening of the prosthetic cup. There are almost three kinds of
defects: porosities, inclusions and cracks.
It is known that cracks are the most dangerous defect because of the presence of stress

intensity on their front. The majority of cracks identified in the orthopaedic cement are (Hertzler
et al., 2002; Bachir Bouiadjra, 2007): cracks initiated at porosities, cracks initiated during cement
withdraw and cracks initiated at the junction between the bone and cement or between the
cement and cup.
In literature, numerical works have been devoted to study the mechanical behaviour of

cracks in the orthopedic cement: Benouis et al. (2015) presented numerical modeling of the
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crack propagation trajectory in the cement of reconstructed acetabulum. The direction crack
was evaluated as a function of the displacement extrapolation technique and the strain energy
density theory. Benouis et al. (2015) investigated the 3D-FE method to analyse the distribution of
equivalents Von Mises stress around a cavity located in the bone cement polymethylmethacrylate
(PMMA). The results showed that the micro-porosity located in the proximal and distal zone
of the prosthesis was subject to a higher stress field. Sahliet al. (2014) studied damage of the
orthopedic cement around the micro-cavity and estimated the length of the crack emanating
from the microcavity for each position of the human body. The results showed that the damaged
area was influenced by the cavity shape. Oshkour et al. (2013) investigated the X-FE method
to analyze the behaviour of the internal circumferential cracks located in the cement layer of
the cement-prosthesis interface during the main phases of the gait cycle. Benbarek et al. (2013)
presented a numerical analysis of the crack growth path in the cement mantle of the reconstructed
acetabulum. The maximal circumferential stresses criterion was used to determine the direction
of the crack emanating from a micro-void in the cement layer. Bouziane et al. (2013) showed that
the stress intensity factor evaluated for a crack emanating from an inclusion was higher than the
crack emanating from a cavity. Ouinas et al. (2012) used the FEM to analyze the influence of
the presence of microvoid and a crack emanating from the microvoid on the fracture behavior of
bone cement. Flitti et al. (2010) analyzed the propagation criteria of cracks to predict the failure
behaviour of cemented hip prostheses under monotonic loading conditions. That analysis was
carried out on various zones of the cement along the bone, namely the proximal, the medial and
the distal positions. Benbarek et al. (2007) investigated the FE method to analyse behaviour
of the crack emanating from a microvoid by computing the SIFs at the crack tip. Taylor et al.
(2003) used analytical and numerical methods to predict damage of the bone.

The use of crack propagation laws based on the stress intensity factor range is the most
successful engineering application of fracture mechanics. The stress intensity factors are a very
important parameter in fracture analysis. These factors define the stress field close to the crack
tip of a crack and provide fundamental information on how the crack is going to propagate.
The use of this factor can be an effective tool to analyse the fracture behaviour of cracks in the
orthopedic cement.

The aim of this paper is to analyse the behaviour of cracks in the orthopedic cement by
computing the SIFs. In this study, three cases are considered: crack emanating from a cavity,
crack emanating from a cavity with another cavity and two cracks emanating from two cavities.

1.1. Geometrical model

Figure 1a shows the geometrical model used in this study. A force of 2400N is applied to
the structure as shown in Fig. 1b (Bergmann et al., 1993). The prosthesis is divided into three
zones: proximal, median and distal and two parts: interior (right part) and exterior (left part).

The Finite element standard code ABAQUS V 6.11 (Dassault Systèmes, RI, USA) has been
employed for the modeling of the problem. For the mesh generation of our model, the element
type ‘CPS8R’ of ABAQUS code is used. It is a higher order two dimensional, 8-node element
having two degrees of freedom at each node (translations in the nodal x and y directions),
quadratic displacement behaviour and the capability of forming a triangular-shaped element,
which is required at the crack-tip areas (Fig. 2a).

Due to the singular nature of the stress field in the vicinity of the crack, the singular elements,
shown in Fig. 2b, are consideredat each crack-tip area, which is modeled with a finer mesh.

The model is divided into three regions of different elastic constants with isotropic material
properties assumed in each region. The main regions are: implant (Ti-6Al-4V), cement (PMMA)
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Fig. 1. (a) Geometrical model considered in the study, (b) typical mesh model

Fig. 2. (a) ‘CPS8R’ eight-node finite element and (b) singular option

and femoralbone. Table 1 shows the material properties used in this study (Kalapana, 2004; Flitti
et al., 2010).

Table 1. Material properties

Material
Young’s modulus Poisson’s ratio

E [MPa] ν [–]

Implant (Ti-6Al-4 V) 100 000 0.33
Cement (PMMA) 2000 0.25
Femoral bone 20 000 0.25

2. Results and analysis

To analyze the behaviour of cracks in the orthopedic cement, three cases are considered: the
crack emanating from a cavity, interaction of the crack emanating from a cavity with another
cavity and interaction of two emanating cracks from a cavity (Fig. 3).

2.1. Case I: crack emanating from a cavity

A crack of length a emanating from a circular cavity (with diameter D = 200µm) is supposed
to exist in the orthopedic cement for different zones: proximal, medial and distal. Figure 4 shows
a typical mesh model of the prosthesis. The stress intensity factors KI and KII are obtained
using the J-integral method. The plane stress state conditions are assumed.
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Fig. 3. Schematic representations of various cases: (a) case I: crack emanating from a cavity, (b) case II:
crack emanating from a cavity with another cavity, (c) case III: two cracks emanating from two cavities

Fig. 4. Crack emanating from a cavity (case I)

Figures 5a and 5b show respectively the variation of mode I and II stress intensity factors
(SIF) in function of the crack length for different zones of the prosthesis (proximal, median and
distal) and for two parts (interior and exterior).
According to Fig. 5a, it can be seen that the exterior part of the prosthesis is solicited in

compression because mode I stress intensity factors are negatives in the different zones (median,
distal) except for the zone proximal where mode I SIF is null.

Fig. 5. Variation of SIFs KI and KII of the crack emanating from a cavity (Case I)

In the interior part, the SIFs KI increases with the crack length in the distal and medial
zones. In fact, the maximal SIFs values are in the distal zone (0.5MPam1/2) for a crack length
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3mm. On the other hand, the SIF value in the proximal zone is 0.15 MPam1/2 for a crack
length 3mm. One notes that the minimal values localized in the medial zone with negative
values are −0.1MPam1/2 for a crack size 3mm. The cement in the distal zone presents the
maximal fracture risk of the prosthesis compared to the other zones.
According to Fig. 5b, it can be noted that mode II stress intensity factor (KII) values are

null in the distal zone of the interior part for a crack length varied between 0.5 and 2.5mm.
These results indicate that these cracks located in the distal zone can propagate according to
the opening mode (mode I) with: KI > 0 and KII = 0.

2.2. Case II: interaction effect of the crack emanating from a cavity with another cavity

In this case, a crack of length a = 0.5mm emanating from a circular cavity of diameter
D = 200µm is supposed to exist in the three zones of the prosthesis. Another cavity (of the
same diameter D) is located at a distance d from the crack-tip.
The prosthesis is modeled in two dimensions under plane stress conditions using isopara-

metric quadrilateral CPS8R elements. The crack-tip singularities are modeled using crack-tip
elements. The stress intensity factors are calculated using the the J-integral technique. Figure 6
shows a typical mesh model of the prosthesis and the special elements around the crack tip.

Fig. 6. Crack emanating from a cavity with another cavity (case II)

Fig. 7. Variation of SIFs KI and KII of the crack emanating from a cavity versus the interaction
distance d (case II)

The results obtained are illustrated in Figs. 7a and 7b which show the variation of SIFs KI
and KII as a function of the inter-distance d between the tip of the crack emanating from a
cavity and the second cavity.
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Figure 7a shows that whatever the zone of initiation of the crack (except for the distal zone
of the exterior share), SIF KI is positive. This shows that such a position of the crack leads
to the opening of the crack. Indeed, it depends on the intensity of the stress field in which the
crack is located. For a distance d < 0.1mm, the SIF increases in a remarkable way. Beyond this
distance, the variation of FIC KI is independent of the distance d. In the distal zone of the
exterior part, SIF KII is negative. This shows that when the cavity is distant, the extension risk
of the crack per opening is almost null. In Fig. 7b, for d > 0.1mm, the values of SIF KII are
independent of the distance d. In the distal zone, this factor increases with an increase in the
distance d.

2.3. Case III: interaction effectof two cracks emanating from two cavities

In order to determine the interaction effect of two cracks emanating from a cavity, we choose
a crack of length a emanating from a circular cavity of diameter D. Another crack of length a
is supposed to emanate from another cavity (of the same diameter D).
In Fig. 8, a and a′ are the lengths of two cracks. The inter-distance between the two cracks

is given by the parameter d.

