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In this paper the missile flight dynamics during the launch phase is studied. The main con-
cept behind this work was to use a vertical cold launch system and the rapid pitch maneuver
to achieve longer missile range and better firing coverage. A set of a small pulse rocket engi-
nes was used to obtain the desired missile attitude. The physical and mathematical models
of the missile are described. The pulse jets control algorithm is presented. The computer
program of the missile model has been developed in the Simulink environment. The missile
behavior in the low-speed flight envelope has been examined. The results of numerical simu-
lations in the form of the graphs are presented. It has been obtained that there exist several
benefits of the cold launch method as increased range and higher target kill probability.

Keywords: guided missile, modeling, simulation

1. Introduction

In this paper, results of the preliminary design phase of a soft launch system for a ground-to-
-air missile are presented. The main objective of this work is to develop a general physical and
mathematical model which may be used for missile flight simulation. The developed model can be
used as a baseline for design, analysis and development of guided missiles. The common approach
in the field of vertical launch is to use a hot launch technique when the missile main engine is
started in the missile container. A potential problem associated with hot vertical launch is range
loss due to the turnover maneuver and fuel consumption in the boost phase. This translates into
reduced range and increased time to the target. A more sophisticated method is to use a cold
launch, which could be complemented with a rapid pitch maneuver over the launcher. In this
case, the missile should be equipped with a set of small pulse engines. At the beginning, the
missile is ejected vertically upward from a missile canister with an initial velocity between of 15
to 35 meters per second without starting the main engine (Fig. 1).
When the missile is several meters over the ground, the first small engine is used to maintain

the pitch angular velocity. Next, the second pulse engine is used to reduce the angular velocity
again to zero. Finally, the main rocket engine is started and the object is flying toward the target.
At least, two small jet engines are necessary to perform correctly the rapid pitch maneuver.
Without using the second jet engine, the missile can rotate freely too much, and when the main
engine is fired the missile may fall on the ground. It is desirable to start the main engine when
the missile velocity is as low as possible. The missile may be ejected from the launch tube by a
piston which can be driven by a compressed gas cylinder or by a pyrotechnic gas generator.
The main benefit of the vertical cold-launch method when compared with the hot-launch is

its safety. The lower thermal signature of the launcher is achievable. In this case, there is no hot
exhaust of the missile motor interaction with the launcher. The benefits of ejection launching
are more and more important as missile size increases. This is the reason why the cold launch
method is often used in the case of submarine-launched ballistic missiles. This type of launch can
provide full 360 degrees of coverage in all launch sectors. It is possible to achieve longer range
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Fig. 1. Cold launch concept

because the main engine is not used in the launch phase and the fuel is consumed only in the
midcourse and terminal phases (MBDA Systems, 2014). It offers also improved minimum range
capability due to a more direct turnover trajectory that can enable earlier target acquisition.
It is able to offer longer maximum range for a given mass when compared with the standard
hot vertical launch. Unfortunately, there exist some problems with this type of launch. First
of all, immediately after the launch, the missile is in an unstable phase of flight. Because of
low velocity, the control surfaces are ineffective so the aerodynamic control at nearly zero speed
is practically impossible. The rotational motion is weakly damped, which leads to problems
with orienting of the missile in the demanded direction. The engines which control the attitude
of the missile should has small delay, because there may appear problems with accuracy. The
object after launch may fall on the launcher when the main engine fails. With the lack of a soft
launch system there is no possibility of performing manoeuvres like the rapid pitch motion after
the launch. There exists a lot of disturbances that can affect the missile trajectory during the
launch phase. It is obvious that atmospheric conditions can vary in an unpredictable way. Wind
is one of the most important factors which could disturb the missile motion. It is reasonable to
assume that in strong wind conditions, the achieved missile pitch angle may be different from
the desired one. Another factor that have impact on the launch procedure is the pressure in the
missile container and launcher deflection. The reproducibility of the launch may be affected by
several factors due to manufacturing inaccuracy (Fleeman, 2006).

2. State of the art

Nowadays, there exist only a few missiles which have both cold and pitch over launcher capa-
bilities. One of the most known examples of this type of missiles is Common Anti-Air Modular
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Missile (Fig. 2) which was developed by the MBDA company and demonstrated in May 2011.
CAMM has the minimum range under 1 km and the maximum range of about 25 km. CAMM
mass is 99 kg, length 3.2m and diameter 166mm (MBDA Systems, 2014). The maximum speed
of this missile is Mach 3. CAMM has folding tailfins and it is ejected from a compact canister
tube by a piston at a height of 30 m. The piston is retained within the tube so there is no launch
debris. Next 8 small thrusters are used to point the missile at the target before the main motor
fires. Missile turnover is achieved in time less than 1 second. Once turned over, the object is to
be held at a selected heading and attitude by lateral thrusters.

Fig. 2. CAMM missile launch (MBDA Systems, 2014)

CAMM is able to provide 360 degree coverage. Small thrusters are able to control the missile
in all three planes. CAMM can be fired from the SYLVER and Mark 41 vertical launching
systems or from Eurofighter Typhoon aircraft. There also exists CAMM-ER (extended range),
and it has an additional booster which increases the missile range up to the value 45 km. CAMM-
-ER is also bigger: 160 kilograms in weight, 4.2 meters in length, 190 millimeters in diameter.
The CAMM launch platform is difficult to detect because of low acoustic, visual and thermal
signature. This solution is safer for the ground staff, when compared to hot launch.
The second example of the air defense missile system in which the cold launch method is used

is 9K330 Tor (SA-15 Gauntlet) (Fig. 3). The 9M331 missile weight is 167 kg, diameter 235mm,
length 2.9m, and it carries 15 kg warhead. Tor was developed in 1975 as a new version of Osa
(SA-8 Gecko) surface-to-air missile system. Tor was designed for operation from very low to
medium altitudes. It entered service with the Soviet Army in 1986, and Russian Army operates
172 of these systems. This system has good performance when used against aircraft (single missile
destroy probability 26-75%) and helicopters (50-88%), but can also destroy modern targets like
UAVs (85-95%), precision guided munitions or cruise missiles (TOR-M1 9A331, 2012).
The system is mounted on the vehicle which is equipped with 8 missiles, associating radars

and fire control systems. The combat vehicle can operate autonomously and the latest version
can launch missiles even when the vehicle is on the move. The maximum range is between 5 and
12 km and the maximum altitude is 4-6 km. The missiles have radio command guidance. The
system can search for targets while on the move. Tor has reaction time of about 8-12 seconds
from target detection to launch. There exist some versions of this system like Tor M, M1, M2K
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Fig. 3. Tor missile cold launch (TOR-M1 9A331, 2012)

or M2EK which are improved versions of the system. For example, Tor M1 can track up to
48 targets at the maximum range of 25 km and has higher kill probability.

3. Physical model

To analyze missile dynamics, it is assumed that the missile is a rigid body and has six degrees of
freedom. This assumption, though strictly not valid for missiles with a high length-to-diameter
ratio, is suitably accurate for describing missile motion during the launch phase. The total mass
of the missile is assumed to be equal 58 kg, length 2.3 m, diameter 120mm and fuel mass 24 kg
(Fig. 4). The presented missile is smaller than the missiles presented in the “state of the art”
Section. Values of these parameters are limited by the dimensions of the launcher.
It is assumed that the mass and moments of inertia change during the boost-phase. For

short range, the flat Earth approximation is used. The vehicle aerodynamics is assumed to be
nonlinear and quasi-steady. Moreover, it is assumed that the missile has two geometric and mass
symmetry planes and the main motor thrust component passes through the missile center of
gravity and is parallel to the missile longitudinal axis of symmetry. The reaction control system
(RCS) uses twelve solid propellant pulse engines mounted, which generate the thrust directed
normally to the main axis of symmetry of the object. The RCS is located 70mm from the tail.
Each small engine can be fired only once.
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Fig. 4. 3D CAD missile model

4. Mathematical model

In this Section, the missile mathematical model six is derived. The basic frames used in this work
are the inertial, body and gravity coordinate systems. The origin On of the inertial coordinate
system Onxnynzn is placed in any selected point on the Earth surface (Fig. 5). The axes Onxn

Fig. 5. Coordinate systems which have been used in simulation

and Onyn lie in the plane which is perpendicular to the direction of gravity acceleration. The
Onxn is pointing north, and the Onyn axis points east. The Onzn axis is pointed vertically, it
coincides with the direction of the Earth gravity acceleration. The missile equations of motion are
derived in the conventional body coordinate system Obxbybzb (Blakelock, 1991). In the general
case, the origin Ob of this frame might be not at the center of gravity of the missile and moves
forward as the after main engine burnout. In this article, it is assumed that the origin Ob of
this frame is coincident with the center of gravity of the missile. In the body coordinate system,
the positive Obxb axis coincides with the center line of the missile and it is designated as the
roll-axis. The positive Obyb axis is to the right of the Obxb axis in the horizontal plane and it is
designated as the pitch axis. The positive Obzb axis points downward and it is designed as the
yaw axis. The body axis system is fixed with respect to the missile and moves with the missile
(Weinacht, 2004). The Ogxgygzg is the gravity coordinate system. The centre Og of the gravity
system of coordinates coincides with the centre of mass. The axis of the gravity system is parallel
to the axis of the ground coordinate system. The mathematical model describing motion of the
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missile consists of six rigid-body degrees of freedom. The object orientation is parametrized
using quaternions. Yaw, pitch, and roll angles are used only to visualize the results.
The system of six dynamic equations of motion is given by

Aẋ+ΩAx =
[
Fb Mb

]T
(4.1)

where the missile state vector is

x = [U, V,W,P,Q,R]T (4.2)

and

Fb = [Xb, Yb, Zb]
T Mb = [Lb,Mb, Nb]

T (4.3)

where U , V , W are linear velocities, P , Q, R – angular velocities, Xb, Yb, Zb – axial, side and
normal forces along the body axes coordinate system. In a similar way, Lb, Mb, Nb are rolling,
pitching and yawing moments. The left-hand side of the equation describes the inertia loads in
the missile frame of reference. In the most general case, when the missile centre of mass is not
coincident with Ob, the inertia matrix is defined as follows (Żugaj and Głębocki, 2010)

A =




m 0 0 0 Sz −Sy
0 m 0 −Sz 0 Sx
0 0 m Sy −Sx 0
0 −Sz Sy Ix −Ixy −Ixz
Sz 0 −Sx −Iyx Iy −yz
−Sy Sx 0 −Izx −Izy Iz




(4.4)

and the velocity matrix is

Ω =




0 −R Q 0 0 0
R 0 −P 0 0 0
−Q P 0 0 0 0
0 −W V 0 −R Q
W 0 −U R 0 −P
−V U 0 −Q P 0




(4.5)

wherem is the missile mass, Sx, Sy, Sz – static moments, Ix, Iy, Iz – moments of inertia, Ixy, Ixz,
Iyz – products of inertia.
The set of 6 scalar equations describing translational and rotational motion of the missile

has the form

m(U̇ +WQ− V R)− Sx(Q2 +R2) + Sy(PQ− Ṙ) + Sz(PR+ Q̇) = Xb

m(V̇ + UR−WP ) + Sx(PQ+ Ṙ)− Sy(P 2 +R2) + Sz(QR − Ṗ ) = Yb
m(Ẇ + V P − UQ) + Sx(PR− Q̇) + Sy(RQ+ Ṗ )− Sz(P 2 +Q2) = Zb

(4.6)

and

IxṖ − (Iy − Iz)RQ+ Ixy(PR − Q̇)− Ixz(PQ+ Ṙ) + Iyz(R2 −Q2)
+ Sy(Ẇ + V P − UQ)− Sz(V̇ + UR−WP ) = Lb

IyQ̇− (Iz − Ix)PR− Ixy(QR + Ṗ ) + Ixz(P 2 −R2) + Iyz(PQ− Ṙ)
− Sx(Ẇ + V P − UQ) + Sz(U̇ − V R+WQ) =Mb

IzṘ− (Ix − Iy)PQ− Ixy(P 2 −R2) + Ixz(QR − Ṗ )− Iyz(Q̇+ PR)
+ Sx(V̇ + UR−WP )− Sz(U̇ +WQ− V R) = Nb

(4.7)
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However, it is assumed that the origin of the gravity coordinate system Ogxgygzg is coincident
with the origin Obxbybzb of the body coordinate system so Sx = Sy = Sz = 0. The next
assumption is that the missile is a body of revolution and has two planes of symmetry. Hence,
all products of inertia are zero. The velocity vector of the missile in the Onxnynzn can be
calculated as (Zipfel, 2007)



ẋn
ẏn
żn


 =



e20 + e

2
1 − e22 − e23 2(e1e2 − e0e3) 2(e0e2 − e1e3)

2(e0e3 − e1e2) e20 − e21 + e22 − e23 2(e2e3 − e0e1)
2(e1e3 − e0e2) 2(e0e1 − e2e3) e20 − e21 − e22 + e23






U
V
W


 (4.8)

where e0, e1, e2, e3 – quaternion elements.
The integration of the rate of change of the quaternion vector is given as follows



ė0
ė1
ė2
ė3


 = −

1
2




0 P Q R
−P 0 −R Q
−Q R 0 −P
−R −Q P 0







e0
e1
e2
e3


− kE




e0
e1
e2
e3


 (4.9)

The gain k drives the norm of the quaternion state vector to one. Next, the roll Φ, pitch Θ and
yaw Ψ angles are calculated as below (Zipfel, 2007)

Φ = arctan
2(e0e1 + e2e3)
e20 − e21 − e22 + e23

Θ = arcsin[2(e0e2 − e1e3)]

Ψ = arctan
2(e0e3 + e1e2)
e20 + e

2
1 − e22 − e23

(4.10)

In missiles, the center of gravity normally shifts due to the burning off of the fuel. Forces Fb
acting on the missile have been obtained by summing up the inertia (left hand side of the
equation), gravity FG, aerodynamic FA, propulsion FP , control fins FC and control loads from
the lateral thrusters FT (Yuhang et al., 2006)

Fb = FG + FA +FP + FC + FT (4.11)

In a similar way, the moments and the resultant moment Mb are calculated as follows

Mb =MG +MA +MP +MC +MT (4.12)

A diagram that shows the forces and moments acting on the missile is illustrated in Fig. 6.
The vector of gravity loads acting on the object is calculated as

FG = mg[− sinΘ, cosΘ sinΦ, cosΘ cosΦ]T MG = [0, 0, 0]T (4.13)

The aerodynamic forces and moments in the Obxbybzb coordinate system are calculated as below

FA =
1
2
ρV 20 S[−CX , CY ,−CZ ]T MA =

1
2
ρV 20 Sd[−CL, CM ,−CN ]T (4.14)

where ρ is the air density, V0 – total flight velocity, S – area of the missile cross section,
d – missile diameter and CX , CY , CZ , CL, CM , CN are force and moment coefficients, respective-
ly. The aerodynamic forces, as given in the above equations, are functions of the aerodynamic
coefficients which depend on factors such as the Mach number, the angle of attack, sideslip angle
and angular velocities. The table lookup procedure has been used for obtaining the aerodynamic
coefficients for various flow angles and the Mach numbers from an offline generated database.
Aerodynamic characteristics of the missile have been determined using Arrow Tech PRODAS
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Fig. 6. Forces and moments acting on the missile

software (MAHER, 2002). The coefficients were also checked with the aim of Computational
Fluid Dynamics (CFD) methods. Steady-state simulations for angles of attack in range from
−15◦ to 15◦ and Mach numbers (Ma) from 0.1 to 4 were performed to confirm the values of
aerodynamic coefficients

CX(α, β,Ma) = CX0 + CXα2 sin2 α+ CXβ2 sin2 β

CY (β,Ma) = CY β sinβ + CY β3 sin
3 β

CZ(α,Ma) = CZα sinα+CZα3 sin3 α CL(Ma) = CLP
Pd

2V0

CM (α,Ma) = CMα sinα+
Qd

2V0
CMQ CN (β,Ma) = CNβ sin β +

Rd

2V0
CNR

(4.15)

where CLP is rolling moment coefficient derivative with the roll rate, CMQ – pitching moment
coefficient derivative with the pitch rate, CNR – yawing moment coefficient derivative with the
yaw rate.
Some of the coefficients are shown in Fig. 7.

Fig. 7. (a) Axial and (b) normal force coefficients as a function of the Mach number and angle of attack

The International Civil Aviation Organization (ICAO) standard atmosphere model has been
used as the flight environment (Zarchan, 2012). Propulsive loads were calculated as follows

FP = [T (t), 0, 0]T MP = [0, 0, 0]T (4.16)
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The thrust profile is a known function of time T (t) and was obtained on the engine test stand.
It was assumed that main engine thrust force was parallel to the Obxb axis the body coordinate
system. Control forces generated by fin deflections are defined as follows

FC =
1
2
ρV 20 S



XδAδA +XδBδB +XδCδC +XδDδD
YδAδA + YδBδB + YδCδC + YδDδD
ZδAδA + ZδBδB + ZδCδC + ZδDδD




MC =
1
2
ρV 20 Sd



LδAδA + LδBδB + LδCδC + LδDδD
MδAδA +MδBδB +MδC δC +MδDδD
NδAδA +NδBδB +NδCδC +NδDδD




(4.17)

where δA, δB , δC , δD are the control surfaces deflection angles. Next, the control forces generated
by the reaction control system are calculated (DeSpirito, 2013). The missile has a set of small
solid fuel engines placed at the end of the body. It is assumed that there are N = 12 jets. It is
assumed that nozzles of these engines are perpendicular to the longitudinal axis of symmetry
of the missile (Weinacht, 2004). The jets are translated by the vector rT i = [xT i, yT i, zT i] from
the origin of the Obxbybzb coordinate system, where i = 1, . . . , N is the number of the jet engine
(Zhen et al., 2012).

Fig. 8. (a) Reaction control system which is simulated, (b) the jet engine thrust curve

The force from the i-th jet engine in the Obxbybzb coordinate system is described as below

FT i = Ti[0, sin θT i,− cos θT i]T (4.18)

The moments generated by this pulse jet are

MT i = rT i × FT i = Ti[−yT i cos θT i − zT i sin θT i, xT i cos θT i, xT i sin θT i]T (4.19)

It is assumed that the jet engine thrust force (Fig. 8) is a function of time (Fenghua et al., 2008).
The shape of the curve has been designed with the aim of the method which was presented in
(Fleeman, 2006). The maximum thrust and jet engine size is limited also by the diameter of
the missile. There are defined some time constants which describe delays between subsequent
phases of the jet firing logic: τ1 – start time for the first jet engine, τ2 – burnout time for the
first engine, τ3 – start time for the second jet engine, τ4 – burnout time for the second engine,
τ5 – main engine launch time. These time constants are connected with two specific pitch angle
values: θτ2 – pitch angle after the first jet engine burnout, θτ4 – pitch angle after the first jet
engine burnout. These parameters have been calculated offline with the aim of optimisation
methods and implemented in the simulation. The methods by which the time constants have
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been calculated are out of the scope of this article. The described mathematical model has been
implemented in the Matlab software. The inputs to the model are the launch conditions, while
the outputs are the missile flight data (velocity, acceleration, etc.).

5. Simulation results

In this part, simulation results are presented. The missile is controlled by twelve small engines
mounted at the end of the missile tail. As the missile is launched, one of the engines is ignited to
orient the object in the demanded direction. Next, the second pulse engine is used to counteract
the pitch motion and, finally, the main missile engine is started. The key goals of the simulation
are to find control forces of the lateral jets, time constants and the best height at which the
missile should be ejected.
In the first test, the dependency between the τ3 time constant and the final pitch angle has

been analyzed. The second pulse engine was ignited with various delays. In Fig. 9, the missile
flight trajectories for various τ3 time constants are presented. The burntime of the single pulse
jet was 0.37 s and the thrust force was assumed constant and equal to 313N. The missile was
ejected vertically (initial pitch angle 90◦) with the velocity 25m/s. Before the launch, the missile
was located in the origin of the inertial coordinate system Onxnynzn.

Fig. 9. Trajectories as a function of τ3 time constants

The time constant τ3 was varied from 2 s to 2.24 s. For the smallest value of this time constant,
the pitch angle was about nearly 60◦ (for vertically oriented missile pitch angle 90◦). It is planned
to use the inertial measurement unit to measure the actual pitch angle. For the biggest value of
this time constant, the pitch angle is about 10◦. The main conclusion from this example is that
with using of this time constant it is possible to achieve various pitch angles.
In Fig. 10, the pitch angular velocity and the pitch angle as a function of time and for various

time constants which were used during simulations are presented.
The angular velocity does not change until 1.8 s because during this time no pulse jet is used.

Next, the first pulse jet is ignited and the missile pitch velocity changes rapidly as expected.
Later, the second jet engine is launched and the angular velocity decreases nearly to zero. After
2.3 s there occurs a very small positive singular velocity. It is difficult to drive this small difference
to zero because the first and second lateral jet thrust curves are the same. The bigger the τ3
time constant, the smaller pitch angle is achieved at the end of the simulation.
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Fig. 10. Pitch velocities and pitch angles for various τ3 time constants

Next, the influence of τ1 on the missile altitude has been tested. In Fig. 11, flight paths for
various τ1 are shown. The launch velocity has been assumed to be equal to 27m/s.

Fig. 11. Flight trajectories for various τ1 time constants

The time constants τ2, τ3, τ4 and τ5 are connected with the missile launch τ1. Satisfactory
results of these simulations have been obtained.

In Fig. 12, the pitch angular velocity and the pitch angle as a function of the first delay τ1
are shown.

At the end of the simulation, the pitch angle is about 53◦. The total maneuver time does
not exceed 0.6 s, which is quite a small value.

The other goal of the experiments was to compare the simulation results for the object with
the aerodynamic control surfaces only and the object with the gasdynamics controls (Fig. 13).
In the simulations, two objects are launched vertically and then they are aiming to the same
point.
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Fig. 12. Missile angular pitch velocity and pitch angle as a function of time

Fig. 13. Comparison of the trajectories for cold and hot launched missiles

There is only motion in the vertical plane, so y distance is zero. There is a significant
difference between both curves. The object with gasdynamics control can move along a straight
line, which is much more effective than flight along a parabolic curve. the missile with the
aerodynamic control has not those capabilities. The missile with the gasdynamics control is
able to reach the control point at a different trajectory and also can hit targets which are
very low. The missile with the gasdynamic control is able to reach the target in a shorter time
than the missile with the classical vertical hot launch system. The presented method is able to
save about 14% of fuel. The control system model used in the simulation is adequate to this
type of the object and is able to control precisely this object. The object can rotate in the air
because there is small damping in the air. When the delay is too big, the object can rotate
too much and hits the ground. The smulation results show capabilities of the presented control
method.
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6. Conclusion

This article investigates the dynamic characteristics of the cold launched missile with the gas-
dynamics control. The soft launch ignites the rocket motor after the missile has been launched
and directed towards the target. Analysis and simulation have been conducted to investigate
the dynamics of the missile. The missile model has been implemented in Simulink software. Nu-
merical experiments have shown some advantages of the proposed method like higher range. It
has been obtained that it is possible to use the gasdynamic control to orient the missile objects
during the launch phase. It can be concluded that the presented model of the missile launch
phase works properly.
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Fracture parameters of an inclined surface crack in a graded half-plane subjected to sli-
ding frictional contact are investigated in this study. The problem is modelled via the finite
element method (FEM) under the plane strain assumption employing a newly developed di-
splacement boundary condition. The shear modulus of the half-plane is graded exponentially
through the thickness direction by means of the homogeneous finite element approach. The
augmented Lagrange algorithm is selected as an iterative contact solver. The mixed mode
stress intensity factors (SIFs) which are induced by the contact stresses are evaluated utili-
zing the Displacement Correlation Technique (DCT). The accuracy of the present procedure
is ensured comparing the SIF results to those calculated by an analytical method for verti-
cal surface cracks. Additional SIF curves are generated as functions of the crack inclination
in order to reveal the effects of non-homogeneity, punch location, crack length and friction
coefficient. The prominent conclusion of this study indicates that the crack orientation has
profound effects on the behavior of SIF curves, which has not been presented in any study
published so far. Hence, consideration of crack inclination is proved essential to successfully
predict fracture behavior of a graded medium under frictional contact.

Keywords: inclined surface cracks, crack/contact problems, graded materials, finite element
method

1. Introduction

In engineering applications, keeping the structural integrity of a member is the major concern
to extend service life. From this point of view, investigation of contact and fracture mechanics
problems come into prominence especially for load transfer members. Brittle materials such as
ceramics are well suited for load carrying surfaces due to their high wear resistance. However,
because of their limited toughness they are prone to surface cracking under frictional contact
loadings, which may lead to loss in fatigue strength (Hills et al., 1993). Such destructive effects
of contact loadings can be partially tolerated by employing graded materials which consist of
spatially varying composition of brittle and ductile materials. For instance, frictional contact
and indentation related damages is shown to be mitigated upon introducing material gradation
(Surresh, 2001). It is revealed that non-homogeneous ceramics are more damage resistant to
loadings induced by spherical intenders (Lawn, 1998). Spatial gradation of Young’s modulus
is proven to prevent formation of Hertzian cone-cracks on brittle surfaces loaded by spheri-
cal stamps (Jitcharoen et al., 1998). Material gradation provides an improvement in damage
tolerance of ceramics which are subjected to contact and flexural loadings (Zhang, 2012).
In literature, there are some computational and analytical studies analyzing behavior of

cracks in elastic continua which are subjected to contact loadings. Hasebe et al. (1989) investi-
gated edge crack problems in an elastic half plane under frictional contact by utilizing a rational
mapping function and complex stress functions. Fracture parameters of a surface crack in a
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graded medium were evaluated under the action of frictional contact loadings by using the sin-
gular integral equation approach (Dag, 2001; Dag and Erdogan, 2002). Embedded horizontal
cracks in isotropic (El-Borgi et al., 2004) and orthotropic (El-Borgi et al., 2013) graded coatings
subjected to frictional Hertzian contact assumption were examined by means of the singular
integral equation approach. An edge crack in a graded coating loaded by a flat rigid stamp
was investigated by means of an uncoupled solution procedure based on the singular integral
equation approach (Dag et al., 2012). Sarikaya and Dag (2016) analytically calculated fracture
parameters of a surface crack in an orthotropic half-plane whose surface was exposed to sliding
frictional contact loadings.
In all the aforementioned studies, the cracks are located parallel or perpendicular to the

contact surface. However, propagation of the cracks is observed to be slanted in an elastic
medium which is subjected to fretting contact (Faanes, 1995; Giner et al., 2014). Moreover,
surface cracks may possibly initiate and propagate in any direction through a medium which
is under non-symmetrical loading conditions, such as frictional contact loadings. Hence, effects
of crack orientation on fracture parameters should be examined to clearly predict critical and
sub-critical crack growth. The literature survey revealed that no computational or analytical
studies related to inclined surface cracks in a graded medium under frictional contact has been
conducted.
In this study, fracture parameters of an inclined surface crack in an elastic graded medium

which is subjected to frictional sliding contact are investigated. The medium is modelled on the
plane strain assumption by means of a finite element analysis software ANSYS (2013). A newly
developed displacement boundary condition is imposed on the model to be able to improve
the simulation capability. The shear modulus of the half-plane is graded exponentially through
the thickness direction utilizing the homogeneous finite element method. In the solution of the
nonlinear contact problem, the augmented Lagrange algorithm is selected. The crack tip SIFs
induced from the contact stresses are calculated by using DCT. Comparisons of the results to
those generated by the analytical method for vertical surface cracks (Dag, 2001) validate the
accuracy of the proposed finite element procedure. Extra SIF curves are depicted as functions of
crack inclination for different non-homogeneity parameters, punch location, relative crack length
and friction coefficient. The striking outcome of this study indicates that the change in crack
inclination have remarkable influence on the mixed mode SIFs. As a result, consideration of
crack inclination in crack-contact problems is proved essential to successfully predict fracture
behavior of a graded medium under frictional contact loadings.