Fig. 8. Two cracks emanating from two cavities (case III)

Figures 9a and 9b show respectively modes I and II stress intensity factors (SIF) of the main
crack emanating from a cavity as a function of the distance d between the two cracks tips. The
SIFs KI and KII are evaluated for three zones of prosthesis (proximal, median and distal)and
for two parts (interior and exterior).
The results obtained in Fig. 9a show that:

• For distance d < 0.1mm, the SIF KI increases with reduction in the distance d. This
increase is observed in the three zones of the prosthesis, except for the proximal zone of
the exterior part (where mode I SIF is null) and in the distal zone of the exterior part
(where mode I SIF is negative). The negative values of KI indicate that the distal zone is
solicited in compression.

• The important values of KI are observed in the distal zone of the interior part, for
d ≈ 0.1mm. In all the zones, these values are stabilized for d > 0.2mm.

In linear elastic fracture mechanics (LEFM), positive and negative values of KII indicate
the direction of crack propagation. This direction is opposite to the sign of KII (Souiyah et
al., 2012; Alshoaibi Abdulnaser and Ariffin, 2008). In Fig. 9b, the important values of KII
(absolute values) are observed in the distal zone of the interior part, for d ≈ 0.1. Beyond this
distance, the values of KII (absolute values) decrease until the distance d = 0.2mm is reached.
For d > 0.2mm, the SIFs KII takes stable values.
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The negative values of KII (with KI < 0) indicate that the distal zone of the interior part
is solicited in compression.

Fig. 9. Variation of SIFs KI and KII of the main crack emanating from two cavities versus the
distance d between two cracks (case III)

3. Conclusion

The predicted values of SIFs for cracks behaviour in the orthopedic cement using the 2D finite
element method are presented. In order to obtain a better approximation of the stress field
near the crack tip, special quarter point finite elements are used. The analysis of the results
obtained shows that a crack initiated from a micro-cavity or from bone debris in the distal zone
of the external and interior parts of the cement can be propagated at the same time by opening
and shearing of its lips; i.e. under mixed modes. It is contrary to the crack initiated in the
proximal zone, which cannot be propagated. The mechanical behaviour of cracks in the medial
zone depends on the crack initiation position.
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18. Poitout D., 1992, Biomécanique orthopédique, Editions Masson

19. Sahli A., Benbarek S., Bachir Bouiadjra B., Bouziane M.M., 2014, Effects of interac-
tion between two cavities on the bone cement damage of the total hip prothesis, Mechanics and
Mechanical Engineering, 18, 2, 107-120

20. Souiyah M., Muchtar A., Ariffin A.K., Malek A., Fadhel M.I., Basem Abu Zneid,
2012, Finite element model of crack growth under mixed mode loading, International Journal of
Materials Engineering, 2, 67-74

21. Taylor D., Hazenberg J.G., Lee T.C., 2003, The cellular transducer in damage-stimulated bo-
ne remodelling: a theoretical investigation using fracture mechanics, Journal of Theoretical Biology,
225, 65-75

Manuscript received October 21, 2014; accepted for print August 31, 2015



JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

54, 1, pp. 285-293, Warsaw 2016
DOI: 10.15632/jtam-pl.54.1.285

GUIDED WAVE PROPAGATION IN THERMAL MEDIA THROUGH
THE SEMI ANALYTICAL FINITE ELEMENT METHOD

Faker Bouchoucha, Sonda Chaabane
National School of Engineers of Sfax, Unit of Dynamics of the Mechanical Systems, Sfax, Tunisia

e-mail: fakersbouchoucha@yahoo.fr; sonda.chaabene@ec-lyon.fr

Mohamed Najib Ichchou
Ecole Centrale de Lyon, Laboratory of Tribology and Dynamics of Systems (LTDS), Lyon, France

e-mail: mohamed.ichchou@ec-lyon.fr

Mohamed Haddar
National School of Engineers of Sfax, Unit of Dynamics of the Mechanical Systems, Sfax, Tunisia

e-mail: mohamed.haddar@enis.rnu.tn

In this paper, the issue of the estimation of wave propagation characteristics in thermal media
is dealt with. A formulation, named the Thermal Semi Analytical Finite Element, based
on the semi analytical finite element approach coupled with the thermal effect is offered.
Temperature variations affect the mechanical properties of the waveguide. The question
of dispersion curves and group velocities is studied. This study is expected to be of use
in the sensitivity analysis of guided waves for wave propagation in thermal environment.
Comparisons between numerical and analytical results are given to show the effectiveness of
the proposed approach.

Keywords: semi analytical finite element, thermal media, dispersion, velocity

1. Introduction

Guided waves are still a subject of intensive research in several engineering areas. This research
focuses on the study of guided wave properties and applications. Structural Health Monitoring
(SHM) and Non Destructive Testing (NDT) are among the fields of application of this numeri-
cal tool. To study wave propagation in structural waveguides, the semi analytical finite element
(SAFE) method has been investigated by many researchers. Hayashi et al. (2003) derived the
SAFE formulation through virtual work principles and proposed a way to calculate the group
velocity using the eigensolution at a given frequency. Damljanovic and Weaver (2004) develo-
ped linear triangular elements for the SAFE method using Lagrange’s equations to investigate
elastic waves in waveguides of arbitrary cross-section. Gavric (1995) calculated the dispersion re-
lationship in a free rail by using triangular and quadrilateral elements obtained from Hamilton’s
principle. The SAFE method was also adopted to investigate wave propagation characteristics
for thin-walled structures by Finnveden (2004), where the polynomial interpolation was used in
the propagation axis thus leading to polynomial eigenvalue problems. The method was extended
to curved structures by Finnveden and Fraggstead (2008), where isoparametric elements were
used.
In the current work, the semi analytical numerical method that may be used for wave pro-

pagation and dynamic analysis of waveguide structures is presented. The basic formulations are
investigated to illustrate the merits and shortcomings of the method through the virtual work
principle.
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The effect of temperature on guided wave structural health monitoring has been studied
by several authors in the literature, see e.g. Konstantinidis et al. (2006). They attempted to
correlate modal properties with temperature and also to develop system identification models
that could separate the influences of temperature from true indications of damage on dynamic
modal parameters (Alashti and Kashiri, 2010). Their research effort extensively examined the
causes of the effects of temperature and how they affect dynamic characteristics in a normal real-
-life of a beam. Some authors have been interested in studying the impact of thermal loading
on the guided waves mode shape. A useful research was reported on isotropic beams, plates and
shells. Jeyaraj et al. (2009) studied the vibration and acoustic response of a composite plate in
thermal environment. Kadoli and Ganesan (2006) studied the dynamic behavior of composite
and isotropic cylindrical shells with PZT layers under axisymmetric temperature variation.
In this work, the effect of temperature on the wave propagation is studied through the

proposed approach, named the thermal semi analytical finite element (TSAFE) method. Indeed,
we combine the semi analytical finite element method with thermal treatment to show the effect
of temperature on the characteristics of guided wave propagation.
Temperature variations affect various mechanical properties of the structure such as elasticity

modulus, density, etc. The modelling of the structure under thermal environment is still a subject
of intensive research in several engineering areas. Experimental and theoretical results are offered
in many researches to study the material behaviour following thermal variability and evaluate
the high-temperature thermal and mechanical properties of the material (Kodur et al., 2012; Li
et al., 2013).
The origin of this work is the treatment of wave characteristics (dispersion curves and group

velocity) as a function of temperature in order to study the thermal effect on the semi analytical
finite element method together with analytical and numerical validations.

2. Description of the Thermal Semi Analytical Finite Element (TSAFE) method

In this Section, we introduce the TSAFE method that may be used for wave propagation and
dynamic analysis of waveguide structures in the presence of the thermal effect. Consider a
structural waveguide with a uniform cross section. Under thermal environment, the weak form
based on the virtual work principle for the dynamic problem may be written as (Hayashi et al.,
2003; Gavric 1995)

W e(u∗, u, T ) =
∫

V

〈ε∗def (T )〉σ(T ) dv +
∫

V

〈u∗〉ρ(T )ü dv =Wint(T )−Wext(T ) = 0 (2.1)

where W e is the thermal virtual work of the internal forces, T is temperature, ρ(T ) is
density at temperature T , ∗ denotes virtual quantities, εdef (T ) = [εxx(T ), εyy(T ), εzz ,
2εxy(T ), 2εyz(T ), 2εxz(T )]T is the strain vector at temperature T , u = [ux, uy, uz]T is the di-
splacement field, σ(T ) = [σxx(T ), σyy(T ), σzz(T ), σxy(T ), σyz(T ), σxz(T )]T is the stress vector
at temperature T . Wint(T ) =

∫
V 〈ε∗def (T )〉σ(T ) dv and Wext(T ) = −

∫
V 〈u∗〉ρ(T )ü dv are the

internal and external virtual work at temperature T , respectively. The harmonic waves in a
uniformly cross-sectioned waveguide are described by the orthogonal function exp(jωt − jkx),
where k is the wave number in the x direction, ω is the circular frequency. The displacement
function can be u(x, y, z, t) = u(y, z) exp(jωt − jkx), where u(y, z) describes the amplitudes
of the displacements of the waveguide cross-section. Thus the strain-displacement relationship
εdef (T ) = D(T )u, where D(T ) is a differential operator in the presence of the thermal effect,
becomes

εdef (T ) = D0(T ) + kD1u (2.2)
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Similar to the standard FE method, the natural coordinates can be employed to facilitate the
use of the standard Gauss integration formulas. The same shape functions are employed to
specify the relation between the global (x, y) and local (ς, η) coordinate systems. By inserting
the interpolation of the displacement functions in the strain-displacement relationship, we obtain

εdef (T ) = D(T )Nui (2.3)

where ui = [uxi , uyi , uzi ]6T is the displacement vector of the finite element, N is the matrix of
the element shape functions.
The relationship between the strain and the stress vectors can be given in the following

manner

σ(T ) = C(T )εdef (T ) (2.4)

where C(T ) is the material stiffness matrix at temperature T .
The external virtual work at temperature T can be developed as follows

Wext(T ) = 〈u∗i 〉Me(T )üi (2.5)

whereMe(T ) is the mass matrix at temperature T , which can be given as

Me(T ) =
∫

Ωe

ρ(T )NTN dΩe (2.6)

where Ωe denotes the element domain.
The internal thermal virtual work can be developed as

Wint(T ) = 〈q∗i 〉Ke(T )qi (2.7)

where Ke(T ) is the stiffness matrix at temperature T , which can be written as

Ke(T ) =
∫

Ωe

NT[D(T )]TC(T )D(T )N dΩe (2.8)

Introducing equation (2.2) into equation (2.8) leads to

Ke(T ) =
∫

Ωe

NT[D0(T ) + kD1]TC(T )[D0(T ) + kD1]N dΩe (2.9)

Then

Ke(T ) = Ke0(T ) + kK
e
1(T ) + k

2Ke2(T ) (2.10)

where

Ke0(T ) =
∫

Ωe

NTDT0 (T )C(T )D0(T )N dΩe

Ke1(T ) =
∫

Ωe

NTDT1C(T )D0(T )N dΩe +
∫

Ωe

NTDT0 (T )C(T )D1N dΩe

Ke2(T ) =
∫

Ωe

NTDT1C(T )D1N dΩe

(2.11)
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The assembly of the element matrices and vectors leads to the governing equation of motion of
the waveguide in the presence of the thermal effect

[K0(T )− ω2M(T ) + kK1(T ) + k2K2(T )]ϕ = 0 (2.12)

where ϕ denotes the nodal displacement vector.
Suppose ϕ1 and ϕ2 denote the eigenvectors associated to k and −k, respectively. From the

equation of motion, we have

[K0(T )− ω2M(T ) + kK1(T ) + k2K2(T )]ϕ1 = 0
[K0(T )− ω2M(T )− kK1(T ) + k2K2(T )]ϕ2 = 0

(2.13)

The linearization of the equation of motion can be given in the following form
[

K1(T ) K0(T )− ω2M(T )
K0(T )− ω2M(T ) 0

]{
kφ1
φ2

}
+ k2

[
0 K2(T )

K2(T ) K1(T )

]{
kφ1
φ2

}
= 0 (2.14)

where φ1 = ϕ1 +ϕ2 and φ2 = ϕ1 −ϕ2.
The linearized equation of motion presents the eigenvalue problem of the system

[A(T )− λB(T )]φ = 0 (2.15)

where φ = [kφ1,φ2]
T, λ = k2 and

A(T ) =

[
K1(T ) K0(T )− ω2M(T )

K0(T )− ω2M(T ) 0

]
B(T ) = −

[
0 K2(T )

K2(T ) K1(T )

]

The resolution of this eigenvalue problem leads to calculation of thermal characteristics of the
travelling waves.
It can be of interest, in many applicative engineering cases, to consider the wave numbers and

velocities and to provide the dispersion curves. Indeed, from the knowledge of the eigenvalue,
the wave numbers at temperature T can be extracted as follows

k(T ) = ±
√
λ(T ) (2.16)

And the group velocities can be written as

Cg(T ) =
∂ω

∂k(T )
(2.17)

3. Numerical results and discussion

In this Section, numerical results are presented and discussed in order to study the efficiency of
the proposed method as a tool for guided wave propagation under thermal environment. The
numerical simulations are treated using the software MATLAB.

3.1. Validation of the TSAFE method

In this Section, we study the case of a longitudinal wave in order to validate the TSAFE
formulation by comparisons with the analytical results. The waveguide is assimilated to the
beam element with 2 nodes and 1 dof per node. The used material is steel (ρ = 7800 kg/m3,
ν = 0, 3, E = 2 · 1011 Pa).
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The thermal mass and stiffness matrices for the traction compression mode are

Mtract−comp =
ρSd

6

[
2 1
1 2

]
Ktract−comp =

ES

d

[
1 −1
−1 1

]
(3.1)

where E is Young’s modulus, S is cross section area, ρ is mass density and d is length of the
considered element.
Experimental and theoretical results are offered in many researches works on the behaviour

of mechanical properties in the presence of thermal environment. The variation of Young’s
modulus of steel in the temperature range [25circC-1000circC] can be estimated as follows (French
Standard, 2007)

E(T )
E
= 1 +

T

2000 log T1100
(3.2)

where E(T ) is Young’s modulus at temperature T .
The thermal elongation of steel can be governed through the following equation

d(T )
d
= 1 + α∆T (3.3)

where α is the linear thermal expansion coefficient (αsteel = 1.27 · 10−5K−1), d(T ) is length of
the structure at temperature T , ∆T is the temperature variation.
The effect of the thermal gradient on density can be given as follows

ρ(T )
ρ
=

1
1 + γ∆T

(3.4)

where γ = 3α is the volumetric thermal expansion and ρ(T ) is the density at temperature T .
In the presence of the thermal effect, the mass and stiffness matrices, for the longitudinal

mode, can be given as follows

Mtract−comp(T ) =
ρ(T )Sd(T )
6

[
2 1
1 2

]
=
(1 + α∆T )
(1 + γ∆T )

ρSd

6

[
2 1
1 2

]

Ktract−comp0 (T ) =
E(T )S
d(T )

[
1 −1
−1 1

]
=

T + 2000 log T
1100

2000(1 + α∆T ) log T1100

ES

d

[
1 −1
−1 1

]

Ktract−comp1 =

(
1 +

T

2000 log T
1100

)
1

1 + α∆T
j
ES

2d

[
1 0
0 −1

]

Ktract−comp2 = −
(
1 +

T

2000 log T
1100

)
ES

3d

[
1 1/2
1/2 1

]

(3.5)

The numerical accuracy and the computational efficiency of the TSAFE method can be de-
monstrated by comparison with the analytical results given, for the longitudinal mode, in the
following form

kanalytical tract−comp(T ) = ω

√
ρ(T )
E(T )

= ω
√
ρ

E

√√√√√
2000 log T

1100

(1 + γ∆T )
(
T + 2000 log T

1100

) (3.6)

Figure 1 illustrates variation of the wave number according to temperature for the longitudinal
mode. The thermal effect is treated at different frequencies to study the influence of the coupling
phenomenon between the temperature and frequency. The temperature elevation causes a small
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Fig. 1. Thermal dispersion curves for the longitudinal mode

increase in the dispersion curves. This increase is cleared at a high frequency. A good concordance
is shown between the TSAFE and analytical results in the domain of the study.
The group velocity is generally used to study the dispersive behavior of the traveling mode.

Figure 2 shows the evolution of the group velocity for the traction compression mode according
to temperature at f = 3500Hz. The wave velocity decreases with temperature.