2. Problem definition and solution method

The geometry of an inclined surface crack in a graded medium which is subjected to frictional
sliding contact is depicted in Fig. 1. The surface of the graded medium is loaded by a rigid flat
punch whose end points are located at y = b and y = c. Coulomb’s dry friction is assumed to
exist between the rigid punch and the medium surface. Exponential shear modulus gradation is
introduced through the thickness direction considering Poisson’s ratio as a constant (Dag, 2001;
Dag and Erdogan, 2002)

µ(x) = µ0 exp(γx) (2.1)

where µ0 and γ represent the shear modulus at the surface (x = 0) and the non-homogeneity
parameter, respectively. Thus, constitutive relations for the graded medium can be stated as

ε = exp(−γx)Sσ (2.2)
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Fig. 1. Problem configuration

where S, ε and σ respectively stand for the compliance matrix, strain vector and stress vector
in the global coordinate system xy. The stress and strain vectors can be written explicitly as

ε = [εxx, εyy, εzz, εyz , εxz , εxy]T σ = [σxx, σyy, σzz, σyz , σxz, σxy]T (2.3)

Isotropic materials have an infinite number of elastic symmetry planes and possess two
independent material properties. The compliance matrix in Eq. (2.2) can be expressed in terms
of the shear modulus µ0 and Poisson’s ratio ν as follows (Jones, 1998)

S =




C1 C2 C2 0 0 0
C2 C1 C2 0 0 0
C2 C2 C1 0 0 0
0 0 0 C1 − C2 0 0
0 0 0 0 C1 − C2 0
0 0 0 0 0 C1 − C2




(2.4)

where

C1 =
1

2(1 + ν)µ0
C2 = −

v

2(1 + ν)µ0

Constitutive relations can be restated for plane elasticity in the local coordinate system x1x2
which is defined at the crack tip





ε11
ε22
2ε12




= exp[−γ(x1 + a) cos φ]



s11 s12 s16
s21 s22 s26
s61 s62 s66








σ11
σ22
σ12





(2.5)

where a, φ and sij (i, j = 1, 2, 6) represent length of the surface crack, crack inclination angle
and compliance coefficients, respectively. The compliance coefficients for the plane stress case
read

s11 = s22 = C1 s12 = C2
s16 = s26 = 0 s66 = 2(C1 − C2)

(2.6)

The compliance coefficients for the plane strain case are defined below

s11 = s22 =
C21 − C22
C1

s12 =
C2(1− C2)

C1
s16 = s26 = 0 s66 = 2(C1 − C2)

(2.7)
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Analytical expressions of the opening mode (mode I) and the shearing mode (mode II) SIFs are
given as follows (Perez, 2004)

KI = lim
x1→0+

√
2π(x1 − a)σ22(x1, 0) KII = lim

x1→0+

√
2π(x1 − a)σ12(x1, 0) (2.8)

In order to calculate SIFs through Eq. (2.8), one should determine the asymptotic stress
expressions by conducting a heavy solution procedure based on the singular integral equation
approach (Dag, 2001; Dag and Erdogan, 2002). On the other hand, SIFs can be calculated via
DCT with a high level of accuracy within a properly constructed finite element model. DCT
utilizes nodal displacements around crack tip which are computed through FEM (Kim and
Paulino, 2003)

KI =
1
8

√
2π
∆a

4V1 − V2
s22 exp[−γa cos φ]

KII =
1
8

√
2π
∆a

4U1 − U2
s11 exp[−γa cosφ]

(2.9)

where

U1 = u1(N1)− u1(N3) U2 = u1(N2)− u1(N4)
V1 = u2(N1)− u2(N3) V2 = u2(N2)− u2(N4)

(2.10)

where Nj (j = 1, . . . , 4) are the nodes around the crack tip, which are depicted in Fig. 2.
∆a represents the characteristic length of the crack tip elements. u1 and u2 are the displacement
components defined through x1 and x2 directions, respectively.

Fig. 2. Nodes on crack tip elements, ∆a/a = 1/40000

The finite element model (as seen in Fig. 3) possesses boundaries on the contrary to the
original half-plane problem. B, H and W represent width of the flat punch, height of the model
and width of the model, respectively. The ratios B/H and B/W are selected sufficiently small
that they do not have any effect on the contact stresses and crack tip parameters.
When the side-lines (lines 1 and 2) of the model are set free, they experience some displa-

cements under the effect of frictional contact stresses leading to incorrect crack tip parameters.
These adverse displacement effects are observed to be still active, even if the model is chosen
to be very large compared to the crack/contact region. Hence, the effect of side-line displace-
ments on the crack-contact region should be neutralized in order to satisfactorily simulate the
half-plane problem. If line 1 and line 2 are forced to undergo the same horizontal displacements
under the effect of contact stresses, the behavior of the surface crack can be retrieved from the
side-line effects to a certain degree.



Inclined surface cracks in a graded half-plane... 919

Fig. 3. Finite element model, B/H = 1/30, B/W = 1/80, φ = −30◦

The following displacement boundary condition is imposed on the side-lines of the model
which increases the simulation capability of the model

v
(
x,−W
2

)
= v

(
x,
W

2

)
0 < x < H (2.11)

where v(x, y) stands for the displacement component in the horizontal y-direction. To enable the
boundary condition in Eq. (2.11), line 1 and line 2 are discretized with the same degree of mesh
refinement. Hence, these lines acquire an equal number of nodes which are exactly at the same
x-locations as illustrated in Fig. 4. The y-component displacements of the nodes that locate at
the same x-coordinates are equalized by inserting a subroutine into the ANSYS code. Thus Eq.
(2.11) is treated in terms of the nodal displacements as

v(N1k) = v(N2k) k = 1, 2, 3, . . . , p (2.12)

where Nik represents the number of the nodes along line 1 and line 2 as depicted in Fig. 4.
p and dk respectively stand for the total number of the nodes and the vertical distances between
consecutive nodes on each of line 1 and line 2.

Fig. 4. Nodes on the side lines of the finite element model

As seen in Fig. 3, x-component displacement of the bottom line is restricted to zero, and the
node located at the left-bottom corner is entirely fixed.
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The plane strain assumption is considered in the model which is meshed by using a total of
219030 8-noded quadrilateral and 6-noded triangular finite elements. Throughout the meshing
operation, a 6-noded triangular finite element is obtained by combining 3 nodes of an 8-noded
quadrilateral finite element at a single point. The crack tip is discretized by using 48 regularly
oriented triangular finite elements as shown in Fig. 5. The mid-side nodes of the crack tip
elements (see Fig. 2) are positioned at a quarter of the radius of the crack tip elements. The
crack tip SIFs are evaluated by means of Eq. (2.9) which makes use of nodal displacements
around the crack tip.

Fig. 5. Finite element mesh of the crack tip

Since contact stresses and contact surfaces are both unknown, contact mechanics problems
involve a severe non-linearity. Due to this fact, finite element solutions of frictional contact
problems are conducted by using step-by-step iterative procedures. The selected procedure in
this study is the augmented Lagrange algorithm, in which consecutive equilibrium iterations
are performed per increment of the normal and frictional forces. The details of the algorithm
can be seen in the review paper by Mijar and Arora (2004). In the finite element model, three
rigid target elements are used to represent rigid surfaces of the flat punch. The contact surface
of the elastic medium is finely meshed using 300 contact line elements in order to get sharp
variations of the contact stresses. The contact line elements are constructed by the three nodes
of underlying solid elements (ANSYS, 2013). The Gauss integration points on the contact line
elements are attributed as the contact detection points.
In the previous finite element studies related to graded structures, gradations of material

properties through spatial coordinates are provided by using the graded finite element method
and the homogeneous finite element method. In the graded finite element method (Santare and
Lambros, 2000), the material properties are specified at the Gauss integration points of each
finite element. However, in the homogeneous finite element method, the material properties are
computed at the centroid. In the theoretical solutions for the contact and fracture mechanics
problems of graded structures, utilization of the homogeneous finite element method yields highly
accurate results (Dag et al., 2007, 2009; Arslan, 2017). Hence, in this study, the shear modulus
gradation through the thickness direction is introduced by using the homogeneous finite element
method.

3. Numerical results

In this Section, validity of the present procedure is revealed comparing the results to those
generated by an analytical method (Dag, 2001) for a vertical surface crack (φ = 0◦). Moreover,
some curves of the mixed mode SIFs as functions of the crack inclination φ are presented for
different problem parameters.
As depicted in Fig. 1, complete frictional contact occurs between the flat rigid stamp and the

surface of a graded medium which involves an inclined surface crack. η stands for the Coulomb
friction coefficient prevailing between the FGM surface and the flat stamp. The locations y = b
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and y = c at the contact surface are called the trailing and leading ends of the contact zone,
respectively.
Before going through the details of numerical results, it is beneficial to elaborate on the

normalizations that are taken into account. The normalized non-homogeneity parameter, relative
punch location and relative crack length are represented as γa, b/a, a/(c− b), respectively. Note
that the elastic medium is homogeneous when γa = 0 and, shear modulus of the elastic medium
increases in the positive x-direction when γa > 0. In addition, normalizations of mode I (KI)
and mode II (KII) SIFs at the crack tip are defined as

KIn =
√
a

π

KI

P
KIIn =

√
a

π

KII

P
(3.1)

Note that negative mode I (KI) SIF results are not valid, and the negativity reveals that the
crack closure occurs. However, these negative results are still useful and applicable in considera-
tion of some problems including remote loading (Dag and Erdogan, 2002). Hence, in literature,
negative KI results have been presented in parametric analysis of crack/contact problem solu-
tions (Dag, 2001; Dag and Erdogan, 2002; Sarikaya and Dag, 2016).
Figure 6 reveals comparisons of the results to those evaluated analytically by Dag (2001)

for vertical surface cracks (φ = 0◦). The comparisons are depicted for the combinations of two
different normalized non-homogeneity paremeters γa and four different friction coefficients η.
As can be observed in this figure, excellent agreement between the analytical (Dag, 2001) and
present results is attained in each case, which indicates the validity and reliability of the present
finite element solution.

Fig. 6. Comparisons to the analytical results obtained by Dag (2001) for a graded isotropic half plane
for ν = 0.25, a/(c− b) = 1.0, φ = 0◦; (a) KIn, γa = 0.1, (b) KIn, γa = 1.0, (c) KIIn, γa = 0.1,

(d) KIIn, γa = 1.0
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Figure 7 illustrates deformed shape of the graded medium for a/(c − b) = 1.0, b/a = 1.0,
φ = −30◦, η = 0.4, ν = 0.25, and γa = 1.0. Mesh densities on the crack-contact region can be
seen in this figure, and the surface crack is observed to be opened under the action of frictional
contact loading. Figure 8 reveals the effect of normalized non-homogeneity parameter γa on the
curves of normalized mixed-mode SIFs versus the inclination angle φ. Examining Fig. 8a, when
the normalized non-homogeneity parameter γa is increased from 0.1 to 1.0, KIn decreases for
φ < 0◦, however increases for φ > 0◦. Note that the crack closure (KIn = 0) occurs at higher
inclination angles φ, as γa is increased from 0.1 to 1.0. Observing Fig. 8b, when γa is increased
from 0.1 to 1.0, KIIn has an decreasing trend in the range −20◦ < φ < 60◦. However, this trend
is reversed in the range −60◦ < φ < −20◦. Also note that the absolute value of KIIn is critical
in design, not its sign.

Fig. 7. Deformed shape of the crack-contact region, ν = 0.25, a/(c− b) = 1.0, b/a = 1.0, φ = −30◦,
η = 0.4,γa = 1.0

Fig. 8. Effect of normalized non-homogeneity parameter on normalized mode I (a) and mode II (b)
SIFs, ν = 0.25, a/(c− b) = 1.0, b/a = 1.0, η = 0.4

Figure 9 demonstrates the plots of normalized mixed-mode SIFs at the crack tip versus
the inclination angle φ for different coefficients of friction η. When the coefficient of friction
is increased from 0.0 to 0.8, KIn elevates and KIIn decreases significantly. Note that the crack
seems closed for η < 0.2. In Fig. 10, the normalized mixed-mode SIFs at the crack tip are plotted
versus the inclination angle φ for different relative crack lengths a/(c − b). As seen in Fig. 10a,
KIn increases remarkably when a/(c − b) is decreased from 5.0 to 0.66̄ for φ > 0. When φ < 0,
KIn is not considerably affected by the change in a/(c − b). Moreover, the crack closure seems
to occur at higher inclanation angles φ, as a/(c− b) is decreased from 5.0 to 0.66̄. As displayed



Inclined surface cracks in a graded half-plane... 923

in Fig. 10b, when a/(c− b) is decreased from 5.0 to 0.66̄, KIIn decreases for φ > 0 and elevates
for φ < 0.

Fig. 9. Effect of friction on normalized mode I (a) and mode II (b) SIFs, ν = 0.25, a/(c− b) = 1.0,
b/a = 1.0,γa = 1.0

Fig. 10. Effect of relative crack length a/(c− b) on normalized mode I (a) and mode II (b) SIFs,
ν = 0.25, b/a = 1.0, γa = 1.0, η = 0.4

Fig. 11. Variations of normalized mode I (a) and mode II (b) SIFs versus the normalized punch location
b/a for different crack inclinations, ν = 0.25, a/(c− b) = 1.0, γa = 1.0, η = 0.4

Figure 11 illustrates the plots of normalized mixed-mode SIFs at the crack tip versus the
normalized punch location b/a for different crack inclanation angles φ. As seen in Fig. 11a,
KIn reaches the local extremum when b/a is between 1.0 and 2.0 for 0 ¬ φ ¬ 60. In this range
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of b/a, magnitude of KIn elevates significantly when the inclination angle φ is increased from
−60◦ to 60◦. It can be also infered from Fig. 11a that the crack is substantially closed (KIn < 0)
for φ  30◦ in the range 0 < b/a < 1.0.

4. Conclusions

In literature, an analytical solution for a vertical surface crack problem in a graded medium sub-
jected to frictional contact is available. In this study, the problem is extended computationally
concerning different orientations of the surface crack to investigate fracture behavior of graded
continua in a more insightful manner. The graded semi-infinite medium which is loaded by a
flat rigid punch is simulated with a finite element model considering a particular displacement
boundary condition. The plane strain assumption is taken into account in the model. The solu-
tions of contact and crack problems are managed employing the augmented Lagrange algorithm
and DCT, respectively. Comparisons of the results to those evaluated by an analytical technique
for a vertical surface crack verify the accuracy of the present finite element approach. Further
numerical results enlighten the behavior of the surface cracks for different problem parameters,
which can be utilized efficiently in design and optimization. For instance, variation in material
gradation has a changing effect on the crack tip parameters as the inclination angle φ alters.
For the surface cracks possessing negative inclination (φ < 0), the degree of gradation can be
increased to suppress mode I type crack propagation. However, for surface cracks having posi-
tive inclination (φ > 0), the risk of mode I type failure may arise as the degree of gradation
is increased. The risk of mode I failure seems existing especially for η > 0.2. For the surface
cracks having negative inclination (φ < 0), the risks of mode II type failure can be alleviated
substantially by increasing the contact length. However, for the surface cracks having positive
inclination (φ > 0), the risk of mode I type crack propagation can be mitigated upon decreasing
the contact length.
To conclude: effects of the problem parameters on the crack tip SIFs are shown to be altered

significantly with the variation in crack orientation φ, which is the main outcome of this study.
Hence, investigation of the crack tip parameters only for vertical cracks is shown to be insufficient
and, therefore, surface crack problems should be examined by taking the crack orientation into
account to be able to clearly predict the critical and sub-critical surface crack growth in graded
structures subjected to frictional contact loadings. A new displacement boundary condition is
also proposed to improve the computational modelling of crack/contact problems.
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The paper attempts to explain the phenomenon of a static strength increase due to the
previous cyclic loading. Finite Element Method simulation of the potential strengthening
mechanism is presented. The crack growth is controlled by the energy criterion used in the
linear fracture theory. A wedge splitting test has been performed in order to determine the
critical energy release rate of the tested mixture GIC . It was observed that the appearance
of additional cracks in the material may lead to an increase of its strength. Analysis of the
tensile stress distribution allows for a qualitative explanation of the observed phenomenon.

Keywords: fatigue life, cement-treated base layers, strengthening effect, load history, XFEM

1. Introduction

The fatigue strength is an important aspect of estimating durability of many types of structures
subjected to cyclic loadings. Particularly, road pavement structures, which are often subject to
many millions of load cycles, are designed with regard to their fatigue life. The modern approach
to fatigue was initiated by Wöhler (1970). He measured fatigue strength as a feature of the
material, so the number of load cycles that the structure can carry depends on the amplitude
of the load. This dependency, presented later by his successor in the form of a graph, is known
as the “Wöhler curve”. By using such formulas, the number of constant amplitude load cycles
causing destruction of the material can be estimated.
Taking into account variable amplitude loads requires additional assumptions about fati-

gue accumulation. The simplest theory, the so-called linear damage accumulation model, is the
Palmgren-Miner hypothesis (Miner, 1945). Based on the assumptions of this theory, the durabi-
lity of the structure does not depend on the order of the applied load with a variable amplitude.
As shown in the literature, the impact of load history can be so significant that we overestimate
or underestimate the fatigue life by up to 4 times (Bijak-Żochowski et al., 1999). Accurate asses-
sment of the load amplitude order is the subject of many hypotheses (Brzeziński and Zbiciak,
2014; Fatemi and Yang, 1998; Marco and Starkey, 1954; Xi and Songlin, 2009; Zhao et al., 2014).
In particular, the results of the research conducted by Koba (2000) show that samples of

cement-treated soil subjected to a pre-load exhibit a much higher fatigue strength. Furthermore,
an increase in the static strength was also observed. Based on the above observations, the fatigue
hypothesis has been developed. The hypothesis takes into account the impact of the history on
the fatigue of cement-treated soils (Brzeziński and Zbiciak, 2014). In contrast to the previously
mentioned criteria, the proposed hypothesis assumes that the static strength also varies due
to the cyclic loading. This approach allows for the modeling of strengthening as well as the
weakening of fatigue strength, depending on the applied preload. This hypothesis led to the
onset of the research concerning changes in static strength of cement-treated mixtures used in
road pavement structures (Brzeziński et al., 2017).
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This paper attempts to explain the phenomenon of static strength increasing by the previous
cyclic loading. The change of the mechanical properties of the loaded sample is undoubtedly
related to changes in the structure and microstructure of cementitious materials (e.g. cracks and
micro-cracks). An effective method for detecting and locating the cracks within the sample is
acoustic detection (Landis and Shah, 1995; Moczko, 1996, Ohtsu, 1996). Formation and merging
of micro-cracks usually results in degradation of the material or even destruction of the structure.
However, in some cases the increase in density of dislocation may be responsible for an increase
in the fracture toughness (Ritchie, 1999). The knowledge of changes in the internal structure
of the material allows for a better understanding of the investigated phenomena. However, a
quantitative approach requires an appropriate research. In this work, Finite Element Analysis
(FEM) analysis is used in order to explain how cracks formed during cyclic loading can cause
strengthening of the sample.

2. Microstructure changes under cyclic loads

The change in static strength of a material as a result of the cyclic loading can be explained by
transformation of its internal structure. This phenomenon is easier to observe and investigate
in more homogeneous materials (e.g. metal alloys). In the case of composite materials, this is a
much more difficult task. The internal structure is much more heterogeneous, and mechanical
properties depend on characteristics of individual components and the ratio between them.
The polycrystalline grain structure is significantly different from crystal in its ideal form,

which is due to numerous defects which significantly affect mechanical properties of the material.
The analysis of the influence of dislocations on the mechanical properties of the material is
promising. Especially, since dislocations may be introduced into the material by cyclic pre-
loading. Due to their presence, the stress required to produce plastic deformation is 103-104

times smaller than that of the ideal crystal (Wawszczuk, 2012). The energy supplied during the
cyclic loading may turn into potential energy of misalignment. Furthermore, during long-term
operation, the amount of dislocation may increase. Initially, it facilitates slipping. However, when
the number of dislocations increases, they block each other, so that their movement (and hence
the slip phenomenon) is impeded. In such a situation, strengthening is observed, in the case
of metal alloys represented as the increase of the yield point (Moćko and Kowalewski, 2014).
In brittle materials, such as cement-treated mixtures, different types of imperfections usually
cause strength reduction. However, in some cases, the strengthening effect may occur. The
strengthening mechanism at the dislocation level can be explained by the fact that they impede
propagation and joining of micro-cracks by cutting the path of their potential development. In
this way, they can eliminate critical cracks that would otherwise damage the structure.
The micro-cracks can have a similar influence on the material in the process of static strength

changing. The accumulation of micro-cracks in the structure is usually causing weakening of the
material because over time it merges into larger cracks and eventually results in destruction of
the structure. On the other hand, differently oriented micro-cracks can make propagation of the
dominant crack difficult, thus increasing the static or fatigue strength of the structure.
As mentioned above, observing such a phenomenon in the case of cement-bond materials is

much more difficult due to heterogeneity of the structure. In addition, the critical element is the
cement matrix which is a small part of the material volume. Therefore, the effects observed are
much less marked. In spite of this, detection of dislocation motion in cement matrix materials
is possible. Studies conducted by Kyriazopoulos et al. (2011) showed the possibility of detecting
dislocation by recording the flow of small electrical charges generated in the material. Another
method of observation of changes occurring inside the materials during load application is the
method of acoustic detection (Landis and Shah, 1995; Moczko, 1996, Ohtsu, 1996). The energy
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released during micro-cracking or dislocation motion causes a sound wave propagating in the
sample. The analysis of the signal recorded from several piezoelectric transducers located on
the sample not only allows one to observe the moment of the micro-crack but also allows its
localization as well as estimation of the size and direction of the slip plane.
The cracks caused by the cyclic loading may be involved in the mechanisms responsible for

improving toughness of the material (Ritchie, 1999). Development of dominant cracks can be
prevented if the crack tip encounters several interconnected micro-cracks. Then several crack
tips are formed, which reduces the intensity factor of stresses. According to the linear fracture
mechanics, based on Griffith’s theory (Griffith, 1920; Prokopski, 2008), crack enlargement requ-
ires the work of forming a free surface of the crack within the body. Therefore, development of
several cracks at the same time can be difficult because it requires more energy.

3. Laboratory tests

3.1. Scope of the research

The main part of the studies consists of the comparison of static strength of not pre-loaded
samples and samples subjected to cyclic pre-loading. In these studies, a static change has been
observed (even strengthening of the material). The preliminary results are presented in (Brze-
ziński et al., 2017). However, in this paper, only supplementary laboratory tests related to FEM
analysis will be presented. They have been conducted in order to determine the fracture energy
(critical energy release rate GIC) of the tested material.

3.2. Materials and preparation of samples

Quartz sand of the standard grain size (PN-EN 196-1:2006) has been used to prepare the
mix. The use of this type of aggregate was intended to ensure repeatability of tests and to
increase accuracy of the analysis.
The cement used for the preparation was CEM I 42.5 R Portland cement. The mass content

of the cement relative to sand was 10%. The cement content in cement-bond soils should be
between 4% and 10% (Rafalski, 2007), so the amount of cement used could be considered as
typical. In addition, tap water was used in the amount needed to achieve optimum moisture
(determined by the Proctor test).

Fig. 1. Sample prepared for the Wedge Splitting Test

The primary objective of the Wedge Splitting Test (WST) is to determine the critical energy
release rate GIC (Brühwiler and Wittmann, 1990; Löfgren et al., 2004). This parameter deter-
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mines the material susceptibility to cracking and corresponds to the energy dissipated during
cracking of the material. The WST is commonly used for brittle materials such as concrete (Sitek
et al., 2014). The test stand is shown in Fig. 1.
A sample of 20×20 cm×10 cm rectangular shape was prepared with a proper cut allowing

installation of a force application mechanism and a notch indicating the origin of the crack.
Samples were made of the same mixture as the beams subjected to cyclic tests.
The wedge with an angle of 2ξ = 10◦ was pushed with a constant velocity of 2mm/s. The

load was passed to the specimen via rollers located on the sides of the wedge. Every sample was
subjected to a single load until it was destroyed. The vertical force F and the Crack Opening
Displacement (COD) were measured during the test.

3.3. Laboratory test results

The test result is usually illustrated as a graph of the dependence of the horizontal force on
the COD. The area under the graph defines its work to open the cracks WF . The critical energy
release rate is given by

GIC =
WF

A
(3.1)

whereWF is the work of the force forming the crack [J], A – the area of the created crack surface
[m2].
The test was performed on 3 samples and then the results were averaged. In the FEM

simulation, the average value of critical energy release rate GIC = 50.12 J/m2 was used.

4. Potential strengthening effect simulation by FEM

The analysis of microstructural mechanisms capable of explaining the changes in strength, in
particular the strengthening effect, allows for a more comprehensive analysis and understanding
of the phenomena studied. It can improve the effectiveness of the conducted research and also
help one to draw additional conclusions useful in determining the future research goals.
The FEM was used in the analysis. The influence of additional cracks in the sample on

the propagation delay of the dominant crack was investigated, which might be interpreted as
an increase of the static strength. It should be emphasized that the analysis performed can be
considered both as simulation of the strengthening or weakening mechanism of the material. In
this case, the interpretation of what is strengthening and what is weakening depends on what
cracks arrangement is adopted as the reference point. Nevertheless, in order to make the analysis
more readable, the reference point is the simplest cracks arrangement (single crack in the middle
of the sample), which is also most unfavorable considering the strength of the sample.

4.1. Theoretical assumptions

The FEM simulation has been performed with the Abaqus R○ program. Advanced modeling
techniques such as eXtended Finite Element Method (XFEM) or Virtual Crack Closure Tech-
nique (VCCT) were used for this purpose. Therefore, before describing the model, the basic
theoretical assumptions of the mentioned techniques and their implementation in the program
will be presented.
The first concept of the XFEM application, a method for simulating cracks development

independently from the model grid, was presented by Belytschko and Black (1999). In the
following years, this method was developed and used in numerous applications (Remmers et al.,
2008; Song et al., 2006) and also implemented in commercial software (ABAQUS, 2013). The
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idea of the method consists of enriching typical finite elements with additional shape functions
that allow for discontinuity modeling and avoiding the singularity problem at the tip of the crack.
The analysis is based on the linear fracture mechanics theory, so development of the crack is
modeled in such a way that it propagates immediately throughout the finite element. For this
reason, the above mentioned problem of singularity does not occur. The detailed description of
this technique is given in (Dolbow and Belytschko, 1999).
Description of cohesive properties of the crack is the same as in the classical approach.

It is based on the linear fracture theory proposed by Griffith (1920). In the VCCT criterion,
deformation energy released during crack propagation by δa is calculated by assuming that it is
the same as the work required to close the crack.
The crack propagation occurs when the energy released in the VCCT procedure is greater

than the critical value, which can be written as follows

f =
GI
GIC

> 1.0 (4.1)

where f is the condition of crack propagation, GIC – critical energy release rate, GI – energy
release rate (the ratio of the released energy to the additional surface resulting from crack
propagation).
When the XFEM elements are used, the crack propagation direction is independent of the

mesh. Therefore, the criterion determining the crack propagation direction must be assumed.
In this analysis, it is assumed that the crack will propagate perpendicular to the direction of
the maximum tensile stress. These criteria require knowledge of the critical value of the energy
release rate GIC . It has been determined experimentally in the wedge splitting test.
The XFEM modeling technique is often referred to be as mesh independent. It should be

understood that the course of the crack is not determined by the shape of the mesh. However, the
solution is sensitive to size of the elements. First of all, this is obviously related to the accuracy
of reflecting the state of stress in the structure. Less obvious is the impact resulting from the
linear fracture mechanics. In the VCCT technique, which is used in the XFEM, the propagation
of the crack occurs abruptly (each time in length determined by the mesh density). Thus, the
size of the element corresponds with the characteristic crack length a, which is a component
of the crack propagation criterion (Griffith, 1920). Therefore, the specified mesh density is not
versatile. However, in the author’s opinion, a mesh with a given characteristic density can be
used to compare similar models with the same material.

4.2. Geometry and parameters of the FEM model

After conducting tests necessary to obtain characteristic material parameters of the mixtu-
re, a proper FEM model has been prepared. A 3-point bending strength test was performed.
Geometry of the sample and the static scheme corresponding to the actual test were used. The
load was applied in a kinematic manner. In the first simulation, the crack was applied at the
bottom of the sample, at the most strained cross section. The load velocity was adjusted so that
the result of the strength test simulation was similar to the results obtained in real test. Then,
the effect of additional cracks occurrence on the resulting strength was analyzed.
In order to speed up the calculation, a plain stress condition was assumed. The model

consisted of a small beam that was freely based on rounded supports, loaded from the top
through a rounded loading nose. Geometrical invariability of the static system was ensured by
boundary conditions and by defining contact between the elements (Fig. 2).
The loading nose moved in the vertical direction at a speed of 0.2mm/s. The value of the

loading force was calculated on the basis of vertical stresses in the supports. At each stage of
simulation, at least one pre-fracture crack was placed at the bottom of the sample, in the most
strained section. The enriched elements were used in a limited area because of practical reasons.
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Fig. 2. The static scheme of the FEM model

Various crack configurations were adopted on the basis of the crack development presented in
the paper (Landis and Shah, 1995). However, in the model crack configurations were simplified.
The linear elastic material model was applied in order to define constitutive properties of all

elements. The applied values of material parameters are summarized in Table 1.

Table 1. Applied parameters of the materials

Element Young’s modulus [GPa] Poisson’s const. [–] GIC [J/m2]

Supports and nose 210.00 0.30 –
Beam 3.50 0.25 50.12

4.3. Simulation results

The procedure of the analysis has been as follows. It was assumed that not pre-loaded
elements were not cracked, so in the simulation only the initial crack was placed in the material.
Therefore, in the strength test, the development of the dominant crack is not disturbed. On the
other hand, in the case of pre-loaded samples, cracks and micro-cracks appeared, which might
affect the development of the dominant crack. In many cases, the appearance of additional
cracks might reduce the observed strength of the sample because destruction progressed easier
by merging existing discontinuities. Sometimes, however, the crack propagation of the dominant
crack might be difficult due to proximity to other cracks. Accordingly, the simulation of a single-
-cracked specimen strength test was treated as a benchmark. In the subsequent stages of analysis
another crack was placed at the bottom of the sample at a distance of 4.0, 5.0 or 6.0mm. In
addition, the results of triple fracture (two additional cracks symmetrically located at a distance
of 6.0mm from the base fracture) were also compared. Figure 3 shows exemplary results of
the 3-point bending tests and the simulation result of this test in the basic variant (single
crack).
From Fig. 3 it can be concluded that the first step of the simulation - the strength test

modeling, was performed correctly. Both the slope of the pre- and post-destruction graphs,
as well as the maximum value of the stress, are very similar. Further simulations were made
by adding one or two cracks. The results are shown in Fig. 4. One can see that the strength
increased in all cases. The maximum increase in strength was approximately 20% (in the case
of an additional crack located at a distance of 4.0mm).
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Fig. 3. Comparison of exemplary results of laboratory strength tests and FEM simulation of this test
(3-point bending)

Fig. 4. Comparison of FEM simulation results of a strength test obtained by applying single
pre-fracture and additional cracks at a distance of 4.0, 5.0 and 6.0mm

A more detailed analysis of the stress state in subsequent load phases (illustrated in Figs. 5
and 6) may allow for a better understanding of the observed phenomenon. In the case of the
single crack, shown in Fig. 5, general conclusions regarding the effect of crack evolution on the
stress distribution in the sample can be drawn. The appearance of the initial crack at a low level
of the stress (about 50%) results in reduction of the effective area of the cross-section. Certain
stresses are carried between the crack edges until the critical crack mouth opening. It reflects the
cohesive zone of interaction at the crack tip (Elfgren and Shah, 1991; Hillerborg, 1989). As the
load increases, the gap widens until it stops carrying the stresses at all. It should be noted that
the recorded force does not decrease immediately, at the time of initiation of cracks propagation.
The crack is 6mm long at the moment of the maximum stress.
The next figure (Fig. 6) shows a simulation with additional cracks located symmetrically

at a distance of 6.0mm. The introduced cracks lead to redistribution of the internal forces in
the loaded sample. The additional crack forms a peculiar “cover” of the dominant crack. This
phenomenon reduces tensile stresses near the dominant crack and slows its propagation. Finally,
this led to an increase in the measured strength by about 14%. The development of the dominant
crack is stopped and destruction is determined by propagation of one of the adjacent cracks. In
all analyzed cases, the beneficial effect of the occurrence of additional cracks is observed. This is
due to the fact that the reference is the single crack located in the most strained cross section. It
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Fig. 5. Development of cracks in subsequent load phases – single cracked sample
(displacement scaled 3 times)

should be noted that the maximum strengthening obtained in the simulation is approximately
2 times greater than that presented in (Brzeziński et al., 2017). In fact, some individual samples
tested in the laboratory showed even more than 15% increase in strength. The results presented
in (Brzeziński et al., 2017) have been already averaged to minimize the impact of random factors.
In order to compare stress rearrangement in different crack configurations, it is summarized

in Fig. 7.
At the level of analysis it should be emphasized that the observed change of strength is a

characteristic of the structure rather than the material. Nevertheless, in the phenomenological
point of view, it manifests as strengthening of the material. In the case of both approaches, it is
reasonable to assume that the observed increase in static strength can result into longer fatigue
life.
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Fig. 6. Development of cracks in subsequent load phases – two additional cracks at a distance of 6.0mm
(displacement scaled 3 times)

5. Conclusions

In this paper, FEM simulation of the potential strengthening mechanism was presented. The
analysis is strongly related to the theoretical considerations concerning structural changes of
the material. It has been based on the modeling of the 3-point bending test performed in order
to determine the strength of the material. The discontinuity modeling XFEM technique was
used. The crack growth was controlled by the energy criterion used in the linear fracture theory.
The implementation of the criterion in the Abaqus R○ program was based on the Virtual Crack
Closure Technic (VCCT). In order to apply this criterion, it was necessary to know the critical
energy release rate of the tested mixture GIC . Therefore, a wedge splitting test (WST) was
performed in order to determine the desired property of the material.



936 K. Brzeziński

Fig. 7. Stress rearrangement near the crack tip at 100% level of effort in different crack configurations
(displacement scaled 3 times)

During the simulation, it was observed that the appearance of additional cracks in the
material before the start of the strength test (for example as a result of pre-loading) may lead
to an increase in the maximum force required to destroy the sample. Analysis of the tensile
stress distribution in the horizontal direction (approximately perpendicular to the crack) allows
for a qualitative explanation of the observed strength increase. The additional crack, located
outside of the most strained cross section, forms a “cover” of the dominant crack. The reduction
of the tensile stress near the dominant crack slows its propagation. It should be emphasized
that this is a characteristic of the structure rather than of the material itself. Nevertheless,
in phenomenological terms, the result of the simulation, interpreted as a result of the 3-point
bending test, indicates strengthening of the material.
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Metal foams are cellular solids that show some unique properties which cannot be found
in other natural or human-made materials. While the impact characteristics of closed-cell
foams under static and impact loadings appear to be well-studied in the literature, the impact
behaviour of open-cell foams is not yet well-understood. In this study, open-cell foams with
two different densities are impacted by drop weights with different kinetic energies. The
effects of foam density, impactor initial height, and impactor weight on the recorded stress-
time, stress-strain, and energy-strain curves are investigated. While the stress-strain curve
of closed-cell foams under impact loading usually consists of a single bell, the results of
the current study showed that both the stress-time and stress-strain curves of most the
samples consist of two consecutive bells. By increasing weight of the impacting weight,
the number of bells increases which helps in increasing the impact period and keeping the
maximum generated stress low. Compared to closed-cell foams, the open-cell foams can
therefore better absorb the energy, as long as the impact energy is relatively small. The
relatively low stiffness as well as the presence of large hollow space inside the open-cell
foams also makes them favorable for being used as biomedical scaffolds.

Keywords: open-cell foam, low-velocity impact, biomaterial, mechanical properties

1. Introduction

Metal foams are a class of cellular materials that show some unique properties which cannot be
found in other natural or human-made materials. For example, their specific stiffness and energy
absorption capacity are relatively high even for small specific densities (Schüler et al., 2013).
Foams are usually categorized into two main groups: open-cell and closed-cell. In closed-cell
foams, the cells are completely separated from each other by walls. In open-cell foams, there is
no cell wall and the cells are connected to each other by cell edges.
While the energy absorption characteristics of closed-cell foams appear to be well-studied

in the literature (Schüler et al., 2013; Fang et al., 2015; Wang et al., 2015; Zhang et al., 2013;
Ramachandra et al., 2003; Mukai et al., 2006; Hedayati et al., 2011), the impact behaviour
of open-cell foams is not yet well-understood. The main reason can be the difference in the
applications that have been considered for decades for the two noted types of foams. Due to
higher stiffness and plateau stress levels, closed-cell foams are usually preferred to open-cell foams
in energy absorption applications. On the other hand, permeability provided by connectivity of
the cells of open-cell foams makes them suitable for applications in which the fluid flow through
the foam cells is important, e.g. as heat exchanger or as bone substitute implants. If open-cell
foams with small cells are filled by viscous fluids, the expelling of the fluid under a compressive
load can also dissipate a great amount of energy (Gibson and Ashby, 1997).
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Novel applications found for open-cell foams (such as their use as bone substitute biomate-
rials) has made understanding of their mechanical properties under different loading conditions
important. Depending on their location and person, human bones can have a large range of
stiffness from 0.1GPa to 20GPa. Particularly, the inner soft and weak tissues of bones, known
as cancellous or spongy bones, usually have very small stiffnesses. Solid implants usually remove
the load from natural bones around them leading to their resorption. This resorption is followed
by detaching the implant from the surrounding bone and, therefore, malfunction of the implant
(known as stress shielding). Open-cell foams have low stiffness levels which are comparable to
the stiffness levels of bones. Moreover, their hollow space allows for new bone regeneration inside
the implant and, therefore, better bone-implant fixation.
Regarding the mechanical properties of open-cell foams, Kashef et al. (2008) fabricated open-

cell titanium foams using space holder technique and investigated their elastic properties, frac-
ture toughness (Kashef et al., 2010) and fatigue strength (Kashef et al., 2011) for biomedical
applications. They found 63% porous foams with 6.5GPa elastic modulus suitable for dental
and orthopaedic applications (Kashef et al., 2008). The elastic mechanical properties of open-
cell foams fabricated by directional solidification (Nich et al., 2000), casting (Yamada et al.,
2000; Kanahashi et al., 2000) and space-holder (Jianget al., 2007) techniques have also been in-
vestigated in the literature. The effect of the strain rate on the dynamic mechanical properties of
different types of open-cell foams have also been studied in several publications (Yi et al., 2001;
Wang et al., 2006). However, the mechanical behaviour of open-cell foams under the impact of
drop weights has not yet been studied.
Similar to bulk pure copper, copper foams have great corrosion resistance, and they possess

excellent electrical and thermal conductivities. Copper foams are excellent candidates for energy
absorption applications as well. This is because the possibility of having a large proportion of
hollow space inside the open-cell porous structures allows for large plastic deformation of struts
(and therefore high energy absorption capacity of the porous structure) until the neighbour
struts come into contact with each other. The great ductility properties of copper (compared to
other metals) even increases this great toughness capability observed in metal foams.
In this study, open-cell foams with two different densities are impacted by drop weights with

different kinetic energies. The effect of foam density and impactor initial energy on the recorded
stress-time, stress-strain and energy-strain curves will be investigated. The effect of mass of the
drop weight is the other parameter which will be studied.

2. Materials and methods

The open-cell copper foam samples were made by the investment casting process. Two large foam
panels (Fig. 1a) were made, which were then cut into several small cubic specimens (Fig. 1b)
with dimensions of 22.6mm×28.2mm×39.2mm. The foam samples had two nominal densities
of 268.03 kg/m3 and 393.596 kg/m3 (Table 1), respectively named low-density (LD) and high-
-density (HD) foams in this study. The specimens cut from the edges of the foam panel were
not used in order to avoid non-homogeneity in the micro-structure of the foam. To measure
density of the foam samples, the weight and dimensions of all the samples were measured and
divided. For having the relative density of the foam samples, the density of the foam samples was
divided by the density of the bulk material (i.e. 8960 kg/m3). The samples were impacted by drop
weights with initial heights between 20 cm and 100 cm. Two drop weights of 1.3 kg and 3.3 kg were
considered. The acceleration of the impactor was recorded by an accelerometer installed on it. By
two consecutive integration of the acceleration-time diagrams, displacement-time diagrams were
also obtained. The force-time diagram was obtained by multiplying the vertical coordinate of the
acceleration-time diagram by the mass of the impactor. The specific energy-time diagrams were
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measured by calculating the area under the stress-strain curve diagrams. The noises observed in
the acceleration diagrams were smoothed using SMOOTH function in MATLAB (Fig. 3).

Fig. 1. (a) Foam panel before being cut, (b) samples cut from the foam panel

Fig. 2. A copper foam samples in the drop weight testing machine

Table 1. Geometrical properties of low-density and high-density foams

Density Relative density Pore size
ρ [kg/m3] ρ/ρs [%] a [mm]

Low-density (LD) 268.03 ± 16.19 2.99 ± 0.169 2.1 < a < 4.41
High-density (HD) 393.596 ± 12.82 4.391 ± 0.143 1.92 < a < 4.22
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Fig. 3. Smoothing of experimental data curves for two examples of stress-time diagrams

3. Results

The elastic modulus of the high-density foam was almost 1.5 times of that in the low-density foam
(Table 2). Both the yield stress and plateau stress of the high-density foam were almost twice of
those for the low-density foam (Table 2). Both types of foams demonstrated close densification
strains around 0.8 (Fig. 4). The stress-strain curves of both the foams coincided at the strain
of 0.9 (Fig. 4).

Table 2. Mechanical properties of low-density and high-density foams

Elastic modulus Relative elastic modulus Yield stress Plateau stress
E [MPa] E/Es · 10−4 σy [kPa] σpl [kPa]

LD 20.333 ± 3.78 1.7378 ± 0.323 651.1 ± 131.4 605.47 ± 185.9
HD 30.034 ± 5.919 2.5669 ± 0.506 1316.2 ± 198.6 1512.1 ± 336.7

Due to limitations in the recording period of the accelerometer, the stress of all the samples
under the impact loading could be captured up to 20ms. Both the low-density and high-density
foams showed double bell curves in their stress-time diagrams (Fig. 5). In general, increasing
the initial height of the impacting weight increased the maximum stress values of both the first
and second bells (Fig. 5). There were, however, some exceptions. For example, the maximum
stress of the first bell of the test with the initial height of h = 20 cm was even larger than that in
other tests. The end times of the second bell for low-density foams with different initial heights
of the impacting weights were between 10ms and 14ms. The end-times of the second bell of all
the high-density foams were close and were between 8ms and 9ms.
While in low-density foams, the maximum stress of the first bell was always lower than

that of the second bell, in high-density foams, the maximum stress of the first and second bells
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Fig. 4. Stress-strain curve of low-density and high-density foams under quasi-static loading

Fig. 5. Stress-time curves of (a) low-density and (b) high-density foams impacted by an impactor
with 1.3 kg weight

were close to each other (Fig. 5). As expected, for the same initial height of the impactor, the
maximum stress generated in the low-density foam samples were always lower than that in the
high-density foam (Fig. 5).

Fig. 6. Strain-time curves of (a) low-density and (b) high-density foams impacted by an impactor
with 1.3 kg weight

As expected, increasing the initial height increased the final strain (maximum compaction)
of the foam samples (Fig. 6). In low-density samples, the maximum strain in the samples for
initial heights of 20 cm, 40 cm, 60 cm, 80 cm, and 100 cm was respectively 18.5%, 28.5%, 50%,
58.8%, and 56% (Fig. 6a). In high-density samples, the maximum strains for initial heights of
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40 cm, 60 cm, and 80 cm were respectively 26.6%, 28.1%, and 34.2% (Fig. 6b). As expected, for
the same initial height of the impacting weight, the maximum strains of the high-density samples
were always lower than those in the low-density samples (compare Fig. 6a and Fig. 6b). While
in the stress-time curves (Fig. 5), the span of the second bell was very close to the span of the
first bell, in the stress-strain curves (Fig. 7), the span of the first bell was much smaller than
the span of the second bell, especially for the low-density foams.

Fig. 7. Stress-strain curves of (a) low-density and (b) high-density foams impacted by an impactor
with 1.3 kg weight

Fig. 8. Absorbed specific energy profiles of (a) low-density and (b) high-density foams impacted by an
impactor with 1.3 kg weight

Increasing the initial height of the impactor increased the final energy absorbed by both
the low-density and high-density foams (Fig. 8). Plotting the normalized values of the absorbed
energy (i.e. the ratio of the absorbed energy by the sample to the initial energy of the impactor)
showed that the final absorbed energy in all the foam samples were between 70% and 92% of
the initial energy of the impactor (Fig. 9). The highest percentage of the final absorbed energy
(about 92%) belonged to the high-density foam under the impact of the weight with the lowest
initial height, i.e. 40 cm (Fig. 9b). The normalized energy-strain diagrams of the low-density
foams with the impactor initial heights of 80 cm and 100 cm were very close (Fig. 9a).
The effect of impactor weight was investigated on the low-density foam under the impact

of weight with the initial height of 40 cm. Increasing the weight of the impactor did not have
a significant effect on the maximum stress of the first bell (Fig. 10). Moreover, increasing the
impactor weight did not significantly change the time and strain of the maximum stress of the
first bell. However, increasing the impactor weight increased the maximum stress of the second
bell and decreased its occurrence time (Fig. 10a). More significantly, the stress value of the
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sample under the impact of the heavy impactor did not reach zero after the second bell, and a
third bell was formed in both the stress-time and stress-strain diagrams (Fig. 10).

Fig. 9. Normalized absorbed energy profiles of (a) low-density and (b) high-density foams impacted by
an impactor with 1.3 kg weight

Fig. 10. (a) Stress-time and (b) stress-strain curves of low-density foams under the impact of 1.3 kg
and 3.3 kg impactors

4. Discussions

All the stress-time and stress-strain curves consisted of a double bell. Similar bells have also
been observed in other experimental and numerical studies on the impact behaviour of closed-
cell foams. In some cases, the stress-time curve only consisted of a single bell (Rajendran et al.,
2009), while in some cases there was a double bell in the curves, although the span of the first
bell was usually very tiny compared to the span of the second bell (Li et al., 2012; Castro et al.,
2013; Peroni et al., 2013). The presence of the first bell in the curves can be due to reduction in
the stress level in the top face of the specimen after the initial increase in the stress level after
the occurrence of the impact.
In the open-cell foams, due to slow propagation of stress waves, the upper part of the specimen

initially deforms very easily before the compressive wave is returned from the back plate. Due
to fast initial deformation of the upper part of the open-cell foam, the elevated stress level
in the interface between the foam sample and the impacting weight decreases fast. After the
compressive stress waves have travelled towards and back from the lower parts of the foam and
after causing deformation in the foam, the stress level decreases. However, as the impactor moves
forward, the stress level increases for a second time.
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In the closed-cell foams, the cells are connected to each other by means of cell walls, while in
the open-cell foams, the struts connect the cells. In the closed-cell foams, therefore, the initial
stress waves can travel to the lower parts of the specimen much faster as compared to the open-
-cell foams. The deformation of the closed-cell foams can therefore be distributed more uniformly
throughout its length. This explains the absence or very little presence of the first bell in the
stress-time and stress-strain curves of the closed-cell foams.
The non-uniform deformation of the open-cell foams can increase the impact duration as

compared to the closed-cell foams. This increase in the impact duration as well as the weaker
nature of open-cell foams decreases the maximum stress in the foam during the impact. The-
refore, as compared to the closed-cell foams, the open-cell foams, if used as energy absorbing
materials in packaging industry, can better protect delicate goods, since the stress imposed on
the package is much lower, as long as the impact energy is relatively small.
After the initial double bell curves, the stress-time curves of the open-cell foams continued

in a sine wave shape around zero stress. In all the samples, the accumulation of strain after the
second bell was very small, which showed that the sine wave shape of the stress-time curve after
the second bell had been caused by vibration of the test machine and specimen rather than the
actual displacement of the interface between the specimen and the impacting weight. Therefore,
the periodic sine waves after the second bell (in the impacts with light impactor) were omitted
from the curves.
The stress value of the sample under the heavy impactor (3.3 kg) did not reach zero after

the second bell, and a third bell was formed in both the stress-time and stress-strain diagrams
(Fig. 10). Due to limitations in measurement duration, the acceleration could not be measured
after the third bell. However, the reason behind the formation of additional bells in the stress-
-strain curve can be the fact that when the weight of the impactor is increased, the layer-by-layer
nature of the deformation of the foam sample increases. This is because in the case of heavier
impactors, the foam sample is not tough enough to decrease velocity of the impactor down to
zero after the second bell, leading to creation of additional bells in the curves.
After being deformed, none of the samples could absorb all the initial energy of the impacting

weight (Fig. 9). The reason behind this can be the dissipation of energy caused by friction betwe-
en the sample and the impacting weight, friction of the impacting weight with the guiding rail
of the testing machine, and conversion of mechanical energy to heat due to plastic deformation
during the impact. However, plotting the normalized values of absorbed energy demonstrated
that the final absorbed energy in all the foam samples are between 70% and 92% of the initial
energy of the impactor, which shows that high percentages of initial energy have been absorbed
by the foam samples.
Using open-cell foams for production of bone-replacing implants is becoming more and more

common. The open-cell foams manufactured using the traditional methods usually have an
irregular morphology. The manufacturing processes that create relatively regular open-cell foams
usually lead to a foam unit cell shape believed to have a geometry similar to the ones suggested
by Kelvin (Warren and Kraynik, 1997) or Weaire and Phelan (1994). The advent of additive
manufacturing techniques has made it possible to create open-cell structures with arbitrary
unit cell shape and size. For example, porous open-cell foams with hexagonal (Hedayati et al.,
2016c), octagonal (Hedayati et al., 2016b), truncated cube (Hedayati et al., 2018), diamond
(Ahmadi et al., 2014; (Hedayati et al., 2017), truncated cuboctahedron (Doig et al., 1999),
rhombic dodecahedron (Shulmeister et al., 1998; Babaee et al., 2012; Borleffs, 2012; Amin Yavari
et al., 2013; Campoli et al., 2013), tetrakaidecahedrons (Warren and Kraynik, 1997; Zheng et
al., 2014) and rhombicuboctahedron (Hedayati et al., 2016a) have been investigated numerically,
analytically and experimentally. While additive manufacturing techniques provide good control
over the micro-architecture of the porous structure, they result in porous structures with some
defects. For example, the additively manufactured porous structures have irregularities in the
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strut cross-section diameter. The consecutive fusing of metal powders at neighbour points usually
creates very rough surfaces with potentially high stress concentration factors. Moreover, at some
points, the strut radius can be very small, which can lead to clustered damage areas. Therefore,
the metal foams made by traditional manufacturing techniques still have their advantages over
the newly popular additively manufactured porous structures.