Fig. 2. Thermal group velocity for the longitudinal mode (f = 3500Hz)

3.2. Multimodal propagation through the TSAFE method

In this Section, the TSAFE method is generalized for multimodal propagation to study the
temperature effect on the traveling modes such as longitudinal, torsional, flexural and cross
sectional modes. The simulation of the dispersion curves and the group velocities of wave pro-
pagation in a cylindrical pipe under thermal environment are the objective of this Subsection.
The TSAFE method is applied through the cylindrical pipe (Fig. 3). The used material is

steel. We use a surface element with 4 nodes that include 2 dof per node.
The material stiffness matrix at temperature T can be written using the cylindrical coordi-

nate space as

C(T ) =
E(T )

(1 + ν)(1− 2ν)



1− ν ν 0
ν 1− ν 0
0 0 (1− 2ν)/2


 (3.7)

The displacement field through the cylindrical coordinate is

u(r, θ, z, t) = u(r, θ) exp[j(ωt − kz)] (3.8)
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Fig. 3. Substructure of cylindrical pipe

The strain-displacement relationship can be written in the following form

εdef = Du(r, θ, z, t) (3.9)

In the presence of thermal environment, the differential operator D(T ) at temperature T is
written as

D(T ) =




1
r(T )

∂

∂θ
0

0
∂

∂z
∂

∂z

1
r(T )

∂

∂θ



=

1
1 + α∆T




1
r

∂

∂θ
0

0 0

0
1
r

∂

∂θ


+ k



0 0
0 −j
−j 0




=
1

1 + α∆T
D0 + kD1

(3.10)

The stiffness matrices at temperature T can be given in the following equations

Ke0(T ) =

(
1 +

T

2000 log T1100

)
1

(1 + α∆T )2

∫

Ωe

NTDT0CD0N dΩe

Ke1(T ) =

(
1 +

T

2000 log T1100

)
1

1 + α∆T

( ∫

Ωe

NTDT1CD0N dΩe +
∫

Ωe

NTDT0CD1N dΩe
)

Ke2(T ) =

(
1 +

T

2000 log T1100

) ∫

Ωe

NTDT1CD1N dΩe

(3.11)

Using equation (3.4), the mass matrix at temperature T can be given as follows

Me(T ) =
1

1 + γ∆T

∫

Ωe

ρNTN dΩe (3.12)

In Fig. 4, the dispersion curves for multimodal propagation are presented according to tem-
perature at f = 4000Hz. We can note the thermal effect on the wave number, in particular
on the cross sectional mode. Generally, we can confirm that the wave number increases with
temperature for the multimodal propagation.
Figure 5 presents the evolution of group velocity for multimodal propagation according to

temperature at f = 4000Hz. The wave velocity decreases with temperature. We can say that the
dispersive behavior of the traveling modes is affected by temperature elevation in the structure.
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Fig. 4. Thermal dispersion curves for multimodal propagation by the TSAFE method (f = 4000Hz)

Fig. 5. Thermal group velocity for multimodal propagation by the TSAFE method (f = 4000Hz)

In conclusion, this study shows the temperature effect on the characteristics of the guided
waves such as dispersion and velocity. The temperature elevation causes augmentation of the
dispersion curves and attenuation of the group velocity. But the guided waves save their efficiency
to propagate through the structure at T ¬ 400◦C and f ¬ 4000Hz.

4. Conclusion

In this paper, the issue of wave propagation parameters estimation in thermal environment
through the TSAFE method is dealt with. The proposed approach allows wave characteristics
to be defined by dispersion curves and group velocities through thermal media. The thermal
effect is introduced into the structural parameters, and by making use of the finite element
techniques, the behavior of the wave dispersion is studied. Ultimately, analytical comparisons
are given. The main paper findings can be extracted as follows:

• The TSAFE method based on the virtual work principle in the presence of the thermal
effect is developed.

• The guided wave propagation characteristics defined by dispersion curves and group velo-
cities are studied under thermal environment.

• The numerical accuracy and the computational efficiency of this method are demonstrated
by comparison with the analytical results.

The TSAFE offers some interesting research perspectives. The use of TSAFE for energy issues
in a complex wave guide is an important task in our future work. Further investigations are
under progress in order to use such numerical methods in the context of smart materials and
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structures. In addition of the mentioned axis, the proposed numerical method will be extended
soon to the control of wave propagation in two-dimensional structures.
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In this work, we apply the fractional order theory of thermoelasticity to a one-dimensional
problem of distribution of thermal stresses and temperature in a generalized thermoelastic
medium in the form of a spherical shell subjected to sudden change in the temperature of its
external boundary. Laplace transform techniques are used to solve the problem. Numerical
results are computed and represented graphically for the temperature, displacement and
stress distributions.

Keywords: fractional calculus, spherical shell, thermoelasticity

1. Introduction

Biot (1956) formulated theory of coupled thermoelasticity to eliminate the paradox inherent in
the classical uncoupled theory that elastic changes have no effect on temperature. Lord and Shul-
man (1967) introduced theory of generalized thermoelasticity with one relaxation time by using
the Maxwell-Cattaneo law of heat conduction instead of the conventional Fourier law. The heat
equation associated with this theory is hyperbolic and hence eliminates the paradox of infinite
speeds of propagation inherent in both the uncoupled and coupled theories of thermoelasticity.
Sherief and El-Maghraby (2003, 2005) solved some crack problems for this theory. Sherief and
Hamza (1994, 1996) obtained a solution to axisymmetric problems in spherical and cylindrical
regions. Sherief and Ezzat (1994) obtained the solution in form of a series. Sherief et al. (2005)
extended this theory to deal with micropolar materials. That theory was extended to deal with
viscoelastic effects by Sherief et al. (2011). Lately, Sherief and Hussein (2012) developed theory
of generalized poro-thermoelasticity.
Fractional calculus has been successfully used to modify many existing models of physical

processes, see Hilfer (2000), Sherief et al. (2012), Tenreiro et al. (2013). One can state that
the whole theory of fractional derivatives and integrals was established in the 2nd half of the
19th century. A good review of the subject can be found in Podlubny (1998), Kaczorek (2011),
Kaczorek and Rogowski (2015). Caputo and Mainardi (1971a,b) and Caputo (1974) found a
good agreement with experimental results by making use of fractional derivatives for description
of viscoelastic materials and established the connection between the fractional derivatives and
the theory of linear viscoelasticity. Adolfsson et al. (2005) constructed a new fractional order
model of viscoelasticity.
Povstenko (2009) made a review of thermoelasticity that uses a fractional heat conduction

equation and proposed and investigated new models that incorporate fractional derivatives (Po-
vstenko, 2005, 2011). Recently, the fractional order theory of thermoelasticity was derived by
Sherief et al. (2010). It was a generalization of both coupled and generalized theories of thermo-
elasticity. Some contributions to that theory are the works by Raslan (2015), Sherief and Abd
El-Latief (2014a,b, 2015).
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The aim of the present work is to solve a 1D problem for a spherical shell of a homogeneous,
isotropic, thermoelastic medium occupying the region a ¬ r ¬ b subjected to thermal shock,
using the fractional theory of thermoelasticity. The main reason behind the introduction of
the fractional theory is that it predicts a retarded response to physical stimuli, as is found in
nature and as opposed to the instantaneous response predicted by the generalized theory of
thermoelasticity (Raslan, 2015).

2. Formulation of the problem

In this work, we consider a 1D problem for a spherical shell of a homogeneous, isotropic, thermo-
elastic medium occupying the region a ¬ r ¬ b, using the fractional theory of thermoelasticity.
The outer surface of the shell is taken to be traction free and is subjected to thermal shock that
is a function of time. The inner surface of the shell is thermally isolated by a rigid material.
From physics of the problem, all functions will depend on the radial distance r and time t

only. The displacement vector has only one non-zero component u(r, t) in the radial direction.
The governing equations, in the absence of body forces and heat sources, are given by (Sherief

et al., 2010)

(λ+ 2µ)
∂e

∂r
− γ ∂T

∂r
= ρ

∂2u

∂t2
k∇2T =

( ∂
∂t
+ τ0

∂α+1

∂tα+1

)
(ρcET + γT0e)

σrr = λe+ 2µ
∂u

∂r
− γ(T − T0) qr + τ0

∂αqr
∂tα
= −k∂T

∂r

(2.1)

where T is the absolute temperature, ρ is density, λ and µ are Lamé’s constants and
γ = αt(3λ + 2µ), where αt is the coefficient of linear thermal expansion. T0 is the reference
temperature assumed to be such that |(T − T0)/T0| ≪ 1 and α, τ0 are constants such that
τ0 > 0, 0 ¬ α ¬ 1, cE is the specific heat per unit mass in the absence of deformation and k is
the thermal conductivity, σrr is the normal stress component, qr is the component of the heat
flux vector in the radial direction, and e is the cubical dilatation given by

e =
1
r2

∂

∂r
(r2u) (2.2)