5. Conclusions

In this paper, copper open-cell foams with two densities were tested mechanically under static
and impact loadings. For the impact loading, two drop-weights with 1.3 kg and 3.3 kg masses
were used. The results showed that both the stress-time and stress-strain curves of all the
samples consist of two consecutive bells. While in the stress-time curves, the span of the second
bell was very close to the span of the first bell, in stress-strain curves, the span of the first
bell was much smaller than the span of the second bell, especially in low-density foams. As
expected, for the same initial height of the impactor, the maximum stress generated in the low-
density foam samples were always lower than that in the high-density foams. The foam samples
absorbed between 70% and 92% of the initial energy of the impactor. Increasing the weight of
the impactor did not have a significant effect on the maximum stress of the first bell in the
stress-time diagram. Moreover, increasing the impactor weight did not change the time of the
first maximum stress. However, increasing the impactor weight increased the maximum stress of
the second bell and decreased its occurrence time. It can be concluded that as compared to the
closed-cell foams, the open-cell foams can better absorb the energy, as long as the impact energy
is relatively small. The very small stiffness as well as the presence of large interconnected space
inside the open-cell foams also makes them favorable for being used as biomedical scaffolds.
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To accurately describe mechanical properties of a complex wire rope, a double-helix wire
rope is used as an example in this study. According to the spatial structure characteristics
of the central helical line of each wire rope, the spatial configuration curve for the double-
-helix wire rope is obtained by using differential geometry theory. On the basis of this curve,
the mathematical model of the equivalent elastic modulus of the wire rope is developed,
and the elastic modulus of a 6×7+IWS wire rope is measured using a universal tensile
testing machine. The experimental results are compared with the predicted results to verify
correctness of the elastic modulus prediction of the double-helix wire rope.

Keywords: mechanical properties, wire rope, double-helix wire rope, spatial configuration
curve, equivalent elastic modulus

1. Introduction

Wire ropes are widely used in material-handling machinery because they possess high strength,
are light in weight and provide stable and reliable operation. Their safety and reliability directly
affect production efficiency and personnel safety. Since the 1950s, numerous domestic and foreign
scholars have conducted research on wire ropes. However, because of the complex spiral structure
of a wire rope, the theoretical basis required for accurate prediction of its mechanical performance
is not yet completely established. Some existing research studies related to this topic are as
follows. Stanova et al. (2011) fully considered the spatial spiral structure of a single wire and
stranded ropes and developed a parametric mathematical model of the wire rope. Ma et al. (2015)
deduced a function expression for the central line of a wire rope based on the Serret-Frenet frame
theory. Using the differential geometry theory as the theoretical basis, Hobbs and Nabijou (1995)
and Nabijou and Hobs (1995) provided a path expression for a wire on a rope sheave based on the
mathematical model of a vertical wire rope. Wu and Cao (2016) deduced the equivalent elastic
modulus of a wire rope based on the theory of slender elastic rods. Prawoto and Mazlan (2012)
studied mechanical properties of a steel wire rope under tensile load by numerical simulation and
experimental methods and obtained the microstructure of fracture in the steel wire rope. Stanová
(2013) derived mathematical models of oval strand ropes and used Pro/E software to build
geometric models of the ropes. Sathikh et al. (1996) used the Wempner-Ramsey theory to study
the asymmetry of the stiffness matrix in a wire-rope elasticity model under bending and torsional
loads and validated the model experimentally. Erdönmez and Erdem Imrak (2009) developed a
three-dimensional structural model of a double-helix wire rope that took into account friction
and slip between the rope cores. Machida and Durelli (1973) defined an expression for the axial
force, bending moment and torsional moment in a helix. Elata et al. (2004) proposed a new model
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for simulating the mechanical response of wire ropes with individual steel cord cores. The model
fullly considered the double-helix structure of a single wire in the wound strand and provided
the stress in the wire layer to estimate global characteristics of the wire rope. Hu et al. (2016)
derived initial parameters of different general wire-rope models and developed IWRC6/36WS
wire-rope model using MATLAB and Pro/E. The elastic properties of the wire rope under axial
tension were analyzed by Abaqus/Explicit. Wang et al. (2015) developed a parametric model
for arbitrary centerline wire-rope structures and derived a series of recursive formulas for the
spatial enwinding equations of wires and strands. Liang et al. (2011) calculated the equivalent
elastic modulus of a wire rope in different positions based on a linear strengthening model.
Bai (2011) derived a mathematical expression for the equivalent elastic modulus of a wire-rope
conveyor belt based on pendency. Ma (2014) analyzed the equivalent elastic modulus of a wire-
-rope using static theory and validated the correctness of the analysis process by using ANSYS
and by experimental measurements. Xu et al. (2012, 2015) proposed a method for calculating the
equivalent elastic modulus of a single-fiber multidirectional winding tube based on the laminated
plate theory and a theoretical estimation method for calculating the three-dimensional elastic
modulus of a multifiber hybrid multidirectional winding tube considering the mixed effect.
In this study, based on the micromechanical wire-rope model, a theoretical formula for the

equivalent elastic modulus of a wire rope is deduced using the differential geometry theory
according to spatial characteristics of the central helical lines in the double-helix wire rope. The
formula is expected to serve as a theoretical basis for dynamic analysis and optimization of
mechanical systems containing wire ropes.

2. Three-dimensional geometrical model of the wire rope

The object of the study is a double-helix wire rope which is shown in Fig. 1. It comprises
stranded ropes wound around the central strand helix according to certain rules. Each wire rope
is a helical wire bundle with a high load-carrying capacity and consists of multiple wires twisted
around the core wire according to a spatial spiral relationship. In this study, the spatial geometry
of the wire, whose basic units are strands and ropes, is divided into the following four types: the
central strand core wire, central strand side wire, lateral strand core wire, and lateral strand side
wire. The central strand core wire is mostly straight or has a simple curve. The central strand
side wire and the lateral strand side wire are first-degree spatial helical lines wound around the
central strand core wire. The lateral strand side wire is a second-degree spatial helical line with
respect to the central strand core wire. The cross section of the double-helix wire rope is shown
in Fig. 1b.
To facilitate the analysis, a unit length of the twisted wire rope is intercepted. The central

helical lines of the central strand core wire, central strand side wire, lateral strand core wire
and the lateral strand side wire are considered separately to establish the Cartesian coordinate
system, as shown in Fig. 2.
Consider a random point on the central strand side wire P1(x, y, z). The projection of this

point on the XOY plane is P ′1, whose coordinates are

x = R1 cos θ1 y = R1 sin θ1 z =
θ1
2π
L1 (2.1)

where R1 is the twisted circle radius of the central strand side wire (R1 = (d0 + d1)/2, where d0
and d1 are the radii of the central strand core wire and the central strand side wire, respectively,
in millimeters), θ1 is the polar angle corresponding to P1 in radians, and L1 is the twist pitch
of the central strand side wire in millimeters.
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Fig. 1. Schematic diagram of the wire rope; (a) structure diagram of the wire rope,
(b) cross section of the wire rope

Fig. 2. Spatial coordinate system of the wire rope

Consider a small arc P1Q1 with P1 as the starting point. Then, the coordinates of Q1 are
(x+ dx, y + dy, z + dz), and thus

dx = −R1 sin θ1dθ1 dy = R1 cos θ1dθ1 dz =
L1
2π
dθ1 (2.2)

The length of the small arc P1Q1 can be obtained from equations (2.1) and (2.2)

dS1 =

√

R21 +
(L1
2π

)2
dθ1 (2.3)

Thus, the length of the central strand side wire is

S1 =
2π∫

0

√

R21 +
(L1
2π

)2
dθ1 =

√
4π2R21 + L

2
1 (2.4)

The tangent inclination cosine of the small arc P1Q1 at P1 on the central strand side wire is

cosα1 =
L1√

4π2R21 + L
2
1

=
L1
S1

(2.5)
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Similarly, consider a random point on the lateral strand core wire P2(x, y, z). The projection
of this point on the XOY plane is P ′2, whose coordinates are

x = R2 cos θ2 y = R2 sin θ2 z =
θ2
2π
L2 (2.6)

where R2 is the twisted circle radius of the lateral strand core wire (R2 = (d0+ d2)/2 + d1 + d3,
where d2 and d3 are the radii of the lateral strand core wire and the lateral strand side wire,
respectively, in millimeters), θ2 is the polar angle corresponding to P2 in radians, and L2 is the
twist pitch of the lateral strand core wire in millimeters.
Consider a small arc P2Q2 with P2 as the starting point. Then, the coordinates of Q2 are

(x+ dx, y + dy, z + dz), thus

dx = −R2 sin θ2dθ2 dy = R2 cos θ2dθ2 dz =
L2
2π
dθ2 (2.7)

The length of the small arc P2Q2 can be obtained from equations (2.6) and (2.7)

dS2 =

√

R22 +
(L2
2π

)2
dθ2 (2.8)

The length of the lateral strand core wire is

S2 =
2π∫

0

√

R22 +
(L2
2π

)2
dθ2 =

√
4π2R22 + L

2
2 (2.9)

The tangent inclination cosine of the small arc P2Q2 at P2 on the central strand side wire is

cosα2 =
L2√

4π2R22 + L
2
2

=
L2
S2

(2.10)

Consider a random point on the lateral strand side wire P3(x, y, z). The projection of this
point on the XOY plane is P ′3, whose coordinates are

x = R2 cos θ2 −R3 cos θ2 cos θ3 +R3 sin β2 sin θ2 sin θ3
y = R2 sin θ2 −R3 sin θ2 cos θ3 −R3 sin β2 cos θ2 sin θ3

z =
θ2
2π
L2 +R3 cos β2 sin θ3

(2.11)

Consider a small arc P3Q3 with P3 as the starting point. Then, the coordinates of Q3 are
(x+ dx, y + dy, z + dz), and thus

dx =
[
− 1
n
R2 sin

θ3
n
+
( 1
n
+ sin β2

)
R3 sin

θ3
n
cos θ3 +

(
1 +
1
n
sin β2

)
R3 cos

θ3
n
sin θ3

]
dθ3

dy =
[ 1
n
R2 cos

θ3
n
−
( 1
n
+ sinβ2

)
R3 cos

θ3
n
cos θ3 +

(
1 +
1
n
sin β2

)
R3 sin

θ3
n
sin θ3

]
dθ3

dz =
( L2
2πn
+R3 cos β2 cos θ3

)
dθ3

(2.12)

where R3 is the twisted circle radius of the lateral strand side wire, in millimeters (R3 = (d0 +
d1 + d3)/2), θ3 is the polar angle corresponding to P3 in radians, β2 is the helical ascent angle
of the lateral strand side wire in radians, and n is the number of twisted rounds of the lateral
strand side wires about the lateral strand core wire.
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Next, set

C1 =
1
n
R2 C2 =

( 1
n
+ sin β2

)
R3 C3 =

(
1 +
1
n
sin β2

)
R3

C4 =
L2
2πn

C5 = R3 cos β2
(2.13)

The length of the small arc P3Q3 can be obtained from equations (2.11)-(2.13)

dS3 =
√
(C1 − C2 cos θ3)2 + (C3 sin θ3)2 + (C4 + C5 cos θ3)2 dθ3 (2.14)

The length of the lateral strand side wire is

S3 =
2π∫

0

√
(C1 − C2 cos θ3)2 + (C3 sin θ3)2 + (C4 + C5 cos θ3)2 dθ3 (2.15)

The tangent inclination cosine of the small arc P3Q3 at P3 on the central strand side wire is

cosα3 =
C4 + C5 cos θ3√

(C1 − C2 cos θ3)2 + (C3 sin θ3)2 + (C4 + C5 cos θ3)2
(2.16)

Combining equations (2.5), (2.10) and (2.16), the nominal area of the wire rope can be
obtained

A∗ = A0 + 6
A1
cosα1

+ 6
A2
cosα2

+ 36
A3
cosα3

(2.17)

where A0, A1, A2 and A3 are the cross-sectional areas of the central strand core wire, central
strand side wire, lateral strand core wire and lateral strand side wire, respectively.

3. Calculation of the elastic modulus of the wire rope

Because only the equivalent elastic modulus of the double-helix wire rope is calculated in this
study, the following assumptions are made: (1) The cross section of the wire is perpendicular to
the tangent line corresponding to the central helix. (2) Friction between the wires is negligible.
(3) The wires elongate without twisting, and the elongation amount is recorded as ∆L. Tension
and elongation of the central strand core wire, central strand side wire, lateral strand core wire
and the lateral strand side wire are deduced separately.

Ad. (1) For the central strand core wire, after an elongation of ∆L in the Z-axis direction, the
corresponding tensile stress ε and tension T0 are respectively given as

ε = E
∆L

L1
T0 = ε0A0 =

πEd20
4L1

∆L (3.1)

Because materials of the wire rope are mostly nonalloy carbon steels, the elastic modulus is
assumed to be E = 183.9GPa (Liu, 2014).

Ad. (2) According to the helical spatial structure of the central strand side wire, the elongation
can be deduced by the whole differential as follows

∆S1 =
4π2R1
S1

∆R1 +
L1
S1
∆L =

L1
S1
∆L

(
1 +
4π2R1
S1

∆R1
∆L

)
(3.2)
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According to Wang et al. (2004)

1 +
4π2R1
S1

∆R1
∆L
≈ 1 (3.3)

Thus

∆S1 ≈
L1
S1
∆L (3.4)

Based on material mechanics, the tension of a single central strand side wire in the Z-axis
direction can be expressed as

T1 = E
∆S1
S1

A1 cosα1 =
πEd21L

2
1

4S31
∆L (3.5)

Ad. (3) Because the lateral strand core wire has the same spatial structure as the central strand
side wire, the same method can be used to obtain expressions for the elongation and tension of
the lateral strand core wire. The elongation ∆S2 can be expressed as

∆S2 ≈
L2
S2
∆L (3.6)

The tension T2 in the Z-axis direction is

T2 = E
∆S2
S2

A2 cosα2 =
πEd22L

2
2

4S32
∆L (3.7)

Ad. (4) The lateral strand side wire is the second-degree spatial helical line with respect to the
central strand core wire; thus

∆S3 =
∂S3
∂R3
+
∂S3
∂L3

T3 = E
∆S3
S3

A3 cosα3 =
EA3 cosα3

S3

( ∂S3
∂R3
+
∂S3
∂L3

)
(3.8)

According to the above equations, the tension of the wire rope T ∗ can be expressed as

T ∗ = T0 + 6T1 + 6T2 + 36T3 (3.9)

The elastic modulus of the wire rope can be obtained according to equations (2.17) and (3.9)

E∗ =
T ∗

A∗X
(3.10)

Thus

E∗ = LE

d20
L1
+ 6d

2
1L1 cosα1
S21

+ 6d
2
2L2 cosα2
S22

+
36

(
∂S3
∂R3
+
∂S3
∂L3

)
d23 cosα3

S3

d20 +
6d21
cosα1

+ 6d22
cosα2

+ 36d23
cosα3

(3.11)

where X = ∆L/L (L is length of the wire rope in millimeters), S1 =
√
4π2R21 + L

2
1 is length of

the central strand side wire in millimeters, S2 =
√
4π2R22 + L

2
2 is length of the lateral strand side

wire in millimeters, S3 (see Eq. (2.15)) is length of the lateral strand side wire in millimeters,
cosα1 = L1/S1 is tangent inclination cosine of the small arc on the central strand core wire,
cosα2 = L2/S2 is tangent inclination cosine of the small arc on the lateral strand core wire, and
cosα3 (see Eq. (2.16)) is tangent inclination cosine of the small arc on the lateral strand side
wire. In addition, Ci (i = 1, . . . , 5) see Eqs. (2.13).
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4. Case analysis and verification

To verify the correctness of the expression for the equivalent elastic modulus predicted by the
spatial distribution of the central line of the double-helix wire rope, the 6×7+IWS wire rope is
used as an example. The basic structural parameters of this rope are listed in Table 1. According
to equation (3.11), the equivalent elastic modulus of the wire rope can be determined. According
to the measurement method of the actual elastic modulus of a wire rope given in the national
standard GB/T24191-2009, the universal tensile testing machine (Fig. 3) is used to measure the
actual equivalent elastic modulus of the wire rope.

Table 1. Structural parameters of 6×7+IWS wire rope

Wire rope
diameter
[mm]

Twist
pitch
[mm]

Number of twisted rounds
Wire
twist
angle [◦]

Wire-rope diameter
of lateral strand side [mm]
wires about lateral central lateral
strand core wire strand strand

4.5 36 3.1416 10.3848 0.6 0.4

Fig. 3. Universal tensile testing machine

In the analysis, 600mm of the wire rope is intercepted from selected wire-rope samples and
placed at a room temperature of 18◦ for 24 h. Both ends of the sample are mechanically clamped
in the universal tensile testing machine. Each end has clamping length of 50mm. The uniaxial
tensile test (Wu et al., 2014) is performed by clamping the wire rope through the jaws of the
testing machine.
According to the requirements of the national standard GB/T24191-2009, the elastic mo-

dulus of the wire-rope sample in the fully stable state should be 10%-30% of the minimum
breaking tension (or nominal breaking load). The loads at 10% and 30% are denoted as F10%
and F30%, respectively. Simultaneously, the elongations of the wire rope at F10% and F30% loads
are recorded as x1 and x2, respectively. According to the national standard GB8918-2006, the
minimum breaking tension of the 6×7+IWS (2006) wire rope is 11.6 kN. According to the above
experimental steps, the corresponding displacement-load deformation curve is obtained for the
wire rope through measurement of the elastic modulus, as shown in Fig. 4.
According to the actual elastic modulus of the wire rope given in GB/T24191-2009

E10−30 = l0
F30% − F10%
A(x2 − x1)

(4.1)
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Fig. 4. Displacement-load deformation curve

where E10−30 is the actual elastic modulus of the wire rope in gigapascals: l0 is the initial length
of the wire rope in millimeters; F10% and F30% are the loads at 10% and 30% of the minimum
breaking tension (or nominal breaking load) of the wire-rope sample, respectively, in kilonewtons;
A is the cross-sectional area of the wire rope in millimeters (in this study A = A∗); and x1 and
x2 are the elongations of the wire rope at F10% and F30% loads, respectively, in millimeters.
According to equation (4.1), the elastic modulus of the 6×7+IWS wire rope is

E10−30 = 500
3480 − 1160

13.52(11.75 − 2.39) = 9.17GPa (4.2)

Compared to the theoretical value of the equivalent elastic modulus of the wire rope
E∗ = 8.75GPa, the error of the calculated is value 4.8%, which is relatively small. The re-
sults show that the value calculated using the model can be used to accurately predict the
actual elastic modulus of the wire rope.

5. Conclusion

In this study, according to the spatial distribution characteristics of each central line of a double-
-helix wire rope, the theoretically predicted expression for the equivalent elastic modulus of the
wire rope is obtained using the differential geometry theory. The 6×7+IWS wire rope is used
as the study object, and an elastic modulus measurement experiment is performed on this rope.
The correctness of the theoretical deduction of the equivalent elastic modulus is verified through
the comparison and analysis of the experimental value and the theoretically predicted one.
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Multilayer structures allow obtaining good performance in acoustic insulation to eliminate
unwanted noise in the medium and high frequencies in many applications such as building
and transport industry. In this paper, the sound transmission of multilayer systems is stu-
died using the Transfer Matrix Method (TMM). The studied multi-layered panels include
elastic, viscoelastic and porous materials. Several configurations of multilayer systems are
studied, and their corresponding transmission loss TL is computed. Also, the effects of po-
rous material characteristics are studied to evaluate the impact of each parameter.

Keywords: porous material, multilayer system, transmission loss, transfer matrix

1. Introduction

The control of noise and vibration has become one of the major concerns in several fields of
industry (aeronautics, automobile, household appliances...). Indeed, reduction of noise and vi-
brations avoids material damage and nuisance effects. The use of sandwich systems with a high
damping power core is one of ways to reduce elevated noise and vibration levels. This type of
structures offers significant technological advantages (low weight, high rigidity, easy automation
of manufacturing, etc.). These sandwich panels contain an absorbent porous materials and are
widely used in transport and building industries to reduce nuisance noise and improve comfort
of individuals.
In order to increase acoustic insulation properties of multilayer panel configurations, elastic,

viscoelastic and porous materials were studied by Allard et al. (1987), Mueller and Tschudl
(1989), Atalla et al. (1998), Ghinet et al. (2005) and Abid et al. (2012). The behavior of panel
combinations of materials depends more or less on dimensions and boundary conditions of edges.
Nevertheless, interesting results can be obtained by modeling the samples in the form of infinite
plates subjected to incident plane waves.
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The modeling of the acoustic response of multilayer structures is done using different me-
thods. Tanneau (2004) and Tanneau et al. (2006) studied modeling of an aeronautical insulation
panel by the finite elements and boundary elements. These methods are applicable in low frequ-
encies. When the frequency domain increases, the implementation of these methods is confronted
with an excessive increase of the degrees of freedom associated with fineness of the mesh compa-
tible with wavelengths. The cost of calculations becomes then prohibitive and the results are very
sensitive to the least perturbation of geometric and physical parameters. In order to overcome
these disadvantages, Thomson (1950), Allard et al. (1989), Lee and Xu (2009), Munjal (1993)
and Sastry and Munjal (1995) presented an analytical method for the estimation of acoustic
indicators of stratified media called the Transfer Matrix Method (TMM). This method is based
on the representation of propagation of plane waves in different media in terms of the transfer
matrix.
The TMM is applied with an excitation of the air (normal or oblique acoustic wave) and

in a diffuse field. The TMM is based on calculation of the transfer matrix of each layer. These
matrices are obtained by applying continuity conditions on the interfaces between layers giving
a system of equations linking speeds and stresses between the layers. The global transfer matrix
is calculated: If the layers are of the same nature, the transfer matrix is made by multiplying
the transfer matrix of each layer. If the layers are different, the interface matrix is used. Finally,
the transmission loss TL is calculated from the resulting global transfer matrix as presented by
Munjal et al. (1993).
The aim of the present paper is to predict the acoustic parameters of several multilayer

configurations by the Transfer Matrix Method and to study also the effect of replacement of
the viscoelastic layer instead of the elastic solid layer. Also, the effects of porous parameters on
the behavior of sound transmission of these configurations are studied in order to improve the
acoustic insulation of multilayer panels.
The outline of the document is as follows: Section 1 presents description of the TMM for pre-

dicting the transfer matrix of a multilayer structure. In Section 2, calculation of the transmission
loss from the obtained transfer matrix is presented. Finally, numerical results and a compari-
son study based on the replacement of the elastic layer by a viscoelastic layer are presented
in Section 3. In this Section, a parametric study is carried out to choose the best multilayer
configuration.

2. The transfer matrix method

2.1. General formulation

The transfer matrix method is based on the modeling of propagation of plane waves in various
layers by the transfer matrix. As presented in Fig. 1, the studied layer is an h thickness layer
excited by an oblique wave plane. The geometry of the problem is bidimensional in the incident
plane (x1, x3). The lateral dimension of the layer is supposed to be infinite. Various types of
waves can propagate in the material according to their nature as studied by Allard and Atalla
(2009). The sound propagation in the layer is represented by a transfer matrix T as follows

VM1 = TVM2 (2.1)

whereM1 andM2 are sets close to the forward and backward face of the layer, respectively, and
where the components of the vector VM1 and VM2 are respectively the variables which describe
the acoustic field at the points M1 and M2 of the medium. The transfer matrix T depends on
the thickness h and the acoustical properties of each medium.
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Fig. 1. Layer subjected to an oblique incident wave

2.2. Construction of the transfer matrix

Figure 2 represents a multi-layer structure composed of solid and poroelastic layers. In the
following, the computation of the transfer matrix of each medium is presented.

Fig. 2. Multilayered panel

2.2.1. Solid layer

In an elastic solid layer, longitudinal and shear waves propagate into the layer. The acoustic
field in the material is described using the amplitudes of the following waves: the incident and
reflected longitudinal waves and the incident and reflected shear waves (A1, A2, A3 and A4).
The associated displacement potentials can be written as follows

φ = exp(jwt− jk1x1)[A1 exp(−jk13x3) +A2 exp(jk13x3)]
ψ = exp(jwt− jk1x1)[A3 exp(−jk33x3) +A4 exp(jk33x3)]

(2.2)

where the x3 components k13 and k33 of the wave number vectors are expressed as follows

k13 =
√
δ21 − k2t k33 =

√
δ23 − k2t (2.3)

The x1 component of the wave number k1 is given by

k1 = k sin θ (2.4)

δ21 and δ
2
3 are respectively the squares of the wave numbers of the longitudinal and shear waves

in the elastic solid layer. They are given by

δ21 =
ω2ρs
λ+ 2µ

δ23 =
ω2ρs
µ

(2.5)

where ρs is the surface density of the elastic solid, λ and µ are, respectively, the first and second
Lamé coefficients. The acoustic field in the elastic solid layer can be predicted if the amplitudes
A1, A2, A3 and A4 are known. Instead of these parameters, four mechanical variables may be
known to express sound propagation everywhere in the medium. Following Folds and Loggins
(1977) the four chosen quantities are vs1 and v

s
3 being respectively the x1 and x3 components
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of the velocity at point Mi as well as σs33 and σ
s
13 being respectively the normal and tangential

stresses at the point Mi. The vector Vs in this case is expressed as follows

VsMi = [ν
s
1(Mi), νs3(Mi), σs33(Mi), σs13(Mi)]T i = 1, 2 (2.6)

These velocities and stresses are written as follows

νs1 = jω
( ∂φ
∂x1
− ∂ψ

∂x3

)
νs3 = jω

( ∂φ
∂x3
+
∂ψ

∂x1

)

σs33 = λ
(∂2φ
∂x21
+
∂2φ

∂x23

)
+ 2µ

(∂2φ
∂x23
+

∂2ψ

∂x1∂x3

)
σs13 = µ

(
2

∂2φ

∂x1∂x3
+
∂2ψ

∂x21
− ∂2ψ

∂x23

) (2.7)

To obtain the transfer matrix Ts of the elastic solid layer, the vector VsM1 is first connected to
the amplitudes of different waves propagating in the layer presented by the following vector

A = [(A1 +A2), (A1 −A2), (A3 +A4), (A3 −A4)] (2.8)

and by the matrix Γ(x3) such that

VsM = Γ(x3)A (2.9)

If the origin of the x3 axis is fixed at the point Mi, the vectors VsM1 and V
s
M2
are expressed as

VsM1 = Γ(0)A VsM2 = Γ(h)A (2.10)

Then, the transfer matrix Ts which relates VsM1 and V
s
M2
is equal to

Ts = Γ(0)Γ−1(h) (2.11)

2.2.2. Poroelastic layer

In a porous material structure, three elastic waves propagate into the medium: two compres-
sion waves and a shear wave (Allard et al., 1987). The displacement potential of the compres-
sion φs and shear ψs waves are given by

φs1 = exp(jωt− jk1x1)[A1 exp(−jk13x3) +A′1 exp(jk13x3)]
φs2 = exp(jωt− jk1x1)[A2 exp(−jk23x3) +A′2 exp jk23x3)]
ψs2 = exp(jωt− jk1x1)[A3 exp(−jk33x3) +A′3 exp(jk33x3)]

(2.12)

The air displacement potentials are related to the layer displacement potentials by

φfi = µiφ
s
i i = 1, 2 ψf1 = µ3φ

s
2 (2.13)

with

φfi
φsi
=
Pδ21 − ω2ρ̃11
ω2ρ12 −Qδ2i

i = 1, 2 µ3 = −
ρ̃12
ρ22

The ratio µi of the velocity of the air over the velocity of the frame is for two compression waves
and µ3 is for the shear wave. The acoustic field in the porous layer can be predicted everywhere
if the six amplitudes A1, A′1,A2, A

′
2, A3, A

′
3 are known. However, instead of these parameters, six

independent acoustic quantities can be chosen. Three velocity components and three elements
of the stress tensors: two velocity components νs1 and ν

s
3 of the frame, the velocity component ν3

of the fluid, two components σs33 and σ
s
13 of the stress tensor of the frame and σ

f
33 in the fluid. If

these six quantities are known at the point Mi in the layer, the acoustic field can be predicted
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everywhere in the layer. Moreover, the values of these quantities anywhere in the layer depend
linearly on the values of these quantities at Mi. So, the vector V

p
Mi
can be defined as follows

VpMi = [ν
s
1(Mi), νs3(Mi), ν

f
3 (Mi), σs33(Mi), σs13(Mi), σ

f
33(Mi)]T (2.14)

VpMi being a column vector. These six quantities are written as

νs1 = jω
(∂φs1
∂x1
+
∂φs2
∂x1
− ∂ψs2
∂x3

)
νk3 = jω

(∂φk1
∂x3
+
∂φk2
∂x3
− ∂ψk2
∂x1

)
k = s, f

σs33 = (P − 2N)
(∂2(φs1 + φs2)

∂x21
+
∂2(φs1 + φ

s
2)

∂x23

)
+Q

(∂2(φf1 + φ
f
2 )

∂x21
+
∂2(φf1 + φ

f
2 )

∂x23

)

+ 2N
(∂2(φs1 + φs2)

∂x23
+

∂2ψ22
∂x1∂x3

)

σs13 = N
(
2
∂2(φ21 + φ

2
2)

∂x1∂x3
+
∂2ψs2
∂x21
− ∂2ψs2

∂x23

)

σf33 = R
(∂2(φf1 + φ

f
2 )

∂x21
+
∂2(φf1 + φ

f
2)

∂x23

)
+Q

(∂2(φs1 + φs2)
∂x21

+
∂2(φs1 + φ

s
2)

∂x23

)

(2.15)

where N is the shear modulus of the material, and P , Q and R are the elastic coefficients of
Biot (Biot, 1956).
The vector VpMi satisfies the relation

VpMi = Γ(x3)A (2.16)

with A being the column vector defined as

A = [(A1 +A′1), (A1 −A′1), (A2 +A′2), (A2 −A′2), (A3 +A′3), (A3 −A′3)]T (2.17)

and Γ(x3) is a connectivity matrix which results from system (2.12). As in the case of a solid
layer, the transfer matrix between two points is obtained by the same procedure

Tp = Γ(0)Γ(h−1) (2.18)

2.2.3. Viscoelastic layer

Mechanical characteristics of viscoelastic materials depend on the excitation frequency. To
describe such a material, the complex representation of the Young modulus following (Abid et
al., 2012; Szabo, 2000; Soula and Chevalier, 1998) is used

E∗ = E0
1 + jωτu
1 + jωτ

(2.19)

and

E′ = E0
1 + ττuω2

1 + w2τ2
E′′ = E0

ω(τu − τ)
1 + w2τ2

(2.20)

where E′ and E′′ are respectively the real and imaginary parts of the complex modulus E0, τ and
τu are relaxation times of the viscoelastic material determined experimentally with relaxation
and creep tests.

2.3. Continuity relations at the interfaces

The objective of this Section is to examine continuity relations for all possible interfaces.
These relations depend on the nature of materials of the adjacent layers (Allard et al., 1989).
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2.3.1. Fluid-solid interface

The continuity conditions are given by

−p(A) = σs33(M1) 0 = σs13(M1) νf3 (A) = ν
s
3(M1) (2.21)

The following equations can be condensed as follows

If,sV(A) + Jf,sV(M1) = 0 (2.22)

with

If,s =



0 −1
1 0
0 0


 Jf,s =



0 1 0 0
0 0 1 0
0 0 0 1


 (2.23)

Jf,s and If,s must be interchanged for the fluid-solid interface.

2.3.2. Porous-fluid interface

The continuity conditions are given by

(1− φ)νs3(M4) + φνf3 (M4) = ν
f
3 (B)

σf33(M4) = −φp(B) σs33(M4) = −(1− φ)p(B) σs13(M4) = 0
(2.24)

where φ is the porosity of the porous layer. These equations can be rewritten in the form

Ip,fV
p
M4
+ Jp,fV

f
B = 0 (2.25)

with

Ip,f =




0 1− φ φ 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1


 Jp,f =




0 −1
−φ 0
0 0
φ 0


 (2.26)

The matrices Ip,f and Jp,f must be interchanged for the fluid-porous interface.

2.3.3. Solid-porous interface

The continuity conditions are given by

νs3(M2) = ν
s
3(M3) = ν

f
3 (M3) νs1(M2) = ν

s
1(M3)

σs13(M2) = σ
s
13(M3) σs33(M2) = σ

f
33(M3) + σ

s
33(M3)

(2.27)

This can be rewritten as follows

Is,pV
s
M2 + Js,pV

p
M3
= 0 (2.28)

where

Is,p =




1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Js,p =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0




(2.29)

The matrices Is,p and Js,p must be interchanged for the porous-solid interface.



Effects of viscoelastic and porous materials... 967

Fig. 3. A multilayer domain

2.4. Computation of the transmission loss TL of the multilayer

Generally way, the expressions of continuity between all layers of the system as presented in
Fig. 3, are written by the following intermediate equations

If,1V
f
A + Jf,1V

1
M2 = 0

Ik,k+1V
k
M2k
+ Jk,k+1T

kVkM2(k+1) = 0 k = 1, . . . , n − 1
(2.30)

This set of equations can be rewritten as

DV0 = 0 (2.31)

where

D =




If,1 Jf,1T
1 0 0 0

0 I1,2 J1,2T
2 0 0

· · · · · · · · · · · · · · ·
0 0 I(n−2)(n−1) J(n−2)T

n−1 0
0 0 0 I(n−1)(n) J(n−1)(n)




V0 = [V
f
A , V

1
M2 , V

2
M1 , . . . , V

(n−1)(M2n−1), V (n)(M2n), V
f
B ]
T

(2.32)

Then, D′ and D′′ matrices are defined as follows

D′ =



−1 · · · D · · · 0
· · · · · · · · · · · · · · ·
0 · · · 0 −1 ZB


 D′′ =



−1 ZA 0 · · · 0
· · · · · · D · · · · · ·
0 · · · 0 −1 ZB


 (2.33)

such as

D′V0 = 0 (2.34)

where ZA and ZB are, respectively, the impedance of the medium A and B.
The determinant of the matrix D′′ must be equal to zero. ZA is given by

ZA = −
|D′|
|D′2|

(2.35)

where |D′1| is the determinant of the matrix D′ without its first column, |D′2| is the determinant
of the matrix D′ without its second column.
The reflection coefficient R is related to ZA by

R =
ZA − ZC

cos θ

ZA +
ZC
cos θ

(2.36)
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where ZC is the characteristic impedance in the air medium

ZC = ρairCair (2.37)

The transmission coefficient T is determined as follows

T = (1 +R)
|D′N−1|
|D′1|

(2.38)

where |D′N−1| is the determinant of D′ without the (N − 1) column.
The TL transmission loss is defined by

TL = 10 log
1
τ

(2.39)

where τ is the acoustic transparency defined as follows

τ =
PT
PI

(2.40)

The symbols PT , PI represent, respectively, the transmitted and the incident power waves, and
finally

TL = 10 log
PI
PT
= 10 log

p2
i

2Zfluid1

p2t
2Zfluid2

(2.41)

where pi, pt represent, respectively, the amplitude of the incident and the transmitted waves.

3. Numerical results

3.1. Validation of the TMM

The TMM is tested by comparing its results with experimental findings obtained by Tanneau
(2004). Two configurations are studied:
• The first is a 2.1mm thickness plate glued to to 30mm thick porous material.
• The second is composed by the 30mm thick porous material glued to two 2.1mm thick
plates on each side. The mechanical proprieties of the used materials are presented in
Table 1.

Table 1. Parameters of tested materials

Parameters Porous Plate

Porosity ϕp 0.98 –
Tortuosity α∞ 1.03 –
Resistivity σp [Ns/m4] 6600 –
Viscous length Λ [µm] 200 –
Thermal length Λ′ [µm] 380 –
Density ρ [kg/m3] 11.2 1100
Poisson’s coefficient ν 0.3 0.3
Young’s modulus E [Pa] 292.8e3 2.62e9
Damping loss factor η 0.0624 0.06

Figures 4a and 4b represent, respectively, a comparison between the computed and the
experimental TL obtained in the two studied configurations and for the incident angle θ = π/4.
A good agreement is observed between the results obtained by the TMM and the experimental
results (Tanneau, 2004; Tanneau et al., 2006). In these figures, we can distinguish 3 zones:
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Fig. 4. Theoretical and experimental transmission loss TL of the studied (a) plate-porous configuration
and (b) plate-porous-plate configuration

• zone 1: f < fcoin – the mass controls the transmission. The wavelength in this frequency
range is very large compared to the thickness of the wall. For this, the behavior of the multi-
-layer wall will be identical to that of a simple wall; therefore, the slope of the transmission
will be of 6 dB/octave
• zone 2: f = fcoin – the damping plays a significant role
• zone 3: f > fcoin – the stiffness controls the transmission.

where fcoin is the coincidence frequency. It is the frequency at which the airborne acoustic
wavelength matches the plate bending wavelength. It is expressed as follows

fcoin =
c2

2π sin2 θ

√
12ρ(1− ν2)

Eh2
(3.1)

Also, comparison between the coincidence frequencies as presented in Tables 2 and 3 showed a
good agreement.

Table 2. Comparison between the theoretical and experimental coincidence frequencies in the
case of plate-porous configuration

TMM
Theoretical Experimental
(London, 1950) (Tanneau, 2004)

1643Hz 1554.7 Hz 1450Hz

Table 3. Comparison between the theoretical and experimental coincidence frequencies in the
case of plate-porous-plate configuration

TMM
Theoretical Experimental
(London, 1950) (Tanneau, 2004)

2987Hz 3317.8Hz 3000Hz

Results presented in Figs. 4a and 4b and Tables 2 and 3 allow validation of the proposed
method (TMM).
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3.2. Response of multilayer systems

In this part, the TMM is used to compute the TL of several multilayer configurations to find
the best arrangement of layers in terms of sound transmission. Two configurations are studied
which are:
• First configuration: 1mm of the elastic layer – 30mm of the porous layer.
• Second configuration: 0.5mm of the elastic layer – 30mm of the porous layer – 0.5mm of
the elastic layer.

The two studied configurations are subjected to an incident wave at θ = π/4. The characteristics
of the porous and the elastic layers are respectively presented in Table 4.

Table 4. Parameters of the used materials

Parameters Foam Steel

Porosity ϕp 0.98 –
Tortuosity α∞ 1.03 –
Resistivity σp [Ns/m4] 6600 –
Viscous length Λ [µm] 200 –
Thermal length Λ′ [µm] 380 –
Density ρ [kg/m3] 11.2 7850
Poisson’s coefficient ν 0.3 0.3
Young’s modulus E [Pa] 292.8e3 210e9
Damping loss factor η 0.0624 0.06

The predicted transmission loss TL is presented in Fig. 5. For the first configuration, it is
seen that the evaluation of the TL with frequency is progressive but it presents a weak peak at
the frequency 1500Hz.

Fig. 5. Comparison of TL versus frequency curves amongst double and triple panel

For the second configuration, the TL is less important for the low frequency up to 450Hz,
then it successively increases with frequency. At high frequencies, the TMM is able to predict
the TL with good accuracy. The thickness resonance at 2900Hz is well predicted. This curve
has a high-frequency discontinuous track corresponding to the coincidence zone.
As seen in Fig. 5, the TL value for the first configuration does not exceed 52 dB, on the other

hand, for the second configuration, which includes three layers, the TL value reaches 85 dB at
high frequencies, which may be explained by the effect of the elastic layer. It is found that
the second configuration with triple layers has good insulation behavior, especially in the high
frequency range 700Hz-10000 Hz.
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In comparison between the two studied configurations, it seems that the second configuration
isolates better than the first configuration.

3.2.1. Effect of replacing the steel layer by a viscoelastic layer

In this Section, the steel layers in the two studied configurations are replaced by viscoelastic
layers and conserving the same weight of each configuration to show the effect of this replacement.
The mechanical proprieties of the viscoelastic layer are presented in Table 5. To have the same
mass after replacing the elastic layer, the dimension of the viscoelastic layer must be changed.
In fact, thickness of the viscoelastic layer equivalent to the same mass is

e =
7850 · 1
950

= 8.26mm (3.2)

Table 5. Mechanical properties of the viscoelastic layer

E0 [MPa] E∞ [MPa] fcarac ρ [kg/m3] ν

10 100 1000 950 0.49

The viscoelastic material behaves as if it was elastic respectively with the moduli:

• E∞: at high frequency
• E0: low frequency
• fcarac: is the frequency of the maximum of damping.

Figure 6 presents the TL when using the viscoelastic layers. For the double layer structure,
the presented results show that in the low frequency region the same behavior is observed. The
response is governed by the mass law, although we have the same excitation and mass. It is
also noted that the small difference from the frequency 4000Hz is due to contribution of the
viscoelastic layer.

Fig. 6. Comparison between studied configurations

For the 2nd structure, the replacement of the elastic layer by a viscoelastic one generates
four cases:

1) viscoelastic-porous-elastic
2) viscoelastic-porous-viscoelastic
3) elastic-porous-elastic
4) elastic-porous-viscoelastic
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It is observed that adding the viscoelastic layer leads to a clear difference between these four
cases: TL significantly changes when the plane wave penetrates the viscoelastic medium. If the
incident wave penetrates first the viscoelastic medium it is seen that the sound insulation is
very high. Also, it is observed that the peak of the frequency of coincidence moves to the low
frequency range.
Finally, these comparisons show an improvement of the sound insulation for three-layer con-

figurations, especially that one which takes the viscoelastic layer and the steel layer to extremity.
This is explained by the damping effect of the viscoelastic material.

3.2.2. Effect of angle of incidence

Figure 7 shows the attenuation index TL according to the frequency computed for four
angles of incidence. The results show that the acoustic transparency strongly depends on the
angle of incidence. It is observed that when the incident angle increases, the TL increases. The
coincidence frequencies move to the high frequency range as the angle increases.

Fig. 7. Effect of the angle of incidence for the configuration (viscoelastic-porous-elastic)

However, we can notice a singular difference at the critical frequency particularly clear for
θ = 0.
On the other hand, in Fig. 8, it is clearly observed that the TL is less important if the angle

of incidence increases, but the frequency of coincidence retains almost the same position.
As we have seen in the two configurations, the variations in the angle of incidence are not

the same. This explains why the viscoelastic layer depends on the angle of excitation.

Fig. 8. Effect of the angle of incidence for the configuration (elastic-porous-elastic)
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4. Parametric study

In this part, we will choose the configuration which isolates much better than other configurations
(viscoelastic-porous-elastic). We are interested in the effect of the porous parameters on the TL
of this multilayer structure. The Allard model is used to describe the porous materials. Eight
parameters are used: porosity, tortuosity, flux resistivity, viscous lengths and lengths of thermal
characteristics, Young’s modulus and Poisson’s coefficient. The influence of each of these physical
parameters on the loss of transmission is studied and discussed in the following Section.

Influence of porosity. Figure 9a presents the effect of porosity – there is no clear influence
on the TL of the studied configuration in low frequency band but the higher is porosity,
the more absorbent is the material in high frequencies.

Influence of tortuosity. Figure 9b presents the effect of tortuosity – it is seen that an increase
in the tortuosity increases the TL just in the high frequency region 1800Hz-10000 Hz.
Tortuosity mainly affects the location of the quarter-wavelength peaks.

Influence of density of the skeleton. As presented in Fig. 10a, if density of the skeleton
increases, there will be a shift of the absorption peaks to the low frequency area and
the absorption peaks are large. Moreover, density of this material is considered to be an
important factor that governs the sound absorption behavior of the material. At the same
time, the cost of an acoustical material is directly related to its density.

Influence of Young’s modulus. Figure 10b shows that an increase of Young’s modulus of
the skeleton generates an increase in the rigidity of the skeleton over which the absorption
peaks shift to the high frequency area. In our study, we focus on the influence of the porous
layer of sound insulation of sandwich plates in the frequency range 100Hz-10000 Hz, for
this reason, we chose Young’s modulus for the skeleton of the order of 0.1MP.

Influence of characteristic length. Figure 11a presents the effect of characteristic length.
In the frequency range between 100Hz-250 H,z the characteristic length has no effects on
the TL. In the frequency range 300Hz-2500 Hz, the more characteristic length decreases,
the more viscous dissipation is important, and TL increases. At high frequencies, charac-
teristic lengths represent no effects on the TL.

Influence of resistivity. The variation of the flow resistivity has no effect on the reduction
index as presented in Fig. 11b.

Influence of Poisson’s ratio. Figure 12a shows the effect of Poisson’s ratio on TL. In the
frequency band 100Hz-220 Hz, an increase in the coefficient occurs at an increase in the
transmission loss TL. On the contrary, in the frequency band 220Hz-5000 Hz, this frequ-
ency range shows a drop of TL down to 980Hz, called the resonance frequency, and in the
zone 5000Hz-10000 Hz, if the Poisson ratio is increased, the transmission loss increases.
Then, the more Poisson’s ratio increases, the more the shear modulus decreases and the
more absorption peaks are shifted towards the high-frequency zone.

Influence of foam thickness. For thickness variation of the order of a few millimeters
(Fig. 12b), the greater the thickness, the more the transmission loss coefficient increases in
the high frequency zone 180Hz-10000 Hz and the more the absorption peaks is shifted to
the low-frequency area. A greater thickness allows a shock-absorbing effect in the behavior
of the multilayer.
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Fig. 9. Influence of (a) porous material porosity and (b) porous material tortuosity on TL of the
viscoelastic-porous-elastic configuration

Fig. 10. Influence of (a) porous skeleton density and (b) Young’s modulus on TL of the
viscoelastic-porous-elastic configuration

Fig. 11. Influence of (a) porous characteristic length and (b) flow resistivity on TL of the
viscoelastic-porous-elastic configuration

Fig. 12. Influence of (a) porous Poisson’s ratio and (b) thickness of the porous material on TL of the
viscoelastic-porous-elastic configuration
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5. Conclusion

This article investigates the loss of sound transmission in multilayer configurations composed
of porous, elastic and viscoelastic materials. A transfer matrix method has been developed to
predict the acoustic behavior of a multilayer panel. The results were compared with experiments
found in the literature. A comparison was made between all the configurations in order to find
the best structure of the multilayer panel in terms of sound insulation. This comparison shows
the effect of the damping of the viscoelastic layer which increases the loss of transmission (TL)
as a function of the frequency.
Numerical simulations have been carried out to study the effects of porous parameters on the

transmission loss for the best chosen configuration (viscoelastic-porous-elastic). This parametric
study shows that porous material parameters like Young’s modulus, Poisson’s ratio and its
thickness have a clear influence on the loss by transmission. The observed results are very useful
for researchers and developers.

References

1. Abid M., Abbes J.D., Chazot L., Hammami M.A., Hamdi, Haddar M., 2012, Acoustic
response of a multilayer panel with viscoelastic material, International Journal of Acoustics and
Vibration, 17, 2, 82-89

2. Allard J.F., Atalla N., 2009, Propagation of Sound in Porous Media. Modeling Sound Absor-
bing Materials, Second Edition, John Wiley & Sons

3. Allard J.F, Champoux Y., Depollier C., 1987, Modelization of layered sound absorbing
materials with transfer matrices, Journal of the Acoustical Society of America, 82, 1792-1796

4. Allard J.F., Depollier C., Rebillard P., Lauriks W., Cops A., 1989, Inhomogeneous Biot
waves in layered media, Journal of Applied Physics, 66, 2278-2284

5. Atalla N., Panneton R., Debergue P., 1998, A mixed displacement pressure formulation for
poroelastic materials, Journal of the Acoustical Society of America, 104, 1444-1452

6. Biot M.A., 1956, The theory of propagation of elastic waves in a fluid satured porous solid,
Journal of the Acoustical Society of America, 28, 68-191

7. Folds D.L., Loggins D.C., 1977, Transmission and reflection of ultrasonic waves in layered
media, Journal of the Acoustical Society of America, 62, 1102-1109

8. Ghinet S., Atalla N., Haisam O., 2005, The transmission loss of curved laminates and sandwich
composite panels, Journal of the Acoustical Society of America, 118, 774

9. Lee C.M, Xu Y., 2009, A modified transfer matrix method for prediction of transmission loss of
multilayer acoustic materials, Journal of Sound and Vibration, 326, 290-301

10. London A., 1950, Transmission of reverberant sound through double walls, Journal of the Acous-
tical Society of America, 220-270

11. Munjal M.L., 1993, Response of a multi-layered infinite plate to an oblique plane wave by means
of transfer matrix, Journal of Sound Vibration, 162, 2, 333-343

12. Mueller P., Tschudl H., 1989, Modeling of flat multi-layer acoustic structures with transfer
matrices, SAE Technical Paper, 111-115

13. Sastry J.S., Munjal M.L., 1995, A transfer matrix approach for evaluation of the response of a
multi-layer infinite plate to a two-dimensional pressure excitation, Journal of Sound and Vibration,
182, 1, 109-128

14. Soula M., Chevalier Y., 1998, The fractional derivative in rheology of polymers – application
to the elastic and viscoelastic behavior of linear and nonlinear elastomers, ESAIM Proceedings, 5,
87-98



976 H. Felhi et al.

15. Szabo T.L., 2000, A model for longitudinal and shear wave propagation in viscoelastic media,
Journal of the Acoustical Society of America, 107, 5, 2437-2446

16. Tanneau O., 2004, Modélisation de panneaux d’isolation aéronautiques – couplages poroélastique,
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The methodical study of safeguard of artistic heritage and other devices subjected to ear-
thquake and, in general, to time-dependent forces has considerably spreaded in the last years,
thus increasing researchers’ interest in problems concerning motions of rigid objects simply
supported on a base plane. The behaviour of piece of equipments, statues, storage tanks, or
even tall buildings has been in fact studied as that of rigid bodies with relation to different
base excitations. In some cases, the possibility of influencing the quality of motion can be a
strong tool to reduce vulnerability, like in the cases in which rocking motion is to be avoided
and sliding motion is welcome. This paper focuses the attention on this last problem. This
is the same large class of both non-structural and structural elements that can lose their
functionality because of earthquake motions. The results of numerical modelling of sliding
and rocking motion in presence of both different excitations and mechanical parameters are
presented and compared with experimental data performed by the authors. The results de-
veloped are in good agreement with the laboratory tests, and this assures the reliability of
both the analytical procedure and the determination of the parameters involved.

Keywords: rocking and sliding motion, freestanding rigid body, nonlinear dynamics, experi-
mental testing

1. Introduction

The limitation of excessive motion of rigid bodies under earthquake excitation is a fundamental
topic in the seismic protection of art objects in museums (Erdik et al., 2010; Agbabian et al.,
1991), medical devices in hospitals (Konstantinidis and Makris, 2009) and goods stored in ships.
Since late XIX century, the behaviour of piece of equipments, statues, storage tanks, or even
tall buildings has been studied as that of rigid bodies with relation to different base excitations
(Cennamo et al., 2017). Six basic conditions (Augusti and Sinopoli, 1992) have been distingu-
ished: rest, slide, rock, slide-rock, impact and free flight (Andreaus and Casini, 1999). Despite its
familiarity and apparent simplicity, motions of rigid bodies in response to earthquake excitations
pose extremely difficult problems when exact solutions are sought (Voyagaki et al., 2014). A rigid
structure placed on a shaking base may enter into rocking motion that occasionally results in
overturning (Guadagnuolo and Monaco, 2009). In some cases (small objects and equipments),
the protection of the object can be obtained by controlling the overturning through providing
an inclination to the support base in order to have a preferential direction toward a safe area
(Boroshek and Iruretagoyena, 2006).
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Early studies on the rocking response of a rigid block supported on a base undergoing ho-
rizontal motion were presented by Housner (1963). To study the problem, it was necessary to
first establish equations of motion of the rigid body and solve them accordingly. This was first
done just by Housner following the Chilean earthquakes in 1960. Housner first considered the
base motion as more irregular time functions modelled by a white noise random process. In
the piecewise model by Housner, the block can only rotate around one of the base corners, and
the friction coefficient is large enough to prevent any sliding. Shenton (1996) showed that the
quality of motion of a rigid object simply supported on an uniformly accelerating rigid plane
depended not only on the object shape and the base acceleration, but on the friction coefficient
as well. According the author, friction required to initiate a rock mode increased with ground
acceleration. It was shown (Monaco et al., 2014) that the range of sliding-rock was larger in the
case of a harmonic excitation. The role of friction and its influence in the quality of motion was
elsewhere taken into account (Sinopoli, 1997).