The operator ∇2 in the above equations is given by

∇2 = ∂2

∂r2
+
2
r

∂

∂r
=
1
r2

∂

∂r

(
r2
∂

∂r

)

We shall use the following non-dimensional variables

r∗ = cηr u∗ = cηu t∗ = c2ηt τ∗0 = c
2αηατ0

θ∗ =
γ(T − T0)
λ+ 2µ

σ∗rr =
σrr
µ

q∗ =
γ

k(λ+ 2µ)
q

where

c =

√
λ+ 2µ
ρ

η =
ρcE
k

The governing equations, in non-dimensional form, are given by (with the asterisk dropped for
convenience)

∂2u

∂t2
=
∂e

∂r
− ∂θ

∂r
∇2θ =

( ∂
∂t
+ τ0

∂α+1

∂tα+1

)
(θ + εe)

σrr = (β2 − 2)e+ 2
∂u

∂r
− β2θ qr + τ

∂αqr
∂tα
= −∂θ

∂r

(2.3)
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where

ε =
T0γ
2

λ+ 2µ
kη β2 =

λ+ 2µ
µ

In the above equation, the time fractional derivative of the order α used is taken to be in
the sense of the Caputo fractional derivative.
We assume that the boundary conditions have the form

u(a, t) = 0 qr(a, t) = 0

σrr(b, t) = 0 θ(b, t) = f(t)
(2.4)

The initial conditions are taken to be homogeneous, i.e. we take

u(r, t)
∣∣∣
t=0
=
∂u(r, t)
∂t

∣∣∣∣∣
t=0

= 0 θ(r, t)
∣∣∣
t=0
=
∂θ(r, t)
∂t

∣∣∣∣∣
t=0

= 0

σrr(r, t)
∣∣∣
t=0
=
∂σrr(r, t)

∂t

∣∣∣∣∣
t=0

= 0

(2.5)

3. Solution in the Laplace transform domain

Applying the Laplace transform with the parameter s (denoted by the overbar) defined by the
relation

f(r, s) =
∞∫

0

e−stf(r, t) dt (3.1)

to both sides of equations (2.3), we get the following equations

s2u =
∂e

∂r
− ∂θ

∂r
∇2θ = (s+ τ0sα+1)(θ + εe)

σrr =
β2 − 2
r

u+ β2
∂u

∂r
− β2θ qr =

−1
1 + τsα

∂θ

∂r

(3.2)

Applying the operator 1r2
∂
∂r (r

2 . . .) to equation (3.2)1, we obtain

(∇2 − s2)e = ∇2θ (3.3)

Eliminating θ between equations (3.2)2 and (3.3), we get

{
∇4 −∇2[s2 + (1 + ε)(s + τ0sα+1)] + s3(1 + τ0sα)

}
e = 0

The above equation can be factorized as

(∇2 − k21)(∇2 − k22)e = 0 (3.4)

where k21 and k
2
2 are the roots with positive real parts of the characteristic equation

k4 − k2[s2 + (1 + ε)(s + τ0sα+1)] + s3(1 + τ0sα) = 0 (3.5)
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where k21 and k
2
2 are given by

k21 =
s

2

{
s+ (1 + ε)(1 + τ0sα) +

√
[s+ (1 + ε)(1 + τ0sα)]2 − 4s(1 + τ0sα)

}

k22 =
s

2

{
s+ (1 + ε)(1 + τ0sα)−

√
[s+ (1 + ε)(1 + τ0sα)]2 − 4s(1 + τ0sα)

} (3.6)

Due to linearity, the solution to equation (3.4) has the form

e = e1 + e2

where ei is the solution to the following equation

(∇2 − k2i )ei = 0 i = 1, 2

The above equation can be written as

∂2ei
∂r2
+
2
r

∂ei
∂r
− k2i ei = 0 (3.7)

Taking the substitution

ei =
gi√
r

the above equation reduces to

r2
∂2gi
∂r2
+ r

∂gi
∂r
−
(
k2r2 +

1
4

)
gi = 0

This is the modified Bessel equation whose solution is

gi = Aik2i I1/2(kir) +Bik
2
iK1/2(kir)

Collecting the above results, the solution to (3.7) can be written as

ei =
1√
r
[Aik2i I1/2(kir) +Bik

2
iK1/2(kir)] (3.8)

where Ai and Bi, i = 1, 2 are parameters to be determined from the boundary conditions and
Iµ(z), Kµ(z) are the modified Bessel functions of the first and second kinds of the order µ,
respectively.
Similarly, we can show that

θi =
1√
r
[A∗i k

2
i I1/2(kir) +B

∗
i k
2
iK1/2(kir)] (3.9)

Substituting (3.8) and (3.9) into equation (3.3), we get

A∗i = Ai(k
2
i − s2) B∗i = Bi(k

2
i − s2) (3.10)

Substituting (3.10) into equation (3.9), one obtains

θi =
1√
r
[Ai(k2i − s2)I1/2(kir) +Bi(k2i − s2)K1/2(kir)] (3.11)
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Thus we obtain

e =
1√
r

2∑

i=1

[Aik2i I1/2(kir) +Bik
2
iK1/2(kir)]

θ =
1√
r

2∑

i=1

[Ai(k2i − s2)I1/2(kir) +Bi(k2i − s2)K1/2(kir)]
(3.12)

Differentiating (3.12) with respect to r and substituting into (3.2)1, gives

u =
1√
r

2∑

i=1

[AikiI3/2(kir)−BikiK3/2(kir)] (3.13)

Differentiating (3.12)2 and (3.13) with respect to r, gives

∂θ

∂r
=
1√
r

2∑

i=1

[Aiki(k2i − s2)I3/2(kir)−Biki(k2i − s2)K3/2(kir)]

∂u

∂r
=
1√
r

2∑

i=1

{
Aiki

[
kiI1/2(kir)−

2
r
I3/2(kir)

]
+Biki

[
kiK1/2(kir) +

2
r
K3/2(kir)

]} (3.14)

Substituting (3.12) and (3.14)2 into equation (2.3)3, gives

σrr =
1√
r

2∑

i=1

{
Ai
[
β2s2I1/2(kir)−

4
r
kiI3/2(kir)

]
+Bi

[
β2s2K1/2(kir)+

4
r
kiK3/2(kir)

]}
(3.15)

Using equation (3.2)4, boundary conditions (2.4) can be written in the Laplace transform as

u(a, s) = 0
∂θ(a, s)
∂r

= 0

σrr(b, s) = 0 θ(b, s) = f(s)
(3.16)

Applying boundary conditions (3.16) into equations (3.12)2, (3.13), (3.14)1 and (3.15), gives

2∑

i=1

[AikiI3/2(kia)−BikiK3/2(kia)] = 0

2∑

i=1

[Aiki(k2i − s2)I3/2(kia)−Biki(k2i − s2)K3/2(kia)] = 0

2∑

i=1

{
Ai
[
β2s2I1/2(kib)−

4
b
kiI3/2(kib)

]
+Bi

[
β2s2K1/2(kib) +

4
b
kiK3/2(kib)

]}
= 0

2∑

i=1

[Ai(k2i − s2)I1/2(kib) +Bi(k2i − s2)K1/2(kib)] =
√
bf(s)

The above equations can be put in the following form

a11A1 + a12B1 + a13A2 + a14B2 = 0

a21A1 + a22B1 + a23A2 + a24B2 = 0

a31A1 + a32B1 + a33A2 + a34B2 = 0

a41A1 + a42B1 + a43A2 + a44B2 =
√
bf(s)
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where

a11 = k1I3/2(k1a) a12 = −k1K3/2(k1a)
a13 = k2I3/2(k2a) a14 = −k2K3/2(k2a)
a21 = k1(k21 − s2)I3/2(k1a) a12 = −k1(k21 − s2)K3/2(k1a)
a23 = k2(k22 − s2)I3/2(k2a) a24 = −k2(k22 − s2)K3/2(k2a)
a31 = β2s2I1/2(k1b)− 4bk1I3/2(k1b) a32 = β2s2K1/2(k1b) +

4
bk1K3/2(k1b)

a33 = β2s2I1/2(k2b)− 4bk2I3/2(k2b) a34 = β2s2K1/2(k2b) +
4
bk2K3/2(k2b)

a41 = (k21 − s2)I1/2(k1b) a42 = (k21 − s2)K1/2(k1b)
a43 = (k22 − s2)I1/2(k2b) a44 = (k22 − s2)K1/2(k2b)

Solving the above equations, we obtain

A1 = −
1
Γ
[a12(a23a34 − a24a33) + a13(a24a32 − a22a34) + a14(a22a33 − a23a32)]