Since Housner had already pointed out that the rocking response of a rigid body to base
motion was sensitive to the parameters defining the geometry of the body and details of base
motion, Yim and Lin (1991) decided that the problem should be examined from a probabilistic
point of view. Using a limited number of simulated ground motions, the authors numerically
solved the equation of the problem and produced fragility curves giving the probability of the
body overturn. Aslam et al. (1978, 1980) obtained the rocking response of a rigid body subjected
to harmonic shaking as well to simulate earthquake motions both numerically and by labora-
tory experiments. The work of Aslam essentially confirmed the findings of Housner and Yim
et al. (1980) about the difficult response prediction. In 1999, Shao and Tung followed the same
approach as Yim et al. but used two types of base motions: 50 artificial earthquakes simulated
in a way identical to that of Yim and 75 real earthquakes. Shao reached the same conclusion as
Yim et al. but showed that real earthquakes gave less probability of overturning that simulated
earthquakes did. In the first studies performed in Japan (Ishiyama, 1982), the computer simu-
lation performed by the author showed that the horizontal velocity as well as the acceleration
had to be taken into account as criteria for overturning. In engineering seismology, the rocking
problem is of interest from the point of view of characterizing the ground motion level through
study of overturned objects, although in many cases this practice is rather misleading and me-
aningless (Apostolou et al., 2007). The problem becomes simpler in the case of a massless rigid
foundation as examined in Sienkiewicz (2009), where only properties of the surrounding ground
are considered. The simplest mathematical models that have received notable attention in the
past were the planar rocking of rigid rectangular blocks with nonzero mass under harmonic base
motions (Spanos and Koh, 1984), although the influence of the ground motion properties have
been analyzed since the first paper of Yim et al. above mentioned. In the harmonic problem,
even in the case of a one-sine pulse (Zhang and Makris, 2001), non-linearity arises not only in
the load deflection characteristic but also in dissipation of energy due to impacts (Purvance et
al., 2008; Chierchiello et al., 2015).

Some studies on the response of such a system have revealed the presence of a rich variety of
non-linear resonances and even the possibility of the response becoming chaotic (Bergamasco et
al., 2018). Tackling analytically the equations of motion in the case of real earthquake ground
motions is a non trivial task even for very simple waveforms (Konstantinidis and Makris, 2010).
A range of idealized ground acceleration pulses expressed by a generalized function controlled
by a single shape parameter were considered in Voyagaki et al. (2013). The problem was tre-
ated analytically by means of linearized equations of motion on the assumption of slender block
geometry and rocking without sliding. The peak rocking response and overturning criteria for
different waveforms were presented in terms of dimensionless closed-form expressions and gra-
phs. The papers above mentioned (Konstantinidis and Makris, 2009, 2010) reported a series of
tests in which the transient rocking response of electrical transformers subjected to horizontal
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trigonometric pulses and near source ground motion were investigated in depth. First, it was
shown that the solution presented by Housner for the minimum acceleration amplitude of a
half-sine pulse that was needed to overturn a rigid block was unconservative. In reality, under a
half-sine pulse a block overturns during its free-vibration regime and not at the instant that the
pulse expires. Within the limits of linear approximation, the correct expression that yields the
minimum acceleration required to overturn a block is derived. Under realistic conditions, the
rocking response of a rigid block is affected by additional factors such as the vertical component
of the ground acceleration and the additional energy loss due to plastic deformations at the pivot
points (Gesualdo and Monaco, 2015). Recent attempts to derive equivalence between a single
rocking block and various rocking mechanisms in order to give indication for real structures has
been made (Spanos et al., 2001; DeJong and Dimitrakopoulos, 2014). In general, while the roc-
king response under a deterministic excitation has received considerable attention (Gesualdo et
al., 2014, 2018), the corresponding studies on stochastic behaviour are sparse. A significant work
on stochastic analysis was carried out by Spanos and Koh (1984). They employed the statistical
linearization technique to study stochastic rocking of a rigid rectangular block on Winkler’s
foundation due to non-stationary shaking. Koh (1986) further studied this problem through a
digital simulation technique and estimated the probability of no toppling. The stochastic re-
sponse of a rigid rectangular block resting on a rigid foundation and acted upon simultaneously
by a horizontal and a vertical stationary white-noise excitation was considered. Recent works
(Prieto and Lourenço, 2005) have tried to unify the piecewise formulation by Housner with the
same hypothesis of a large friction coefficient. The traditional piecewise equations were replaced
by a single ordinary differential equation, and damping effects were no longer introduced by
means of a coefficient of restitution, but were understood as the presence of impulsive forces.
The results are in agreement with the classical formalism, and can be set in the direct analogy
with either a two-body central problem in the complex plane or an inverted pendulum through
simple variable transformations. Unfortunately, these elegant formulations are unsuitable when
rocking motion is to be avoided and sliding motion is welcome.
Recently, the dynamic response of a rocking block subjected to base excitation has been

revisited to offer new closed-form solutions and original similarity laws that shed light on the
fundamental aspects of the original model by Dimitrakopoulos and DeJong (2012). The focus is
on the transient dynamics of the rocking block under finite-duration excitations. In the process,
limitations of standard dimensional analysis related to the orientations of the involved physical
quantities are revealed. The work shows that the nonlinear and non-smooth rocking response to
pulse-type ground motion can be directly determined and need only to be scaled by the intensity
and frequency of the excitation. The typology of impulses can in fact reduce or amplify the
rocking response. It has been shown that in the case of multiple impulse rocking, the amplification
may be significant (DeJong, 2012).
In this work, a comparison between experimental observations and theoretical models for

the rocking of rigid bodies has been made. The dynamic tests elsewhere described (Monaco et
al., 2014) and performed taking into account the influence of different parameters (Makris and
Kampas, 2016) have been used to validate the analytical model and estimate both the restitution
coefficient and the dynamic friction coefficient.

2. Theoretical analysis

According to the classical approach, in the response of a rigid block simply supported on a
shaking plane base six basic conditions can be distinguished: rest, slide, rock, slide-rock, free
flight. The analytical models revised here in the following take into account the first four clas-
ses of motion and are identified by comparing their responses with the results obtained from
experimental tests on a shaking table.
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2.1. Rocking model

In this Section, the pure rocking motion is examined. Reference is made to Fig. 1, in which
a rigid block with the aspect ratio b/h, simply supported on a moving plane is shown (Zhang
and Makris, 2001).

Fig. 1. Reference systems and the single block in rocking for θ(t) < 0 (left) and θ(t) > 0 (right)

The block with base 2b, height 2h and mass m can rotate alternatively around the two base
corners O and O′, and energy is lost only during impact, when the angle of rotation θ(t) reverses.
According to the classical approach of the dynamics of the inverted pendulum under impulsive
excitations (Lenci and Rega, 2000), the velocity field after a perfect plastic and centered impact
is related to the pre-impact field by means of the reduction coefficient e. In particular e =

√
r,

being r the restitution coefficient in the Housner sense. The coefficient e can be assumed constant
during the motion, so that the angular velocity θ̇+(t) of the block after the impact can be given
as a function of the angular velocity θ̇−(t) before it (Fig. 1)

θ̇+(t) = eθ̇−(t) (2.1)

In the case of the perfect plastic impact, conservation of angular momentum about the point O′

just before the impact and right after the impact gives

(Io − 2mRb sinα)θ̇−(t) = Ioθ̇+(t) (2.2)

where Io is the moment of inertia (defined with respect to O or O′), R is the distance of the
center of mass G from the corners O or O′ and α is the angle between R and the vertical edge
of the block (see Fig. 1). The combination of (2.1) and (2.2) gives for a rectangular block

e = 1− 3
2
sin2 α (2.3)

Energy dissipation is involved for e < 1. Rocking motion is present when static friction with
the base plane prevents sliding. Adopting the notation by Shenton (1996), let fx and fy be the
horizontal and vertical reactions at the tip O′ of the block, at all times it is

|fx| ¬ µsfy (2.4)

In other words, starting from an equilibrium configuration of the system, when the angular
momentum of inertia forces is greater than that due to the gravity force, rocking motion holds
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true with condition (2.4). The rocking motion, according to d’Alembert’s principle, is governed
by the following relations with clockwise positive rotations

Ioθ̈(t) +mgR sin(−α− θ(t)) = −mẍg(t)R cos(−α− θ(t)) θ(t) < 0

Ioθ̈(t) +mgR sin(α− θ(t)) = −mẍg(t)R cos(α− θ(t)) θ(t) > 0

θ̇+(t) = eθ̇−(t) θ(t) = 0

(2.5)

The reference is made to Fig. 1, where ẍg(t) is the horizontal base acceleration, Io is the inertia
moment of polar inertia with respect to O and the rocking motion starts when |ẍg(t)| > gb/h.
The angle α = arctan b/h takes into account slenderness of the block. The resulting system of
equations is composed by two ordinary nonlinear differential equations and an algebraic one
relative to the impact instant. The system can assume the following simplified form

Io
mR

θ̈(t) + g sgn (θ(t)) sin[α− sgn (θ(t))θ(t)] = −ẍg(t) cos[α− sgn (θ(t))θ(t)] θ(t) 6= 0

θ̇+(t) = eθ̇−(t) θ(t) = 0
(2.6)

with the signum function given by

sgn (θ(t)) =

{
+1 θ(t) > 0

−1 θ(t) < 0

System (2.6) has been implemented in a routine developed on purpose with the symbolic code
Mathematica© (Wolfram, 2003) for a generic forcing ground acceleration. As it will be shown in
the following paragraph, the experimental data have been obtained placing an accelerometer on
top of the block, so that the above system should be rewritten referring to the upper face centre of
the specimen. The numerical solution of differential system (2.6) may be put more conveniently
in terms of the key point displacement, considering two reference systems with origins in the
two rotation points O and O′, namely R1 = {O,x, y} for θ(t) > 0 and R2 = {O′, x′, y′} for
θ(t) < 0. The rotation matrix R ∈ SO(2), where SO(2) is the orthogonal group of matrices with
det(R)  1, for positive clockwise rotation is

R(·) =
[
cos(·) sin(·)
− sin(·) cos(·)

]

Let θ(t) be a rotation function. It is possible to evaluate the position and the acceleration of the
point P at the time t in the two reference systems above described as

OP (t) = R · θ(t)
[
x
y

]

1

∂2

∂t2
OP (t) =

d2

dt2
[R · θ(t)]

[
x
y

]

1

θ(t) > 0

O′P (t) = R · θ(t)
[
x
y

]

2

∂2

∂t2
O′P (t) =

d

dt2
[R · θ(t)]

[
x
y

]

2

θ(t) < 0

(2.7)

After some manipulations, the acceleration can be rewritten as follows

∂2

∂t2
OP = [θ̈(t)∂R · θ(t)− θ̇2(t)R · θ(t)]

[
x
y

]

1

θ(t) > 0

∂2

∂t2
O′P = [θ̈(t)∂R · θ(t)− θ̇2(t)R · θ(t)]

[
x
y

]

2

θ(t) < 0
(2.8)

where

∂R(·) =
[
− sin(·) cos(·)
− cos(·) − sin(·)

]
∈ SO(2)
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The horizontal component of the relative acceleration can be deduced by (2.8), and is given by

ẍ(t) =

{
−[x1 cos(θ(t)) + y1 sin(θ(t))]θ̇2(t) + [−x1 sin(θ(t)) + y1 cos(θ(t))]θ̈(t) θ(t) > 0

−[x2 cos(θ(t)) + y2 sin(θ(t))]θ̇2(t) + [−x2 sin(θ(t)) + y2 cos(θ(t))]θ̈(t) θ(t) < 0

(2.9)

while the absolute acceleration is

ẍa(t) = ẍg(t) + ẍ(t)

2.2. Sliding model

The configuration of the block in the case of sliding motion can be characterized by transla-
tion of a generic point of the block with respect to the base. The friction force is a function of
vertical forces applied to the block and is opposite to the motion.

Fig. 2. The rigid block. Sliding motion

Starting from an equilibrium configuration, sliding motion begins when the maximum hori-
zontal force due to the static friction coefficient is attained

m|ẍg(t)| > mµs[ÿg(t) + g] (2.10)

The differential equation governing the sliding motion problem is

m[ẍg(t) + ẍ(t)] = − sgn (ẋ(t))µkm[ÿg(t) + g] (2.11)

with

sgn (ẋ(t)) =

{
+1 ẋ(t) > 0

−1 ẋ(t) < 0

The numerical procedure has been developed in the general case of nonzero vertical acceleration
of the base whose equations are deducted by (2.11) and (2.12) with ÿg(t) = 0

m|ẍg(t)| > mgµs m[ẍg(t) + ẍ(t)] = − sgn (ẋ(t))mgµk (2.12)

Starting from the instant in which the contact force due to static friction is exceeded (2.10),
differential equation of sliding (2.11) is integrated until the relative velocity ẋ(t) is nonzero.
When the velocity becomes null, the block is in relative equilibrium with the base (rest) until
the external force attains a value able to reactivate the sliding motion.



Rocking of freestanding objects: theoretical and experimental comparisons 983

3. Experimental tests

The behaviour of prismatic specimens subjected to harmonic shaking is investigated. The results
of the above analytical model are compared with experimental tests developed by means of an
unidirectional shaking table on prismatic specimens (Monaco et al., 2014). The specimens, prisms
with two different aspect ratios, were made of two different materials: cellular concrete and basalt
(Fig. 3).

Fig. 3. Specimens respectively made of cellular concrete (C, left) and basalt (B, center), with cubic (C)
and prismatic (P) shape and five types of support (right)

On the shaking table plane, five different material supports were arranged, in order to analyze
the influence of three different parameters: aspect ratio, friction coefficient and base motion
frequency. The shaking table was in fact able to perform a horizontal harmonic excitation with
a variable frequency up to 10Hz and a constant span of 1.5mm.

Fig. 4. Shaking table and the acquisition system (left) and the test device for determination of the
friction coefficient (right)

As a result, combinations of ten different friction coefficients determined with an on purpose
designed test device, and two different aspect ratios (b/h = 1 for cubic specimens and b/h = 0.5
for prismatic ones), were taken into account.

The friction coefficient has been determined by means of a test device made of a steel
structure in which the upper plane could be inclined by means of a worm gear that could be
manually controlled. The specimen, equipped with an accelerometer, was placed on the apparatus
to which the support material had been previously fixed. The inclination of the support plane
was increased slowly until the beginning of specimen sliding (Fig. 4). The values of the friction
coefficients so determined were considered as static friction coefficients. They are reported in
Table 1 for basalt and cellular concrete specimens, respectively. Shenton (1996) developed simple
criteria to evaluate the initial motion of freestanding symmetric objects on a moving base with
the acceleration described by a piecewise continuous function ranging from zero (base at rest) to
the value Ag (peak value). The author divided the space Ag −ϕ into four regions corresponding
to the four possible motions: rest, slide, rocking, slide-rock
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Fig. 5. Four Shenton’s regions with the proposed enlargement in the case of the sinusoidal base
excitation

Ag ¬ ϕ
Ag ¬ γ

}
rest

Ag > γ

Ag ¬
(1 + 4γ2)ϕ− 3γ
(4 + γ2)− 3γϕ




rocking

Ag > ϕ

ϕ < γ

}
slide

ϕ > γ

Ag >
(1 + 4γ2)ϕ− 3γ
(4 + γ2)− 3γϕ




slide/rock

(3.1)

where γ is the aspect ratio, γ = b/h and Ag is the peak ground acceleration. The criteria,
expressed by relations (3.1) are represented in Fig. 5. A tentative description of the variation of
the Shenton regions for the sinusoidal base acceleration was proposed in (Monaco et al., 2014).
It was shown that in the last case, expansion of the slide-rocking area with respect to that fixed
by Shenton was observed (Fig. 5). The expanded slide-rocking area proposed is the following

Ag > γ

Ag >
(1 + 4γ2)ϕ− 3γ
(4 + γ2)− 3γϕ




slide/rock (3.2)

The results of the experimental tests confirm the expansion of the slide-rocking area for the
harmonic base acceleration: Figure 6 represents two different Shenton planes corresponding to
the two aspect ratios examined.
It can be noted that, according to the Shenton scheme, for the unitary aspect ratio, the

rocking area should be absent, but the experiments have shown the presence of all motion for
cubic specimens (rest, sliding and rocking). Similarly, in the case of prismatic specimens, the
experiments have shown the presence of all motion (rest, sliding and slide-rocking). The enlar-
gement of the slide-rocking area is reported in Fig. 6 right, where the red line is the boundary of
the enlarged area represented by relation (3.2). The experimental results were obtained placing
the specimen on the shaking table to which the support material had been previously fixed. An
accelerometer was placed on the top of the specimen to evaluate the accelerations registered to-
gether with the shaking table data by means of a computer acquisition data system (Fig. 4). The
laboratory time histories are discussed and compared with the analytical ones in the following
Section.
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Fig. 6. Friction coefficient vs. peak specimen acceleration for cubic blocks (γ = 1, left) and prismatic
blocks (γ = 0.5, right)

4. Numerical comparisons

The laboratory test conditions are similar to the real cases of freestanding art objects in mu-
seums or laboratory equipments in hospitals, where friction coefficients are of various types due
to different quality of support planes (pedestals, shelves, floor). In order to provide a ductile
analytical tool for the safeguard of such objects, the numerical procedure previously described
in Section 2 has been on purpose implemented in the Mathematica R○ (2003) routine. Theore-
tical curves have been obtained by taking into account material parameters evaluated in the
experimental tests and reported in Table 1.

Table 1. Static and dynamic friction coefficients, restitution coefficients and frequencies of the
examined time histories

Motion Specimen Support Static friction Dynamic friction Restitution Frequency
type type material coefficient coefficient coefficient examined

Rocking BP

1 0.31 – 0.925 9.2
2 0.29 – 0.925 9.2
4 0.38 – 0.955 14.3
5 0.39 – 0.955 14.2

Sliding CP

1 0.30 0.26 – 6.3
2 0.29 0.25 – 6.7
4 0.33 0.29 – 7.2
5 0.30 0.26 – 7.2

Sliding BP

1 0.31 0.27 – 7.0
2 0.29 0.25 – 7.5
4 0.38 0.33 – 8.3
5 0.39 0.34 – 7.5

Sliding CC

1 0.33 0.29 – 9.3
3 0.45 0.40 – 8.8
4 0.33 0.29 – 11.0
5 0.30 0.26 – 8.3

Sliding BC

1 0.31 0.27 – 10.0
2 0.29 0.26 – 8.0
3 0.51 0.45 – 9.0
4 0.36 0.32 – 8.7
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Both restitution and dynamic friction coefficients used in the analytical rocking model are
reported. They are satisfactorily in good agreement with the experimental data. In particular,
the value of the dynamic friction coefficient used is 88% of the static friction coefficient measured
in the laboratory tests, according to the literature, usual values (Bryant, 2016). In Figs. 7-11,
time histories obtained in the numerical and experimental campaign are reported: the red line
gives the analytical results while the grey one the experimental data. It must be noted that part
of the mechanical parameters has been estimated, nevertheless, the numerical model is capable
of representing the quality of motion with great accuracy.

Fig. 7. Rocking motion: analytical (red) and experimental (grey) acceleration time histories

The numerical diagrams obtained are in good agreement with the experimental ones, see for
example diagrams BP2 and BP4 in Fig. 8 (basalt prisms) and diagrams BC2 and BC4 (basalt
cubes) in Fig. 9 or diagrams CP4 and CP5 in Fig. 10 (concrete prisms) and diagrams CC4 and
CC5 (concrete cubes) in Fig. 11. The presence of the accelerometer on the top of the specimen
and the acquisition wire gives in general small variation in a single cycle. The analytical curves
present small discontinuities due to the structure of the governing equations, but in general the
dynamic behaviour is well identified. This confirms that the only estimated parameter, i.e. the
dynamic friction coefficient reported in Table 1, has been correctly evaluated. In fact, a reduction
of 12% with respect to the static friction coefficient has been experimentally determined. The
experimental determination of the dynamic friction coefficient and realization of dynamic tests
are somewhat difficult, so that the theoretical model is the starting point for an optimization
in the case of safeguard of freestanding objects. It must be considered that, nowadays, it is
possible to make surfaces in which the friction coefficient can be previously determined, so that
a vulnerable object can be endowed with a specific base surface in order to obtain, in contact
with the support plane, a fixed friction coefficient. The motion can in this case be controlled
in the case of strong earthquakes and motions that can cause more damage, i.e. rocking ones
can be avoided. As expected from the general mechanic statements and verified experimentally,
the static friction coefficient is independent of the shape of the specimen and depends only on
the contact surfaces. The analysis of experimental diagrams has been taken into account in the
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Fig. 8. Sliding motion: analytical (red) and experimental (grey) acceleration time histories

Fig. 9. Sliding motion: analytical (red) and experimental (grey) acceleration time histories

estimation of the dynamic friction coefficient, so that an unique parameter for the aspect ratio
has been considered in the numerical procedure. It must be noted that the use of two different
values for dynamic and static friction coefficients is the reason of jumps in the analytical curves.
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Fig. 10. Sliding motion: analytical (red) and experimental (grey) acceleration time histories

Fig. 11. Sliding motion: analytical (red) and experimental (grey) acceleration time histories

5. Conclusions

The problem of a freestanding rigid object on a moving base has been investigated. The results of
numerical modelling of both sliding and rocking motion have been presented and compared with
experimental data obtained by the authors on rigid blocks simply supported on a rigid ground
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with different friction coefficients between the object and the supporting plane and different
aspect ratios of the rigid object. The numerical procedure involves all possible types of motion
and takes into account static and dynamic friction coefficients. While the first one has been
experimentally derived, the second one has been estimated as a percent of the first, both the
values being independent of the shape of the rigid object tested. It has been shown that in
the range of frequencies of the laboratory tests performed, a reduction by 12% of the static
friction coefficient gives a reliable value of the dynamic one. Laboratory tests and numerical
results are in good agreement, which confirms that the theoretical model is the starting point
for an optimization in the case of safeguard of freestanding objects. It must be emphasized that,
nowadays, it is possible to design surfaces in which the friction coefficient can be previously
determined, so that a vulnerable object can be endowed with a specific base surface in order
to obtain, in contact with the support plane, a fixed friction coefficient. The motion can in
this case be controlled in the case of strong earthquakes and motions that can cause more
damage, i.e. rocking ones, can be avoided. Since the experimental tests are often difficult as well
as expensive, especially in the case of art objects and ancient artifacts, the development of a
reliable analytical procedure and simple determination of mechanical parameters involved in the
correct interpretation of the problem is very useful.
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Shear wave based acoustic devices are being used in gaseous and liquid environments be-
cause of their high-sensitivity. The theoretical study of horizontally polarized shear (SH)
waves in a layered structure consisting of a piezoelectric ceramic of PZT − 5H or BaT iO3
material overlying a couple stress substrate is presented in this paper. The considered sub-
strate is supposed to be exhibiting microstructural properties. The closed form expression of
dispersion relations are derived analytically for electrically open and short conditions. The
effects of internal microstructures of the couple stress substrate, thickness of PZT − 5H
or BaT iO3 ceramic, piezoelectric and dielectric constants are illustrated graphically on the
phase velocity of the piezoelectric layer under electrically open and short conditions.
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1. Introduction

The propagation of surface waves in the layered system consisting of a finite layer having different
material properties lying over a semi-infinite solid substrate has been of interest due to its great
importance in geophysics, composite materials as well as in non-destructive evaluation. SH-waves
refer to the type of surface waves which are horizontally polarized and propagate at the surface
of the considered substrate. These waves exist only when a layer of finite thickness is deposited
on semi-infinite substrate and the shear wave velocity in the layer is less than that of substrate.
The piezoelectric material exhibits the linear coupling between mechanical and electric fields
because of the ability of its material to produce an electric charge when subjected to mechanical
stress and to produce deformation when subjected to an electric field. A thin film of piezoelectric
material bonded over a solid substrate is used to improve the performance of surface acoustic
wave (SAW) devices like sensors, transducer, resonators, filters, amplifiers, oscillators, delay lines
etc. which are extremely or widely used in navigation, communication and in many other fields
(Jakoby and Vellekoop, 1997).
Many researchers have investigated the piezoelectric layered structure to study propagation

characteristics of SH-waves. Liu et al. (2001) investigated the effect of initial stress on the
propagation behavior of Love waves in a layered piezoelectric structure. Wang (2002) examined
shear horizontal (SH) wave propagation in a semi-infinite solid medium surface bonded by a
layer of a piezoelectric material abutting the vacuum. Liu and He (2010) also illustrated the
properties of Love waves for a layered structure with an SiO2 layer sputtered on an ST-90◦ X
quartz substrate and found the existence of a threshold of normalized layer thickness. Wang
et al. (2012) examined the dispersion behavior of SH waves propagating in a layered structure
consisting of a piezoelectric layer and an elastic cylinder with an imperfect bonding. Wang and
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Zhao (2013) studied propagation of the Love wave in two-layered piezoelectric/elastic composite
plates with an imperfect interface based on the shear spring model. Wei et al. (2009), Ezzin et
al. (2017) examined the propagation of an SH-guided wave in the piezoelectric/piezomagnetic
layered plates. Singh et al. (2015) investigated the propagation of a Love-type wave in an irregular
piezoelectric layer lying over a piezoelectric half-space. Gupta and Vashishth (2016) studied Bulk
wave propagation in a monoclinic porous piezoelectric material.
Though, Love or SH-wave propagation has been examined in detail for a piezoelectric layer

overlying a solid substrate but the role of microstructure of the substrate has not been inve-
stigated to the full extent. The study of wave propagation in couple stress elastic space is of
great interest due to its many applications, e.g. in polymers, cellular solids, composite materials
and bones etc. Voigt (1887) proposed the idea of couple stress on the micro sized materials.
The relevant mathematical model was presented by Cosserat and Cosserat (1909). Later, many
researchers like Mindlin and Tiersten (1962), Koiter (1964), Eringen (1968) proposed different
theories to explore this field further. The theories presented by these researchers carry certain
drawbacks like indeterminacy of the spherical part of the couple-stress tensor and involvement
of separate material length scale parameters. Hadjesfandiari and Dargush (2011) gave consi-
stent couple stress theory which consisted of three material parameters λ, µ and characteristic
length (l) which described the effects of inner microstructure of the material. This characteristic
length is negligible as compared to the dimensions of the body and is of the order of the average
cell size or internal microstructure of the material. The propagation of SH-waves are examined
by various researchers under different conditions. Vardoulakis and Georgiadis (1997) examined
the existence of SH surface waves in a homogeneous gradient-elastic half space with surface
energy. Recently, co-authors Sharma and Kumar (2017) have investigated the propagation of
SH waves in a viscoelastic layer bonded imperfectly with a couple stress substrate.
Thus, to enhance the domain of shear wave propagation, we intend to study the SH-wave

propagation in a piezoelectric ceramic lying over a couple stress elastic half-space. The substrate
is considered to have properties of a microstructure like granular macromorphic rock (Dionysos
Marble). Two sets of a piezoelectric layer, i.e. PZT − 5H and BaTiO3 materials are considered
over a solid substrate. Closed form expressions of the dispersion equation for both the cases of
electrically open and electrically short conditions for the propagation of SH-wave are obtained.
Numerical computations are preformed for studying the effect of underlying microstructure of
substrate, thickness of the layer, piezoelectric and dielectric constants on the phase velocity
profiles of the shear wave.

2. Formulation of the problem

Here, we consider a piezoelectric layer of thickness H (where −H ¬ x ¬ 0) lying over a couple
stress elastic half-space. The Cartesian coordinate system is considered in such a way that the
SH-wave is propagating along the y-axis, and x-axis is pointing positive vertically downward as
shown in Fig. 1. Conventionally, the poling direction is assumed along the z-axis.
If u(p)i = (u1, v1, w1) and u

(c)
i = (u2, v2, w2) are the mechanical displacement components

due to propagation of the SH-wave in the upper piezoelectric layer and the lower couple stress
elastic half-space respectively. As the SH-wave is propagating along the direction of the y-axis,
this causes displacement in the z-direction only. We shall suppose that

ui = 0 vi = 0 wi = wi(x, y, t) (i = 1, 2) (2.1)

Let us suppose that the electric potential function of the upper piezoelectric layer is

φ = φ(x, y, t) (2.2)
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Fig. 1. Geometry of the problem

2.1. Dynamics of the piezoelectric material layer

The equation of motion for a piezoelectric layer, the electric displacement equilibrium equ-
ation and the constitutive relations may be written as

σ
(p)
ij,j = ρ1

∂2u
(p)
i

∂t2
Di,i = 0 (2.3)

and

σ
(p)
ij = cijklSkl − ekijEk Dj = ejklSkl + ǫjkEk (2.4)

where i, j, k, l = 1, 2, 3; σ(p)ij and Skl are the stress and strain tensors, respectively, cijkl, ekij and

ǫjk are the elastic, piezoelectric and dielectric coefficients respectively, u
(p)
i = (u1, v1, w1) and

Dj denotes the mechanical and electric displacement respectively, Ek is the electrical potential
field, ρ1 is the mass density of the piezoelectric layer, the superscript index p is used for the
upper piezoelectric layer.
For the transversely isotropic piezoelectric layer, equation (2.4) can be expressed in the

component form with the z-axis being the symmetric axis of the material as (Liu et al., 2001)

σ(p)x = c11Sx + c12Sy + c13Sz − e31Ez σ(p)y = c12Sx + c11Sy + c13Sz − e31Ez
σ(p)z = c13Sx + c13Sy + c33Sz − e33Ez σ(p)yz = c44Syz − e15Ey

σ(p)zx = c44Szx − e15Ex σ(p)xy =
1
2
(c11 − c12)Sxy

Dx = e15Szx + ǫ11Ex Dy = e15Syz + ǫ11Ey
Dz = e31Sx + e31Sy + e33Sz + ǫ33Ez

(2.5)

where c11, c12, c13, c33, c44 are elastic constants, e15, e31, e33 are piezoelectric constants and
ǫ11, ǫ33 are dielectric constants. The relation between the strain components and mechanical
displacement components as well as the relation between the electric potential field and the
electric potential function as follows

Sij =
1
2
(ui,j + uj,i) i, j = 1, 2, 3 Ek = −φ,i (2.6)

Using equation (2.1) in equation (2.6)1 and equation (2.2) in equation (2.6)2, we have

Sx = 0 Sy = 0 Sz = 0 Sxy = 0

Syz =
∂w1
∂y

Szx =
∂w1
∂x

(2.7)
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and

Ex = −
∂φ

∂x
Ey = −

∂φ

∂y
Ez = 0 (2.8)

Now, substituting equation (2.7), (2.8) and (2.5), into equation (2.3), we can obtain the governing
equations for the piezoelectric layer as

c44∇2w1 + e15∇2φ = ρ1ẅ1 e15∇2w1 − ǫ11∇2φ = 0 (2.9)

Now, equations (2.9) take the form as

∂2w1
∂x2
+
∂2w1
∂y2
=
1
c2p

∂2w1
∂t2

∂2φ

∂x2
+
∂2φ

∂y2
=
1
c2p

(e15
ǫ11

)∂2w1
∂t2

(2.10)

where cp =
√
c∗44/ρ1 , c

∗
44 = c44 + e215/ǫ11 and cp is the shear wave velocity in the piezoelectric

layer.
We assume solutions to equations (2.10) in the form of

w1 =W1(x)eiξ(y−ct) φ = ϕ(x)eiξ(y−ct) (2.11)

where ξ is the wave number and c is the phase velocity. With the help of (2.10) and (2.11), it
results in

d2W1(x)
dx2

+ α2ξ2W1(x) = 0

d2ϕ(x)
dx2

− ξ2ϕ(x) + ξ2c2

c2p

e15
ǫ11
[A1 sin(αξx) +A2 cos(αξx)] = 0

(2.12)

where α2 = (c2/c2p)− 1.
Using the solutions to equations (2.11) and (2.12), we get solutions to equations (2.12) leads

to

w1(x, y, t) = [A1 sin(αξx) +A2 cos(αξx)]eiξ(y−ct)

φ(x, y, t) =
(e15
ǫ11
[A1 sin(αξx) +A2 cos(αξx)] +A3e−ξx +A4eξx

)
eiξ(y−ct)

(2.13)

where A1, A2, A3, A4 are arbitrary constants.

2.2. Dynamics of couple stress elastic half-space

The equation of motion for the couple stress elastic half-space in the absence of body forces
and with the constitutive relations (Hadjesfandiari and Dargush, 2011) is

(λ+ µ+ η∇2)∇(∇ · u(c)i ) + (µ− η∇2)∇2u
(c)
i = ρ2

∂2u
(c)
i

∂t2

σ
(c)
ji = λuk,kδij + µ(ui,j + uj,i)− η∇2(ui,j − uj,i)

µji = 4η(ωi,j − ωj,i) where ωi =
1
2
ǫijkuk,j

(2.14)

where i, j, k = 1, 2, 3; λ, µ are Cauchy-Lame constants, η is the couple stress coefficient, η = µl2

where l is characteristic length, u(c)i = [u2, v2, w2] is the displacement vector, ρ2 is the mass
density of the couple stress elastic half-space, σ(c)ji is the non-symmetric force-stress tensor and
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µji is the skew-symmetric couple stress tensor, δij is Kronecker’s delta and ǫijk is the alternating
tensor, the superscript index c is used for the lower couple stress elastic half-space.
Using equation (2.1) in (2.14)1, we have

∂2w2
∂x2
+
∂2w2
∂y2
− l2

(∂4w2
∂x4
+ 2

∂4w2
∂x2∂y2

+
∂4w2
∂y4

)
=
1
c21

∂2w2
∂t2

(2.15)

where c21 = µ/ρ is the shear wave velocity in the couple stress substrate.
We assume the solution to equation (2.15) to be

w2 =W2(x)eiξ(y−ct) (2.16)

where ξ is the wave number and c is the phase velocity. Using this solution in equation (2.15),
we get

d4W2(x)
dx4

− Sd
2W2(x)
dx2

+ TW2(x) = 0 (2.17)

where

S = 2ξ2 +
1
l2

T = ξ2
[
ξ2 +

1
l2

(
1− c2

c21

)]

Since the amplitude of waves decreases with an increase in depth in the couple stress elastic
half-space, so the solution to differential equation (2.17) becomes

w2(x, y, t) =
(
A5e−ax +A6e−bx

)
eiξ(y−ct) (2.18)

where

a =

√
S +
√
S2 − 4T
2

b =

√
S −
√
S2 − 4T
2

3. Boundary conditions

For propagation of SH-waves in a piezoelectric layer lying over a couple stress elastic half-space,
the following boundary conditions are to be satisfied:

(A) Boundary conditions for the traction-free surface of the piezoelectric layer:
1. The mechanical stress-free condition is: σ(p)zx = 0 at x = −H (3.1)
2. The electrical boundary condition on the traction-free surface is:

(a) Electrically open condition: Dx = 0 at x = −H (3.2)

(b) Electrically short condition: φp = 0 at x = −H (3.3)

(B) Boundary conditions at the common interface of the layer and half-space:
3. Stresses are continuous at the common interface: σ(p)zx = σ

(c)
zx at x = 0 (3.4)

4. Displacement fields are continuous at the common interface: w1 = w2 at x = 0 (3.5)
5. Electric potential function should vanish at the common interface: φp = 0 at
x = 0 (3.6)

6. Couple stress tensor should vanish at the common interface: µxy = 0 at x = 0 (3.7)
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4. Dispersion equations

Using equations (2.13), (2.18) and their corresponding stress and electrical displacement compo-
nents into boundary equations (3.1)-(3.7), we obtain the following algebraic equations in terms
of unknown coefficients A1, A2, A3, A4, A5 and A6

αc∗44 cos(αξH)A1 + αc
∗
44 sin(αξH)A2 − e15 exp(ξH)A3 + e15 exp(−ξH)A4 = 0 (4.1)

exp(ξH)A3 − exp(−ξH)A4 = 0 (4.2)

−e15
ǫ11
sin(αξH)A1 +

e15
ǫ11
cos(αξH)A2 + exp(ξH)A3 + exp(−ξH)A4 = 0 (4.3)

αξc∗44A1 − ξe15A3 + ξe15A4 + µa[1− l2(ξ2 − a2)]A5 + µb[1− l2(ξ2 − b2)]A6 = 0 (4.4)

A2 −A5 −A6 = 0 (4.5)
e15
ǫ11

A2 +A3 +A4 = 0 (4.6)

(ξ2 − a2)A5 + (ξ2 − b2)A6 = 0 (4.7)

4.1. Dispersion equations for the case of electrically open circuit

The conditions mentioned in equations (4.1), (4.2) and (4.4)-(4.7) constitute six boundary
conditions for this case. To obtain a non-trivial solution, the determinant of coefficients of the
unknowns A1, A2, A3, A4, A5 and A6 vanishes. The frequency equation for the SH-wave in an
electrically open circuit is obtained as

ξ(ka − kb)
(e215
ǫ11
tanh(ξH) + αc∗44 tan(αξH)

)
+ [µa(1− l2ka)kb − µb(1− l2kb)ka] = 0 (4.8)

where ka = ξ2 − a2 and kb = ξ2 − b2.
Equation (4.8) represents dispersion relations of the SH-wave in an electrically open circuit

for the piezoelectric layer lying over couple stress elastic half-space.

4.2. Dispersion equations for the case of electrically short circuit

The conditions mentioned in equations (4.1) and (4.3)-(4.7) constitute six boundary con-
ditions for this case. To obtain a non-trivial solution, the determinant of coefficients of the
unknowns A1, A2, A3, A4, A5 and A6 vanishes. The frequency equation for the SH-wave in an
electrically short circuit is obtained as

ξ(ka − kb)
[(
α2c∗244 −

e415
ǫ211

)
tan(αξH) tanh(ξH) + 2αc∗44

e215
ǫ11

(
1− sec(αξH)
cosh(ξH)

)]

+ [µa(1 − l2ka)kb − µb(1− l2kb)ka]
(
αc∗44 tanh(ξH)−

e215
ǫ11
tan(αξH)

)
= 0

(4.9)

Equation (4.9) represents dispersion relations of the SH-wave in an electrically short circuit for
the piezoelectric layer lying over the couple stress elastic half-space.

5. Numerical results

For illustrating the results, we have considered a semi-infinite couple stress substrate which is
made of Dionysos Marble having microstructural properties (Vardoulakis and Georgiadis, 1997):
ρ = 2717 kg/m3, µ = 30.5 · 109 N/m2 and cp = 3350m/s.
Piezoelectric layers of PZT − 5H or BaTiO3 are considered (Liu et al., 2001) having pro-

perties as given below:
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(a) For PZT − 5H ceramics: c44 = 2.30 · 1010 N/m2, ρ = 7.50 · 103 kg/m3, e15 = 17.0C/m2,
ǫ11 = 277.0 · 10−10 C2/Nm2

(b) For BaTiO3 ceramics: c44 = 4.40 · 1010 N/m2, ρ = 7.28 · 103 kKg/m3, e15 = 11.0C/m2,
ǫ11 = 128.0 · 10−10 C2/Nm2

Dispersion curves of SH-type waves propagating in a piezoelectric layer overlying a couple
stress medium have been examined in Figs. 2-9. Figures 2, 4, 6, 8 correspond to electrically
open conditions and Figs. 3, 5, 7, 9 correspond to electrically short conditions. Phase velocity
profiles are highly important for propagation of surface waves in the layered structure for its
possible applications in sensors, delay lines, filters etc. One of the common feature of all theses
characteristic curves is that the non-dimensional phase velocity c/cp decreases with an increase
in the non-dimensional wave number ξH.

5.1. Effects of microstructure of the substrate

Figures 2 and 3 show variation of the non-dimensional phase speed c/cp with respect to the
non-dimensional wave number ξH for different values of characteristic length l = 0.00001m,
0.0001m, 0.0004m. Here, the thickness of the piezoelectric layer is taken as H = 0.002m. It can
be observed that the microstructure of the substrate affects the phase velocity profiles signifi-
cantly. It can be seen from the profiles that with an increase in characteristic length, the phase
velocity increases for both considered layers, i.e. for PZT − 5H material shown in 2(i) and 3(i)
under electrically open conditions and for BaTiO3 material shown in 2(ii) and 3(ii) under elec-
trically short conditions, as shown in Figs. 2 and 3, respectively. The characteristic curves clearly
demonstrate microstructural effects of the semi-infinite solid substrate that remains ignored in
the classical elastic model.

Fig. 2. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of characteristic length l = 0.00001m, 0.0001m, 0.0004m, when H = 0.002m in the case

of electrically open conditions; (a) 2(i) for PZT − 5H ceramic, (b) 2(ii) for BaT iO3 ceramic

5.2. Effects of thickness of a piezoelectric layer

To demonstrate the effects of thickness of a layer on the phase velocity profiles of the
SH-wave propagating in a layered structure, here in Figs. 4 and 5 we consider different va-
lues of the thickness of the layer i.e. H = 0.0005m, 0.002m, 0.05m, their characteristic length
l = 0.0001m is kept constant. It is observed that thickness of the layer has adverse effects on
the phase velocities and the phase velocity decreases with an increase in thickness of the layer.
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Fig. 3. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of characteristic length l = 0.00001m, 0.0001m, 0.0004m, when H = 0.002m in the case

of electrically short conditions; (a) 3(i) for PZT − 5H ceramic, (b) 3(ii) for BaT iO3 ceramic

Fig. 4. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of width of the piezoelectric layer H = 0.0005m, 0.002m, 0.05m, when l = 0.0001m in
the case of electrically open conditions; (a) 4(i) for PZT − 5H ceramic, (b) 4(ii) for BaT iO3 ceramic

Fig. 5. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of width of the piezoelectric layer H = 0.0005m, 0.002m, 0.05m, when l = 0.0001m in
the case of electrically short conditions; (a) 5(i) for PZT − 5H ceramic, (b) 5(ii) for BaT iO3 ceramic
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Characteristic profiles for the corresponding electrically open and short conditions are shown in
Figs. 4 and 5, 4(i) and 5(i) correspond to PZT − 5H material and 4(ii) and 5(ii) correspond to
BaTiO3 material, respectively.

5.3. Effects of piezoelectric constants

Figures 6 and 7 show variation of the non-dimensional speed c/cp against the non-dimensional
wave number ξH for the SH-wave propagation. The characteristic curves are plotted for different
values of the piezoelectric parameter e15 = 17C/m2, 21 C/m2, 25C/m2 for PZT − 5H material
shown in 6(i) and 7(i) and e15 = 11C/m2, 15C/m2, 19C/m2 for BaTiO3 material shown in 6(ii)
and 7(ii) for both cases of electrically open and short conditions, respectively. The thickness of
the layer H = 0.002m and the characteristic length l = 0.0001m associated with couple stress
substrate are kept constant. The piezoelectric constant associated with the piezoelectric layer
does not favor the phase velocity profiles of SH-waves. It is observed that an increase in the
piezoelectric constant leads in general to a decrease in phase velocity profiles for both cases of
electrically open and short conditions.

Fig. 6. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of piezoelectric constants e15 = 17, 21, 25C/m2 in 6(i) and e15 = 11, 15, 19C/m2

in 6(ii), for electrically open cases; (a) 6(i) for PZT − 5H ceramic, (b) 6(ii) for BaT iO3 ceramic

Fig. 7. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of piezoelectric constants e15 = 17, 21, 25C/m2 in 7(i) and e15 = 11, 15, 19C/m2

in 7(ii), for electrically short cases; (a) 7(i) for PZT − 5H ceramic, (b) 7(ii) for BaT iO3 ceramic
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5.4. Effects of dielectric constants

Figures 8 and 9 show the trend of the non-dimensional speed c/cp with respect to the
non-dimensional wave number ξH on the SH-type wave propagation for different values of die-
lectric constants ǫ11 = 77C2/Nm2, 177C2/Nm2, 277 C2/Nm2 for PZT − 5H material shown in
8(i) and 9(i) for electrically open conditions and ǫ11 = 98C2/Nm2, 128C2/Nm2, 158 C2/Nm2

for BaTiO3 material shown in 8(ii) and 9(ii) for electrically short conditions. Here, we have
taken the material characteristic length parameter l = 0.0001m and the thickness of the piezo-
electric layer H = 0.002m. Dielectric constants of the piezoelectric layer overlying couple stress
substrate affect the phase velocity profiles significantly. It is observed that the phase velocity of
SH-waves increases with an increase in the dielectric constant for both considered materials of
the piezoelectric layer i.e. PZT − 5H and BaTiO3 materials for both the cases of electrically
open and short conditions.

Fig. 8. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of dielectric constants ǫ11 = 77, 177, 277C2/Nm2 in 8(i), ǫ11 = 98, 128, 158C2/Nm2

in 8(ii), for electrically open cases; (a) 8(i) for PZT − 5H ceramic, (b) 8(ii) for BaT iO3 ceramic

Fig. 9. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of dielectric constants ǫ11 = 77, 177, 277C2/Nm2 in 9(i), ǫ11 = 98, 128, 158C2/Nm2 in
9 (ii), for electrically short case; (a) 9(i) for PZT − 5H ceramic, (b) 9(ii) for BaT iO3 ceramic
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6. Conclusion

Dispersion equations (4.8) and (4.9) provide implicit relations between the phase velocity of
SH-wave and different characteristic parameters associated with the layer and substrate. The
phase velocity profiles are affected with variation in the associated parameters of the considered
layered structure. The major conclusions of the study may be pointed out as follows:

(i) The wave number affects the phase velocity profiles of SH-waves significantly. The non-
-dimensional phase velocity decreases with an increase in the non-dimensional wave number
in each case of electrically open and short circuits for both considered materials of the
piezoelectric layer.

(ii) Internal microstructure of the couple stress substrate affects the phase velocity profiles
significantly. It is observed that the phase velocity of SH-waves increases with an increase
in the characteristic length l. This effect justifies consideration of microstructural properties
of the semi-infinite substrate.

(iii) Thickness of the piezoelectric layer shows an adverse effect on phase velocity profiles of
SH-waves. It is observed that the phase velocity of SH-waves decreases with an increase in
the thickness parameter associated with the piezoelectric layer.

(iv) The piezoelectric constant affects the phase velocity profiles of SH-wave substantially.
Specifically, an increase in the piezoelectric parameter leads to a decrease in the phase
velocity of SH-waves propagation in the piezoelectric layer overlying the couple stress
elastic half-space.

(v) Dielectric constants associated with the piezoelectric layer favor the phase velocity profiles
of SH-waves. It is observed that with an increase in the dielectric parameter, the phase
velocity increases.

The findings obtained in the paper through theoretical and numerical demonstrations could help
the development of more efficient and high performance Love wave based devices.
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In this paper, the effects of inlet flow distortion on performance maps and details of the flow
field are investigated using the Streamline Curvature Method. The results are presented for
both design and off-design conditions and compared with experimental data, which shows
good agreement. The effects of inlet flow distortion are investigated by inlet total pressure
variation in three different cases in the way that the average total pressure remains constant
and equal to the design value. The results show that a relative increase in the total pressure
at tip causes an increase in the pressure ratio and efficiency as well as a better performance
in the choking region. Alternatively, a relative increase in the total pressure in hub causes
opposite behavior and a better performance at the surging region.
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1. Introduction

The compressor is one of the most important parts of jet engines which must have a stable
operation in all flight maneuvers or atmospheric conditions. One of the most appropriate as-
sumptions in the normal approach to compressor and fan design is undistorted flow at the inlet
in which flow properties are assumed to be uniform and the flow direction to be axial. But under
a variety of conditions in military and commercial aircraft engines, a highly distorted flow at the
compressor inlet is produced, which is commonly referred to as “inlet distortion”. Non uniform
flow at the inlet of the fan stage may be originated from atmospheric turbulence, boundary layer
growth, flow distortions induced by the shape of the intake duct and boundary layer ingesting
engines in the modern high efficient airframe.
Many performance problems and engine failures in aircraft including rotating stall and surge

were observed due to inlet distortion. Therefore, it is important to explore the behavior of the
engine compressor towards inlet distortion. There are many ways to investigate the flow field in
an axial compressor or fan with inlet distortion. In prior research investigations, models of the
response to distortion have been developed which utilize clean compressor performance or stage
characteristics to anticipate the compressor behavior with distortion (Chue et al., 1989; Day,
1993; Greitzer, 1980).
With rapid development of computer technology, Computational Fluid Dynamics (CFD)

methods have been employed extensively to study the flow field in a compressor with inlet flow
distortion. Zhang and Hou (2017) explored stall inception in a low-speed axial compressor under
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rotating distorted inflow conditions using full annulus, unsteady, three dimensional computatio-
nal fluid dynamics (CFD). The results indicated that under co-rotating inflow distortion, close
to the tip region the flow incidence angle is increased and the axial flow coefficient decreased.
It has an important role on the stall inception process. Liu et al. (2016) investigated the effect
of inlet distortion on the performance of an axial transonic contra-rotating compressor by me-
ans of full-annulus simulation. Results revealed that the inlet distortion leads to reduction of
the pressure ratio and efficiency. The interaction between the detached shockwave and the tip
leakage flow leads to blockage of the blades passage. It is one important of reasons for the com-
pressor stall. Naseri and Boroomand (2016) using CFD approach evaluated the effect of inlet
distortion in forms of inlet swirl and total pressure distortion on compressor performance and
stability. Results indicated that hub and tip radial distortions change the stability range of the
compressor.
Review of the literature shows that most of the researches were employed experimentally

and by numerical methods (CFD method) to explore the effects of inlet distortion on axial
compressor performance. In experimental tests, limitations of instruments and cost make this
method difficult to investigate. Also, application of CFD analysis, which is associated with
solving complete flow and energy equations in a very complex geometry like a compressor or
fan, takes long period of time and is not reasonable.
Due to difficulties in experimental and CFD analysis, various methods with some simplifica-

tions are presented for design purposes and flow analysis. Some researchers such as Kim et al.
(1996) used a simple integral method which rendered the multistage analysis as a natural part
instead of solving a detailed flow field problem. By using this method, they calculated the qual-
itative trend of distorted performance of an axial compressor successfully. Most of researchers
and designers prefer working on meridional plane of a turbomachine (Lakshminarayana, 1996).
Governing equations on hub to tip through the flow surface (referred to as S2-surface) can be
solved on the meridional plane using streamline curvature (SCM). This method is mostly used
because of its rapid convergence and accurate results. Final results based on this method are
comparable with those obtained through CFD methods, which consume usually extreme time
and expenses (Pachidis and Pilidis, 2006). This method has been employed by Hearsey (1986),
Pachidis and Pilidis (2006), Hu et al. (2011) and Gong et al. (2016) to design and analyze
different kinds of turbomachines.
Based on the above mentioned subjects, it can be realized that the effects of inlet distortion

on the compressor performance are investigated, but details of characteristics of flow fields such
as flow angles, velocity and pressure field are still under question. In this paper, the streamline
curvature method, as a rapid and accurate method, is used to investigate the effects of inlet total
pressure distortion on flow field details, performance characteristics and surge/choke margins.