√
bf(s)

B1 =
1
Γ
[a11(a23a34 − a24a33) + a13(a24a31 − a21a34) + a14(a21a33 − a23a31)]

√
bf(s)

A2 = −
1
Γ
[a11(a22a34 − a24a32) + a12(a24a31 − a21a34) + a14(a21a32 − a22a31)]

√
bf(s)

B2 =
1
Γ
[a11(a22a33 − a23a32) + a12(a23a31 − a21a33) + a13(a21a32 − a22a31)]

√
bf(s)

where

Γ = a11[a22(a33a44 − a34a43) + a23(a34a42 − a32a44) + a24(a32a43 − a33a42)]
− a12[a21(a33a44 − a34a43) + a23(a34a41 − a31a44) + a24(a31a43 − a33a41)]
+ a13[a21(a32a44 − a34a42) + a22(a34a41 − a31a44) + a24(a31a42 − a32a41)]
− a14[a21(a32a43 − a33a42) + a22(a33a41 − a31a43) + a23(a31a42 − a32a41)]

4. Inversion of the Laplace transform

Let f(s) be the Laplace transform of f(t). The inversion formula for the Laplace transform has
the form (Honig and Hirdes, 1984)

f(t) =
edt

2π

∞∫

−∞

eityf(d+ iy) dy

where d is a number greater than all the real parts of the singularities of f(s).
Using Fourier series over the interval [0, 2L], we get (Honig and Hirdes, 1984)

f(t) ≈ fN(t) =
1
2
c0 +

N∑

k=1

ck for 0 ¬ t ¬ 2L (4.1)

where

ck =
edt

L
Re
[
e
ikπt
L f

(
d+
ikπ
L

)]
(4.2)

The ‘Korrecktur’ method has been used to reduce the discretization error while the
ε-algorithm has been used to reduce the truncation error (Honig and Hirdes, 1984).



Application of fractional order theory of thermoelasticity... 301

5. Numerical results

Copper has been chosen for purposes of numerical evaluations. The constants of the considered
problem are shown in Table 1.

Table 1

k = 386W/(mK) αt = 1.78 · 10−5K−1 cE = 381 J/(kgK) η = 8886.73
µ = 3.86 · 1010 kg/(m s2) λ = 7.76 · 1010 kg/(m s2) ρ = 8954 kg/m3 T0 = 293K
ε = 0.0168 τ0 = 0.025 s

The computations have been carried out for a function f(t) given by

f(t) = H(t) for which f(s) =
1
s

The computations have been carried out for one value of time, namely t = 0.05, and two
values of α, namely α = 0.5 and α = 1. The temperature, displacement and stress distributions
have been obtained and plotted as shown in Figs. 1, 2 and 3, respectively.

Fig. 1. Temperature distribution for t = 0.05

Fig. 2. Displacement distribution for t = 0.05

Fig. 3. Stress distribution for t = 0.05
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Next, the computations have been carried out for one value of α, namely α = 0.99, and two
values of time, t = 0.05 and t = 0.1. The temperature, displacement and stress distributions
have been obtained and plotted as shown in Figs. 4, 5 and 6, respectively.

Fig. 4. Temperature distribution for α = 0.99

Fig. 5. Displacement distribution for α = 0.99

Fig. 6. Stress distribution for α = 0.99

For the pervious steps, FORTRAN programming language has been used on a personal
computer. The maintained accuracy has been 5 digits for the numerical program.

6. Conclusions

The computations show that:
• For α = 0.5, the solution behaves like in the coupled theory of thermoelasticity where the
velocity of the wave is infinite, but for α = 1 the solution becomes that of the generalized
theory of thermoelasticity.

• For α ≈ 1, the solution seems to behave like in the generalized theory of thermoelasticity.
This result is very important since the new theory may preserve the advantage of the
generalized theory that the velocity of waves is finite. It is difficult to say whether the
solution for α approaching 1 has a jump at the wave front or it is continuous with very
fast changes (Povstenko, 2011). This aspect invites further investigation.
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In single-wire hot-wire measurements, velocity fluctuations acting normal to the hot-wire
and its prongs will cause additional heat transfer known as binormal cooling. With respect
to wall turbulence, the influence of this additional cooling is well-studied for crossed wires,
while it is commonly ignored in single hot-wire measurements. The latter view is challenged
in the recent work by Dróżdż and Elsner (2014) that claims significant errors in variance
measurements when using single-wire probes in turbulent boundary layers. This short com-
munication revisits these claims and quantifies binormal cooling errors through an expansion
of the effective-velocity concept and utilisation of direct numerical simulation data. Results
support the common habit that binormal cooling errors can safely be ignored in single
hot-wire measurements.

Keywords: hot-wire anemometry, measurement errors, wall turbulence

1. Introduction and motivation

Hot-wire anemometry is still the method that provides the highest degree of accuracy when
measuring turbulent fluctuations, in particular, when it comes to temporal and spatial resolution.
Recent detailed comparisons between hot-wire measurements and direct numerical simulations
(DNS) in turbulent boundary layer (TBL) flows revealed that most of the remaining differences
between hot-wire measurements and DNS can be explained by insufficient spatial resolution of
the measuring sensor (Örlü and Schlatter, 2013); but is with sufficient care within the scatter
of various DNS. On the other hand, there are still open questions when it comes to the scaling
of the streamwise velocity variance profile, in particular, with respect to turbulent pipe flows
(Örlü and Alfredsson, 2012). Some of the discrepancies, besides spatial resolution (Hutchins
et al., 2009), could recently also be related to end-conduction effects (Miller et al., 2014) and
frequency response (Hutchins et al., 2015) effects, while the effect of temperature fluctuations
were found to be comparably mild (Örlü et al., 2014).
In a recent study by Dróżdż and Elsner (2014), the streamwise velocity variance profiles obta-

ined from a single-wire (SW) and crossed-wire, i.e. X-wire (XW), probe in a TBL were compared,
and the authors concluded that binormal cooling effects (i.e. velocity fluctuations acting normal
to the hot-wire and its prongs that cause additional heat transfer) were not negligible. In par-
ticular, they claimed “that the underestimation of the near-wall peak of streamwise fluctuating
component in X-wire measurements results from disregarded wall-normal fluctuations, which is
obviously taken [into account] in the case of a single-wire probe”. This statement implies also
that all previous comparisons of streamwise velocity statistics between SW probes and other
measurement techniques such as laser Doppler velocimetry (LDV) and Particle Image Veloci-
metry (PIV), but also numerical simulations such as DNS, have apparently compared different
quantities. The authors furthermore concluded that the readings from a SW probe should be
compared to the sum of energies of the streamwise (u) and wall-normal (v) component from an



306 R. Örlü, P.H. Alfredsson

XW probe (assuming the wire is normal to the mean flow direction and parallel to the wall), i.e.
uu+SW = uu

+
XW+ vv

+
XW, where the superscript + denotes scaling with wall units and the overbar

the time-average operator. These results have consequently been used by the authors in follow-
up studies (Dróżdż and Elsner, 2015) as well as to compare SW results with PIV measurements
(Dróżdż and Uruba, 2014).
In absence of a quantification of binormal cooling errors in SWmeasurements in the literature

and in light of the consequences, which the aforementioned claims bring for past and future SW
measurements, there is a need to address this problem. This short communication will therefore
revisit the statements of Dróżdż and Elsner (2014), present clarifications for their observations
as well as quantify binormal cooling errors based on recent DNS data. It is believed that these
will not only be useful to remedy the claims made, but also give confidence in past and future
SW measurements, which – none-withstanding the progress in optical measurement techniques
– remains the measurement technique of choice when single-point streamwise velocity statistics
are of interest.

2. Comments and Results

Let us start with the relevant statements by Dróżdż and Elsner (2014), which will be reproduced
(in italic) and commented on:
1) “Most researchers who do measurements in the turbulent boundary layer believe that the

influence of v component is insignificant and can be ignored, ...”. Indeed, most researchers
employing SW probes in wall-bounded flows ignore the effect of the wall-normal and spanwise
velocity component as evident from a large number of studies. On the other hand, the effect of
the binormal velocity component in turbulence measurements using XW probes has been studied
to some extent. It is e.g. well-known that large errors can be obtained in jet flows (Ovink et
al., 2001), while the errors in wall-bounded flows are small, but not negligibly (Zhao and Smits,
2006). Hence, this statement by Dróżdż and Elsner (2014) is correct, i.e. most researchers who do
measurements with SW probes “believe” (or know) that the influence of the binormal component
is insignificant, while researchers using XW probes are aware of them.
2) “... but it is only a simplifying assumption” and “... from the physical point of view, the

negligible small influence of the v component in a single-wire readings is not so convincing.”
To address this claim, we start out by considering the effective cooling velocity. Accounting for
pitch and yaw angles of the effective cooling velocity with respect to a SW aligned normal to
the flow and parallel to the wall, the effective cooling velocity (Ue) in a three-dimensional flow
is given by (Jørgensen, 1971)

U2e = U
2 + h2V 2 + k2W 2 (2.1)

where W denotes the spanwise velocity (i.e. parallel to the hot-wire), k the yaw factor which
accounts for the effects of finite wire length and the prong orientation with respect to the flow,
and h the pitch factor, which is related to the binormal component. There is a rich literature
with regard to the values of these two factors, but they are commonly k ≃ 0.10-0.20 and
h ≃ 1.02-1.05 for standard wire probes, while they asymptote to 0 and 1 for an infinitely large
length-to-diameter ratio (Bruun, 1995). Since W = 0 and V ≈ 0 (where the overbar indicates
the time-average) in the aforementioned canonical wall-bounded flows,W = w and V ≈ v. Since
h2 ≫ k2 and h ≈ 1, the series expansion of Eq. (2.1) on the assumption that

∣∣∣
u

U

∣∣∣,
∣∣∣
v

U

∣∣∣,
∣∣∣
w

U

∣∣∣≪ 1 (2.2)
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yields for the mean effective cooling velocity

Ue = U
(
1 +

v′2

2U 2
+O

[ u
U

]3)
(2.3)

while the measured variance becomes

u′e
2 = u′2

(
1 +

uv2

Uu′2
− u2v2

U
2
u′2
+
v4 − v′4

4U2u′2
+O

[ u
U

]5)
(2.4)

where the prime denotes the root mean square (rms) value. Similar expressions for the mean
and (a truncated form of the) variance can be found in Bruun (1995). As apparent Ue ­ U , since
the second term in brackets in Eq. (2.3) is per definition positive, while the situation for u′e

2 is
dependent on the sign of the leading order term (i.e. ∼ uv2). To assess the error between the
measured (effective cooling) velocity and the actual horizontal velocity component, the error for
the mean

εUe =
Ue − U
U

=
v′2

2U
2 (2.5)

and variance

εu′e2 =
u′e
2 − u′2
u′2

=
uv2

Uu′2
− u2v2

U
2
u′2
+
v4 − v′4

4U 2u′2
(2.6)

are obtained.
To demonstrate the effect of the binormal velocity component on the readings of a SW probe

aligned normal to the mean flow, and not be affected by data that suffers from insufficient spatial
and temporal resolution, here DNS data from a TBL (Schlatter and Örlü, 2010) has been utilized.
The response of a SW has been imitated by computing the statistics upon utilization of Eq. (2.1)
on the time-series data, cf. Segalini et al. (2011) and Örlü and Schlatter (2013). Figure 1a depicts
the “true” and “measured” (i.e. effecttive) mean and variance profile. As apparent, the difference
between Ue and U as well as u′e

2 and u′2 is barely visible and can hence, as commonly done, safely
be neglected. The obtained statistics can now be used to compute the aforementioned errors and
compare them with the derived simplified expressions given above as depicted in Fig. 1b,c. The
mean streamwise velocity is overestimated up to 0.3%, while the variance is underestimated

Fig. 1. (a) Inner-scaled mean and variance profile for a TBL at Reτ ≈ 1200 (Schlatter and Örlü, 2010)
with the dashed line and dots indicating “measured” (i.e. effective) and real values, respectively. Inset
shows the region around y+ = 50, where the error in the mean and variance has its maximum.

Percentile error in the (b) mean velocity and (c) variance, where dots indicate the results computed
from the DNS through Eq. (2.1) and the solid line represent the approximation given through Eqs. (2.5)
and (2.6). The dashed and dash-dotted line in (c) denote Eq. (2.6) with only the first two and the first

term, respectively
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up to 1%. This is in contrast to the errors induced in XW measurements when ignoring the
binormal velocity, which are approximately fivefold (Zhao and Smits, 2006). Although these
errors are obtained for a TBL at a specific Reynolds number, the estimated errors can directly
be transferred to pipe and channel flows as well. Furthermore, the errors are representative for a
wide range of Reynolds numbers due to the logarithmic dependence of the variance amplitudes
(Alfredsson et al., 2011). With regards to the initial statement that “the negligible small influence
of the v component in a single-wire readings is not so convincing”, it can now clearly be stated
that binormal cooling effects on SW probes can safely be neglected in wall-bounded flows, under
the premise that assumption (2.2) is not severely violated.1

3) Dróżdż and Elsner (2014) furthermore observed, with respect to a XW, that “the vector
summing these two components (i.e. uu+XW and vv

+
XW), obtained from the X-wire probe, gives

the shape of fluctuation distribution obtained from the SW (i.e. uu+SW) probe”. Consequently, the
authors compared (uu+ + vv+)XW (Dróżdż and Elsner, 2014) or (uu+ + vv+)PIV (Dróżdż and
Uruba, 2014) and not directly the measured uu+ component with the variance read from a SW
probe and found a seemingly better agreement as demonstrated in Fig. 2a, which is a reproduc-
tion from Dróżdż and Elsner (2014). This proposed workaround is, however, at odds with the
aforementioned results, which demonstrated that binormal cooling errors are safely negligible
in turbulent boundary layer measurements. Streamwise and wall-normal velocity fluctuations
are furthermore strongly anti-correlated and the simple addition of the energies is principal-
ly only permissible for fully uncorrelated signals. The reason why the summation of measured
variances from an XW probe or PIV measurements lead to a better agreement with SW me-
asurements in the work by Dróżdż and Elsner (2014) and Dróżdż and Uruba (2014) is simply
related to the larger viscous-scaled wire length utilized for the XW measurements (the length
of the XW was around three times longer than that of the SW), which causes attenuation of
the fluctuation amplitudes (Örlü and Alfredsson, 2010). This can simply be shown by utilising
any of the available spatial resolution correction schemes for hot-wire measurements available
in the literature (e.g. Segalini et al., 2011; Smits et al., 2011). As demonstrated in Fig. 2b,
the streamwise variance profile measured by the SW, uu+SW, compares well with DNS data and
is apparently well-resolved. Matching now the viscous-scaled wire length of the SW with that
of the employed XW, by utilization of the scheme by Smits et al. (2011), the variance profile
attenuates towards the variance read by the XW, uu+XW. The comparison with the DNS data
also reveals that the wall-normal variance profile becomes increasingly overestimated the closer

Fig. 2. Inner-scaled variance profile for a TBL at Reτ ≈ 1000 with data taken from Fig. 3 of Dróżdż and
Elsner (2014). (a) SW, uu+

SW
: •, X-wire, uu+

XW
: ⊲, vv+

XW
: △, and uu+

XW
+ vv+

XW
: ✷; (b) reverse

application of the spatial resolution correction scheme by Smits et al. (2011) on the SW data (•) to
match the less resolved resolution of the X-wire (◦). For reference, also DNS from Schlatter and Örlü

(2010) at the same Re for uu+ (—) and vv+ (−−) is shown

1In this respect, it is also worth referring to Kalpakli Vester et al. (2015), where the results from a
SW and PIV measurements in a rotating pipe flow are compared.
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to the wall the probe is. Such an increase is well documented and known to be related to the
spatial resolution as well as the spacing between the two inclined wires (Talamelli et al., 2000).

3. Conclusions

The present short communication addresses the claims made by Dróżdż and Elsner (2014),
viz. that binormal cooling errors in SW measurements are not negligible in wall turbulence.
They further claimed that the measured variance by a SW probe needs to be compared to
the sum of energies from the streamwise and wall-normal components, e.g. when comparing
with results from XW or PIV measurements. These claims have been addressed by means of
a simple expansion of the effective velocity, which showed that the effect of binormal cooling
in SW measurements can – under the premise that assumption (2.2) is not severely violated –
safely be neglected. The results have also been validated by means of DNS data and provide a
quantification of binormal cooling errors, which has been missing in the literature, and might
have given rise to the claims by Dróżdż and Elsner (2014).
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In this paper, the authors focus on the proposition of an innovative semi-active linear damper
prototype working on the basis of granular materials. Vacuum Packed Particles (VPP) belong
to the class of materials whose mechanical (rheological, dissipative) properties may be quickly
changed by applying a partial vacuum inside the system. The concept of an innovative linear
damper based on VPP is presented in the paper. Typical experimental results are presented
to reveal changeable damping characteristics of the device. Additionally, the mathematical
model is proposed to capture extraordinary features of the investigated damper.

Keywords: Vacuum Packed Particles, modeling, underpressure, experiments

1. Introduction

Vacuum Packed Particles (VPP) are a class of “smart structures” whose physical properties may
be rapidly changed by pulling out the pressure from the system and generating the so called
underpressure. This change is in proportion to the magnitude of the internal partial vacuum
generated and is quickly reversible. VPP, from the macroscopic point of view, are viscoplastic
solid bodies and can be modeled by various constitutive models (Zalewski and Pyrz, 2013). The
VPP structure can be also compared to magnetorheological materials and, consequently, modeled
by typical rheological models developed for MR fluids. Typical, well commercialized engineering
applications of VPP are universal robot grippers (Brown et al., 2010), flexible endoscopes (Loeve
et al., 2010), “smart layers” in sandwich beam structures (Bajkowski et al., 2015) or vacuum
mattresses (Luscombe and Williams, 2003).
The discussed granular structures are conglomerates that consist of loose granular materials

placed in a soft and hermetic envelope. When exposed to a partial vacuum, the so called “jam-
ming mechanism” occurs and loose particles interact to form a solid-like structure that resists
various types of deformations or flow (Cates et al., 1998). This change in the structure appears as
a dramatic increase in apparent viscosity, and the “plastic” structure develops characteristics of
a semisolid state (Majmudar et al., 2007). The magnitude of this transformation is controlled by
the value of the partial vacuum and is immediately reversed upon removing the underpressure.
Noting the apparent similarities of the considered VPP and magnetorheological (MR) fluids

(Makowski and Knap, 2014), the authors propose an “innovative” semi-active linear VPP dam-
per prototype. Taking advantage of the previous, fundamental research on VPP, in this paper
the authors propose an original engineering application of the previously mentioned granular
conglomerates. In the modeling Section, a mathematical model including damage functions is
proposed. Typical laboratory tests results are presented in the experimental Section. The impact
of underpressure on recorded dissipative characteristics is introduced and discussed. The model
has been calibrated using an Evolutionary Algorithm.
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2. Model of the system

In our experiment we consider a system that consists of a spring that is attached to a rigid
support at the top and has a mass attached to it at the bottom end (Fig. 1). The spring encloses
a flexible and hermetically sealed sleeve that is full with a granular material, which acts as the
damper.

Fig. 1. Model of the nonlinear mass-spring-damper system

To capture real behavior of the proposed VPP damper prototype, the following mathematical
model is proposed

v̇ + cζv + kx+ µg sgn (v) = f

D(t) = ds

t∫

0

|v(s)| ds

ζ̇ = −df (|x| − λf )+ −D
x(0) = x0 v(0) = v0 ζ(0) = ζ0

(2.1)

where m, k, c are positive material coefficients, µ is the coefficient of friction and g is the
gravitational acceleration. The introduced D function with the rate ds is related to gradual
wear of single grains caused by the “intergranular” friction phenomenon. The global damage
function ζ also consists of the part related to rearrangement of the grains along the total path
traveled. The damping damage coefficients df and ds are based on experiments, and we assume
that they depend on the underpressure. λf is the critical amplitude below which the granular
material does not change its internal arrangement.
The problem is rewritten as a system of three first order deferential equations with appro-

priate initial conditions. A forward-type Euler algorithm (2.2) has been used to solve the system
(2.1)

vn+1 = vn −
cvn − kxn + µg sgn (vn) + fn+1

m
h

xn+1 = xn + vn+1h

Dn+1 = Dn + ds|vn+1|h
ζn+1 = ζn − [df (|xn+1| − λf )+ −Dn+1]h

(2.2)

3. Experiments

The structural scheme of the device is depicted in Fig. 2. It consists of two rigid discs (3, 5),
coupled by the main spring (2). The heart of the device is a granular core (4). It is formed of a
cylindrical envelope filled by loose plastomer grains (also small cylinders). Thanks to the special
valve mounted in a handle (1), it is possible to connect the core to a vacuum pump and generate
the appropriate value of a partial vacuum inside the system.
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Fig. 2. Scheme of the investigated damper; 1 – handles, 2 – spring, 3 – upper disc, 4 – granular core,
5 – lower disc

The VPP damper prototype has been investigated on a specially designed laboratory stand
(Fig. 3). A kinematical sine excitation rule with various frequencies was considered in the la-
boratory tests. Different underpressure values from the range 0.01 to 0.09MPa were taken into
considerations. Typical experimental results are depicted in Fig. 4.

Fig. 3. Laboratory stand for investigations of VPP dampers

Fig. 4. Damping characteristics of the VPP damper for various values of underpressure and the
excitation frequency f = 1.4Hz

Analyzing the experimental results presented in Fig. 4, it can be observed that the un-
derpressure parameter has a great impact on the recorded energy dissipation loops. A higher
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underpressure value results in increased damping properties of the VPP damper prototype. This
phenomenon shows that changing the value of partial vacuum inside the system enables one to
control the global properties of the discussed devices. In the authors opinion, it confirms that
investigated devices can be placed among the family of “smart dampers” next to MR or ER
devices.
The recorded data also reveal a nonsymmetrical response of the damper, which complicates

the mathematical description of the damper. The results of laboratory tests, in the next stage
of research, are the base for the mathematical model calibration process.

4. Model calibration

The model has been calibrated for two various values of the underpressure. We used the Evo-
lutionary Algorithm (EA) optimization method to find 6 parameters of the model presented in
Section 2. The EA developed in the Mathematica software applies a population of 40 individuals
and simulated the evolution process for 200 generations. Each iterative step includes three sta-
ges: selection, mutation and crossover. Crossover and mutation operators are applied randomly
with 50% probability. The following fitness function is taken into consideration

Er =
1
n

n∑

i=1

|F iexp − F i|
|F iexp|

→ min (4.1)

where Fexp is a temporary experimental force value, F – numerical force value, n – total number
of discrete points.

Fig. 5. Verification of the model calibration processes for (a) P = 0.01MPa; (b) P = 0.07MPa

The old population is replaced by new individuals for which new fitness values are calculated.
The best results obtained after 200 iterations are presented in Table 1. The numerical simulation
results carried out for the identified model parameters have been verified with direct experimental
data (Fig. 5). In the initial step of numerical investigations, damage functions (2.1)2,3 were turned
off during the calibration process. As the properties of the VPP damper are influenced by the
underpressure value and the direction of velocity (Fig. 4), we assumed that all investigated
parameters can be described as

c(P, sgn (v)) =

{
c0 for v ­ 0
c1 for v < 0

k(P, sgn (v)) =

{
k0 for v ­ 0
k1 for v < 0

n(P, sgn (v)) =

{
n0 for v ­ 0
−n1 for v < 0
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Finally, the estimated values of the model parameters for two selected underpressures (0.01
and 0.07MPa) are presented in Table 1. For the simplicity of calculations it has been assumed
that n = µg.

Table 1. Model parameters for various underpressure values

P [MPa] c0 [kg/s] k0 [kN/mm] c1 [kg/s] k1 [kN/mm] n0 [kN] n1 [kN]

0.01 34.14 42.22 50.57 145.51 0.40 0.44
0.07 72.53 117.96 51.10 297.13 0.82 0.69

5. Conclusions

In the paper, an innovative semi-active damper prototype, based on Vacuum Packed Particles
is proposed and investigated. The experimental results confirmed the possibility of controlling
the dissipative properties of the device by changing the value of partial vacuum. Higher un-
derpressure provides intensification of grains compaction and results in increasing the damping
properties of the device.
The proposed mathematical model assumes two types of damage functions. Most important

damage mechanisms, encountered during experimental research, are related to the ongoing wear
of single grains material and large, exceeding the assumed range, rearrangements of the granular
system.
The model has been calibrated basing on the obtained experimental results using the EA

strategy. Verification of the numerical and laboratory tests results revealed quite a good correct-
ness of the proposed model (global error less than 7%).
The previous experimental research did not include destructive tests of the investigated VPP

prototype. To identify the damage functions, a multi-cycle loading of the testing device has to be
applied. Moreover, the nonlinear underpressure functions have to be identified and introduced
to the proposed model.
Future design works should be focused on developing semi-active granular devices with optio-

nal, not necessarily nonsymmetrical damping characteristics.
In the authors’ opinion, semi-active linear VPP dampers may in a near future replace much

more expensive and complex magnetorheological or electrorheological devices. More than 500
times cheaper and uncomplicated VPP dampers seem to be competitive to already well com-
mercialized and popular “intelligent” dampers.
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