2. Streamline Curvature Method and verification

2.1. Streamline Curvature Method

Governing equations for viscous compressible flows through compressors are highly nonlinear.
Therefore, most of methods that have been presented so far utilize some simplifications. One
effective approach is to divide the flow field into a series of blade to blade surfaces (so-called
S1-surface) and some surfaces extended from hub to tip (so-called S2-surface). Based on the
experiences, working only on the through-flow surface, i.e., the S2-surface, which is extended
from the hub to tip in the radial and mean flow directions, can provide the final geometry of
blades with an acceptable accuracy. The Streamline Curvature Method (SCM) is widely used
for quasi three-dimensional design of axial compressor blades. This method which was presented
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by Novak (1967) is based on successive refinement of streamlines to satisfy the balance between
centrifugal and pressure forces while ensuring the given mass flow rate.
SCM utilizes primarily an inviscid flow. In fact, it offers a flexible method of determining

the Euler solution of axisymmetric flow through a turbomachine. Then, a discrete increase of
entropy, which is determined from loss correlations, is imposed to represent viscous effects.
It is obvious that accuracy of results highly depends on the validity of loss correlations. The
governing main system of equations consists of linear momentum and continuity equations.
Then, combined with the thermodynamic equation of state, the resultant equation is mapped
into the meridional plane of the flow passage. As a consequence of the assumptions made in this
method, and mapping into the meridional plane, the final form of the governing equation can
be presented as Eq. (2.1). Some of the parameters appeared in this equation are introduced in
Fig. 1, showing the coordinate axes and angles necessary for formulation in SCM. Fundamentals
of this method including its precise concept and more details on the governing equations and
necessary correlations can be found in Hearsey (1986)

Vm
dVm
dl
= sin(ϕ−γ)

(
Vm

∂Vm
∂m
−Fm

)
+cos(ϕ−γ)

(V 2m
rc
−Fn

)
+
dh0
dl
−T ds

dl
− Vθ
r

d(rVθ)
dl

(2.1)

where Vm and Vθ are, respectively, the meridional and swirl velocity, Fm and Fn are blade forces
(meridional blade force and normal blade force), l and m are, respectively, the quasi-orthogonal
and meridional direction, r and rc is the radial direction and streamline curvature radius, h0 is
stagnation enthalpy, s is entropy and T is static temperature. ϕ and γ are deflection and sweep
angles.
Equation (2.1) is solved as an ordinary first order differential equation. In this respect, a

computerized program is developed which consists of two main parts. The first part is ma-
inly attributed to obtain three dimensional geometry of blades, and the next part produces
performance curves of the turbomachine. The computer code utilizes empirical correlations for
calculations of various kinds of loss accompanied by axial compressors. Obviously, reliability of
final results depends highly on the degree of precision of these correlations.

2.2. Loss and angle correlations

In order to implement viscous effects in governing equations, empirical correlations must
be used for the loss coefficient, incidence and deviation angles. The loss coefficient is divided
into four parts; profile loss, shock loss, secondary flow loss and tip clearance loss. The profile
loss coefficient is calculated from Koch and Smith’s correlation (1976), shock loss coefficient
from Swan’s correlation (1958), secondary flow loss coefficient from Griepentrog’s correlation
(1970) and tip clearance loss coefficient from Storer and Cumpsty’s correlation (1994). These
coefficients are based on the minimum loss condition (design condition). Therefore, summation
of these four coefficients is multiplied by a factor which includes off-design effects in the total
loss coefficient. This factor is based on the difference between design and off-design incidence
angles. Equation (2.2) shows the total loss coefficient for each blade row

ω = (ωp + ωsh + ωsec + ωtip,cl)
i− ides
W 2

(2.2)

where ωp is the blade profile loss factor, ωsh is the blade shock wave loss factor, ωsec is the
secondary loss factor, and ωtip,cl is the tip clearance loss factor. In this equation, ides and i are
the design and off design incidences, respectively. An increment in the loss of actual incidence
(off-design) and Mach number is originally accounted for through the parabolic term in brackets
in Eq. (2.2). W in Eq. (2.2) is “width” which specifies the working range of the section. This
is a common approach taken in streamline curvature methods to achieve a more realistic loss
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“bucket” shape (Cetin et al., 1987). Other parameters which are computed via empirical corre-
lations are incidence and deviation angles. Lieblein’s popular correlations are used for obtaining
these parameters (Cumpsty, 1989).

2.3. Surge and choking criteria

In order to obtain the mass flow rate in which surge or choking occurs in each speed line,
some criteria must be defined. One suitable criterion for surge or stall occurrence, which is used
in the current research, belongs to Aungier (2003). In his method, the aerodynamic velocity
ratio across each blade row (Waero) and the equivalent geometric velocity ratio (Wgeom), which
are calculated from equation (2.3), are compared (Aungier, 2003)

Waero =

√
P0,2 − P2
P0,1 − P1

Wgeom =

0.15+11 tmax
c

0.25+10 tmax
c

1 + 0.4
(

θσ
2 sin θ

2
cos γ

)0.65 (2.3)

where tmax represents the maximum thickness, c is the chord length, γ is the stagger angle,
σ is the solidity, θ is the momentum thickness, P0,2 and P0,1 are the total pressures downstream
and upstream the blade row, respectively. Also, P2 and P1 are the static pressures downstream
and upstream the blade row, respectively. Wgeom is just a function of geometric parameters
and, therefore, remains constant for varying mass flow rate while Waero increases as the flow
rate decreases. Aungier (2003) suggested that as long as the aerodynamic velocity ratio remains
higher than the geometric velocity ratio, the compressor is un-stalled, or surge has not occurred.
In order to predict choking in the compressor, a decrease in the rate of Mach number variation
is considered as the beginning of choking.

2.4. Experimental validation

In the design of an axial fan or compressor by the streamline curvature method, several input
parameters such as meridional geometry, inlet condition, radial distribution of some parameters,
and etc. are required. Also, to validate SCM results, experimental results in forms of radial
distribution of parameters, performance maps and flow fields (meridional velocity and etc.) are
required. To validate results in design and off-design conditions, Urasek et al. (1979) employed
experimental data. Although that paper (Urasek’s fan) is a very old one, but it is one of the
best papers that provides all required data for design of an axial fan by SCM. These data refer
to a two-stage axial fan with a pressure ratio of 2.4. A view of its blades in the meridional plane
along with the computational grid is shown in Fig. 1.
Overall characteristics of this fan are also shown in Table 1. Also, the estimated errors of the

experimental data based on inherent accuracies of the instrumentation and recording system are
provided in the paper (Urasek et al., 1979) and added to Table 1.

Table 1. Overall characteristics of Urasek’s two-stage fan (Urasek et al., 1979)

Inlet total pressure [kPa] 101.325 ± 0.7
Inlet total temperature [K] 288± 0.6
Mass flow rate [kg/s] 33.2 ± 0.3
Rotational velocity [r/min] 16042 ± 30
Overall pressure ratio 2.4
Number of stages 2
First rotor aspect ratio 1.56
Aerodynamic efficiency [%] 84.9
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Fig. 1. Computational grid in the meridional plane

Analyzing the results of design conditions is not in the scope of this paper. But in Fig. 2,
as an example, the meridional velocity distribution (as the most important result of SCM) for
the first rotor is compared with the experimental one. In this figure, the difference between the
obtained results with the experimental ones is about 8%.

Fig. 2. Experimental validation of the first rotor meridional velocity in the design condition

The performance characteristics taken from the presented research work against the experi-
mental ones are shown in Figs. 3 and 4. Figure 3 shows the variation of pressure ratio in 100 to
50 percent speed lines. The chance of choking occurrence is increased with increasing rotational
speed. As shown in Fig. 3a, the maximum discrepancy between the SCM result and experimen-
tal data is lower than 7% in each speed line. Referring to Fig. 3b, good agreement is observed
between SCM results and experimental data, and the maximum discrepancy is about 5% in
100% speed line.
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Fig. 3. Experimental validation of (a) fan pressure ratio and (b) fan efficiency in the off-design condition

Fig. 4. All cases of disturbance patterns

3. Results and discussion

During flights, the inlet total pressure distortion due to rapid maneuvering or bumping into
strong cross-winds causes destabilization of aircraft engines. The aerodynamic stability pro-
blems of compressors become increasingly critical while the loads of modern compressors are
ceaselessly increasing. Conventional, good prediction of the performance of a whole engine can
be achieved by a low-fidelity gas turbine performance simulation tool. But it is incapable of both
precisely exploring the performance of individual engine components and grasping complex phy-
sical phenomena such as inlet flow distortion. On the other hand, CFD tools can study the
performance of individual engine components appropriately, but application of CFD analysis,
which is associated with solving complete flow and energy equations in very complex geometry
typical for compressors or fans, takes a long period of time and is not reasonable. Also, experi-
mental tests, due to limitations of measurement instruments and cost make this method difficult
for investigation. Therefore, in the present work, the streamline curvature method (SCM) has
been used to model inlet flow distortion due to fast convergence, precision results and the ab-
sence of the above constrains. As shown above, the presented results are comparable with those
obtained from experimental tests.
Occurrence of distortion patterns in the incoming flow is applied in simulations by defi-

ning proper boundary conditions at the inlet. In the current research, the inlet flow with total
pressure distortion is studied. Radial variations are in a way that the average total pressure
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remains constant and equal to design value. Accordingly, a parameter named “distortion index”
is introduced as follows (Aungier, 2003)

I =
P0,max − P0,min

P0,max
(3.1)

where P0,max and P0,min are the maximum and minimum total pressures. All considered cases
are shown in Fig. 4. Case I has the design condition with a uniform inlet total pressure. Case II
has linear variation of the inlet total pressure with the maximum at the tip and the minimum
in the hub. Case III is opposite to the second case. The distortion index in the second and third
cases is equal to 0.3. But in this regard, other researchers behaved differently. For example,
Naseri and Boroomand (2016) used a CFD approach to investigate the effect of radial total
pressure disturbances but the average total pressure was not the same in different cases. In
another research, Liu et al. (2016) using commercial CFD software investigated the effects of
circumferential total pressure inlet distortion on the performance and flow field of the axial
counter-rotating compressor but the radial disturbance was not studied.
As can be seen in Fig. 5, the total pressure increase at the tip (case II) aims at blade loading

and is more successful in controlling the loss in this region than in other cases. This fact leads
to an increase in the pressure ratio and efficiency. Also, in this case, a lower total pressure in
the hub make the Mach numbers lower at this region, which produces choking at higher mass
flow rates.

Fig. 5. Effect of inlet distortion on the pressure ratio

In Fig. 6, the incidence angle related to the second stator at a mid-range mass flow rate is
visible in 90% of speed lines, which shows its increase in case II. In case III, with the decreasing
total pressure at the tip and increasing in the hub, totally different behavior is observed in
Fig. 5. Surge and choking occur at lower mass flow rates and the surge margin is higher. One
could say that the total pressure increase at the tip shifts pressure ratio curves to the right and
its decrease shifts the curves to the left (compared to uniform inlet total pressure). The surge
margin (as defined by Urasek et al. (1979)) is 11.7% in the design case (case I), 7.7% in case II
with a greater total pressure at the tip and 12.9% in case III with a higher total pressure in the
hub.
In the research conducted by Naseri and Boroomand (2016), the authors employed tip radial

and hub radial patterns to model total-pressure distortion. They approached a tip radial distor-
tion pattern by assuming its value in the blade hub area equal to the total pressure of clean
inlet and its decreasing to a lower value at the blade tip area linearly. Alternatively, in the hub
radial pattern, they set the total pressure in the blade tip area equal to the clean value and the
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Fig. 6. Effect of inlet distortion on the incidence angle (mass flow = 29.9kg/s, N = 0.9Ndes, 2nd stator)

low pressure side in the hub area. Their results indicated that hub radial distortion improves
the operability range of the compressor. Therefore, the stall mass flow is reduced and the mass
flow range between stall and choking conditions widened. The stall pressure ratio is also slightly
reduced. Conversely, tip radial distortion reduces the operability range of the compressor. The
mass flow range between choking and stall conditions is considerably reduced by increasing the
intensity of tip radial distortion. Considering different definitions of radial distortion in Naseri’s
research, which leads to reduced averaged total pressure in different cases, their results confir-
med the presented research findings. It should also be noted that with the decreasing rotational
speed, lower absolute or relative Mach numbers are created. It can reduce the opportunity of
surge and choking. Therefore, it is visible in Fig. 5 that the difference between the curves (three
investigated cases) is higher at higher rotational speeds (except for 100% speed line in which
SCM has higher computational errors). It is worth to mention that the prior research such as
Liu et al. (2016), Naseri and Boroomand (2016), mainly focused on a specific rotational speed,
and no study has been conducted for different revolution.

Fig. 7. Effect of inlet distortion on efficiency

Effects of inlet distortion on fan efficiency are also shown in Fig. 7 for the three cases. The
previous statement about shifts in curves to the right or left due to distortions is also presented
in Fig. 7. The results of the previous study (Naseri and Boroomand, 2016) just focused on the
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effects of distortion on the pressure ratio and its effect on the efficiency was not presented. The
total pressure increase at the tip and a decrease in the hub (case II) produces higher efficiencies
and the inverse case (case III) has opposite results. Also it could be seen that distortion effects
are more significant in higher speed lines (except for 100% speed line in which SCM has higher
computational errors).

3.1. Effects of inlet distortion on surge and choking

In order to have a deeper understanding on the effects of inlet distortion on the compressor
performance, some flow details are investigated. In this Section, the Mach number and the
diffusion factor distribution for each case are presented in near surge condition. But, in similar
studies, such results have not been extracted.

The diffusion factor can be considered as a criterion for the beginning of surge and stall.
Therefore, in Fig. 8, a comparison between diffusion factors of different cases is carried out. The
diffusion factor is plotted for the second stator at 90% speed line and the mass flow rate of surge
beginning in the uniform flow case. A shift of the curves due to inlet distortions is also visible
in Fig. 8. The total pressure increase at the tip and a decrease in the hub (case II), as stated
in the previous Section, has weaker performance in the surge region. This behavior appears as
the diffusion factor increases. This increase is higher in the hub and at the tip and is less in the
mid-height, but there are higher diffusion factors in the whole blade height than in other cases.
It can be seen that the case with a total pressure decrease in the hub and an increase at the tip
(case III) has smallest diffusion factors and, therefore, better performance in the surge region.

Fig. 8. Effect of inlet distortion on the diffusion factor (mass flow = 28 kg/s, N = 0.9Ndes, 2nd stator)

Since, the Mach number is a criterion for choking prediction, a comparison between the Mach
number for different investigated cases has been illustrated in Fig. 9. This figure compares the
Mach number at the first stator inlet (with the highest inlet Mach numbers) at 90% speed line
and the mass flow rate at the beginning of choking in the uniform flow case. Referring to Fig. 9,
the difference between the curves is small. It can be seen that the total pressure increase in
the hub and a decrease at the tip (case III) creates higher Mach numbers in the total height
of blade and, consequently, shows a weaker performance in the choking region. In this case, the
Mach number in the hub of the first stator inlet is about 0.86. So, it is a critical value that may
increase to 1 in the blade throat and cause choking.
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Fig. 9. Effect of inlet distortion on the Mach number (mass flow = 31.4kg/s, N = 0.9Ndes, 1st stator)

4. Conclusion

Under a variety of conditions in military and commercial aircraft engines, inlet flow distortion
produces many performance problems and engine failures including rotating stall and surge.
Therefore, it is important to explore the behavior of the engine compressor towards inlet distor-
tion. In this paper, the streamline curvature method (SCM) has been used to explore effects
of inlet flow distortion on performance maps and change of surge/choke margins. This method
compared with numerical (CFD) and experimental methods, can help avoiding costly and time
consuming problems and indicates good accuracy and fast convergence. In order to achieve the
purpose of the paper, radial variations of the total pressure set in a way that the average total
pressure remains constant and equal to the design value. While, in a similar research, the ave-
rage total pressure is not the same in different cases. The results show that the total pressure
increase at the tip can shift performance curves to the right, increase the pressure ratio and
efficiency, whereas its decrease shifts the curves to the left. The former case could lead to better
performance in choking regions but reduces the surge margin. Conversely, the second case with
the decreased total pressure at the tip and increased in the hub improved the surge margin. The
research studies conducted to date are limited and mainly focus on the effect of distortion on
the pressure ratio for a specific rotational speed and no study has been conducted in terms of
both efficiency and different revolution speeds. Besides the aforementioned limitations, details
of characteristics of the flow field such as flow angles, Mach number and the diffusion factor
distribution have not been extracted from prior researches. But in the present research, these
characteristics for each case are presented in a near surge condition under inlet total pressure
distortion. The results indicated that variations of the second stator incidence and diffusion fac-
tor has only presented a weaker performance of the former case in surge regions. But variation
of the first stator inlet Mach number has proved a weaker performance of the second case in
choking regions.
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The influence of the change with time of friction power on thermal stresses in a friction
element of a brake system is investigated. For this purpose, a list of ten different temporal
profiles of specific friction power is used, which has been experimentally established for a
single braking process. The corresponding profiles of transient temperature fields in the
considered element are applied as input parameters to find quasi-static thermal stresses.
Numerical analysis concerned with spatio-temporal distributions of the stresses and their
evolutions on the heated surface is presented.
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1. Introduction

One of the efficient and quick methods to preliminary estimate temperature and thermal stresses
in a designed friction pair of a brake system is usage of analytical models. Generally, there are
one-dimensional thermal problems of friction for bodies with canonical shape (i.e. semi-space,
strip, circular disc), heated on its working surface by the heat flux with intensity proportional
to the specific power of friction (Fazekas, 1953; Carslaw and Jaeger, 1959; Newcomb and Spurr,
1967). The last mentioned is defined as a product of the friction coefficient, contact pressure
and relative sliding speed between the pad and the brake rotor (Blok, 1955; Ling, 1973). Expe-
rimental research shows that, in the real braking processes, the friction momentum (and hence
the force of friction) vary with time, and the nature of this change depends on thermophysi-
cal properties of materials of the friction pair elements, working conditions and construction
of the brake (Chichinadze et al., 1979; Balakin and Sergienko, 1999). As a result, the power
of friction may have a complicated time profile. Most exact analytical solutions to the thermal
problem of friction were obtained for constant or linearly decreasing with time specific power
of friction (Yevtushenko and Kuciej, 2012; Kuciej, 2012; Jewtuszenko et al., 2015). Those solu-
tions describe non-stationary fields of temperature in friction elements during braking with an
invariable friction force and constant velocity or constant retardation. Distributions of thermal
stresses initiated by such temperatures in a semi-space were investigated by Evtushenko and
Kutsei (2006), and in a strip applied on the foundation analyzed by Yevtushenko et al. (2011),
Yevtushenko and Kuciej (2010).
The list of different temporal profiles of the specific friction power, established by means of

experimental research of frictional heating during single braking, was presented in the mono-
graph by Chichinadze (1967). Exact, analytical solutions to boundary-value problems of heat
conduction for a semi-space, heated on its surface by the frictional heat flux with intensity pro-
portional to the specific friction power, placed on the above-mentioned list, were obtained in the
articles by Topczewska (2017a) and Yevtushenko et al. (2017a).
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The aim of this paper is to investigate the influence of time profiles of the specific friction
power on distributions of thermal stresses generated due to frictional heating in a friction element
during single braking. Some results of the investigations were presented at the 9th International
Conference Balttrib’2017 (Yevtushenko et al., 2017b).

2. Temperature

Temporal profiles of the specific friction power during single braking have the following forms
(Chichinadze, 1967)

qi(t) = q0q∗i (t) q0 =
w0
ts

0 ¬ t ¬ ts i = 1, 2, . . . , 10 (2.1)

where ts is the braking time, q0 and w0 are nominal values of the specific friction power and
friction work, respectively

q∗1(t) = 2(1− t∗) q∗2(t) = 2t
∗ q∗3(t) = 1.5

√
1− t∗

q∗4(t) = 1.5
√
t∗ q∗5(t) = 3(1 − t∗)2 q∗6(t) = 3t

∗2

q∗7(t) = 6t
∗(1− t∗) q∗8(t) = 1.2(1 − t∗)(1 + 2t∗)

q∗9(t) = 1.2t
∗(3− 2t∗) q∗10(t) = 6

√
t∗(1−

√
t∗) t∗ =

t

ts

(2.2)

where

w0 =
ts∫

0

qi(t) dt i = 1, 2, . . . , 10 (2.3)

is constant for all cases, at the end of braking t = ts.

Fig. 1. Scheme of the problem

Temperature fields Ti(z, t), z  0, 0 ¬ t ¬ ts, i = 1, 2, . . . , 10 in a friction element (pad,
disc, etc.) caused by heating its working surface (Fig. 1) by the heat flux with intensities qi(t),
i = 1, 2, . . . , 10 (2.1)-(2.3) are found from exact solutions to the proper thermal problem of
friction for a semi-space z  0 in dimensionless forms (Topczewska, 2017a; Yevtushenko et al.,
2017a)
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T ∗1 (ζ, τ) =
4
3
√
ττ∗

{[ 3
τ∗
− 2(1 + Z2)

]
ierfcZ + Z erfcZ

}

T ∗2 (ζ, τ) =
4
3
√
ττ∗[2(1 + Z2) ierfcZ − Z erfcZ]

T ∗3 (ζ, τ) = 3
√
τ ierfcZ − 1

2
√
ττ∗[2(1 + Z2) ierfcZ − Z erfcZ]

− 1
40
√
ττ∗2[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]

− 1
560
√
ττ∗3[(48 + 174Z2 + 80Z4 + 8Z6) ierfcZ − Z(57 + 36Z2 + 4Z4) erfcZ]

T ∗4 (ζ, τ) =
3
4
√
πτsτ

∗[ erfcZ − 2Z ierfcZ]

T ∗5 (ζ, τ) = 2
√
τ{3 ierfcZ − 2τ∗[2(1 + Z2) ierfcZ − Z erfcZ]

+
1
5
τ∗2[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]}

T ∗6 (ζ, τ) =
2
5
√
ττ∗2[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]

T ∗7 (ζ, τ) = 4
√
ττ∗{[2(1 + Z2) ierfcZ − Z erfcZ]

− 1
5
τ∗[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]}

T ∗8 (ζ, τ) =
4
5
√
τ{3 ierfcZ + τ∗[2(1 + Z2) ierfcZ − Z erfcZ]

− 2
5
τ∗2[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]}

T ∗9 (ζ, τ) =
4
5
√
ττ∗{3[2(1 + Z2) ierfcZ − Z erfcZ]

− 2
5
τ∗[(8 + 18Z2 + 4Z4) ierfcZ − Z(7 + 2Z2) erfcZ]}

T10∗(ζ, τ) = τ∗{3
√
πτs( erfcZ − 2Z ierfcZ)− 4

√
τ [2(1 + Z2) ierfcZ − Z erfcZ]}

(2.4)

where the function erf (x) is error function, erfc (x) = 1 − erf (x), ierfc (x) = exp(−x2)/√π −
x erfc (x), and the dimensionless parameters are determined by the following relations

ζ =
z

a
τ =

kt

a2
τs =

kts
a2

τ∗ =
τ

τs

Z =
ζ

2
√
τ

T0 =
q0a

K
T ∗i =

Ti − Ta
T0

(2.5)

and a =
√
3kts – effective depth of heat penetration (Chichinadze et al., 1979), K – thermal

conductivity [W/(Km)]; k – thermal diffusivity [m2/s]; Ta – ambient temperature [K].

3. Thermal stresses

Thermal stresses corresponding to the fields of temperature T ∗i (ζ, τ), Eqs. (2.4) and (2.5), are
found based on the model of thermal bending of a thick plate with unfixed ends. In accordance
with this model, σi,x(z, t) = σi,y(z, t) ≡ σi(z, t), σi,z(z, t) = 0, where the transverse normal
component of the stress tensor σi (i = 1, 2, . . . , 10) (Noda et al., 2000)

σi(z, t) = σ0σ∗i (ζ, τ) σ0 =
αtET0
1− ν 0 ¬ z ¬ a 0 ¬ t ¬ ts (3.1)
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where the material properties are E – Young’s modulus [MPa], αt – coefficient of linear thermal
expansion [K−1], ν – Poisson’s ratio

σ∗i (ζ, τ) = ε
∗
i (ζ, τ)− T ∗i (ζ, τ) 0 ¬ ζ ¬ 1 0 ¬ τ ¬ τs

ε∗i (ζ, τ) = (4− 6ζ)Ni(τ) + 6(2ζ − 1)Mi(τ)
(3.2)

and

Ni(τ) =
1∫

0

T ∗i (ζ, τ) dζ Mi(τ) =
1∫

0

ζT ∗i (ζ, τ) dζ (3.3)

Substituting the dimensionless temperatures T ∗i (ζ, τ), Eq. (2.4) to equations (3.3), the follo-
wing are determined

N1(τ) =
8
3
ττ∗

[( 3
τ∗
− 2

)
I0(τ)− 2I2(τ) + J1(τ)

]

M1(τ) =
16
3
τ
√
ττ∗

[( 3
τ∗
− 2

)
I1(τ)− 2I3(τ) + J2(τ)

]

N2(τ) =
8
3
ττ∗{2[I0(τ) + I2(τ)]− J1(τ)}

M2(τ) =
16
3
τ
√
ττ∗{2[I1(τ) + I3(τ)]− J2(τ)}

N3(τ) = 6τI0(τ)− ττ∗{2[I0(τ) + I2(τ)]− J1(τ)}

− 1
20
ττ∗2[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]

− 1
280

ττ∗3[48I0(τ) + 174I2(τ) + 80I4(τ) + 8I6(τ)− 57J1(τ)− 36J3(τ)− 4J5(τ)]

M3(τ) = 12τ
√
τI1(τ)− 2τ

√
ττ∗{2[I1(τ) + I3(τ)]− J2(τ)}

− 1
10
τ
√
ττ∗2[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]

− 1
140

τ
√
ττ∗3[48I1(τ) + 174I3(τ) + 80I5(τ) + 8I7(τ)− 57J2(τ)− 36J4(τ)− 4J6(τ)]

N4(τ) =
3
2
√
πττsτ

∗[J0(τ)− 2I1(τ)] M4(τ) = 3τ
√
πτsτ

∗[J1(τ)− 2I2(τ)]

N5(τ) = 4τ
{
3I0(τ)− 2τ∗[2I0(τ) + 2I2(τ)− J1(τ)]

+
1
5
τ∗2[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]

}

M5(τ) = 8τ
√
τ
{
3I1(τ)− 2τ∗[2I1(τ) + 2I3(τ)− J2(τ)]

+
1
5
τ∗2[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]

}

N6(τ) =
4
5
ττ∗2[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]

M6(τ) =
8
5
τ
√
ττ∗2[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]

N7(τ) = 8ττ∗{2I0(τ) + 2I2(τ)− J1(τ)
− 0.2τ∗[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]}

M7(τ) = 16τ
√
ττ∗{2I1(τ) + 2I3(τ)− J2(τ)

− 1
5
τ∗[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]}

(3.4)
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N8(τ) =
8
5
τ{3I0(τ) + τ∗[2I0(τ) + 2I2(τ)− J1(τ)]

− 2
5
τ∗2[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]}

M8(τ) =
16
5
τ
√
τ{3I1(τ) + τ∗[2I1(τ) + 2I3(τ)− J2(τ)]

− 2
5
τ∗2[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]}

N9(τ) =
8
5
ττ∗{3[2I0(τ) + 2I2(τ)− J1(τ)]

− 2
5
τ∗[8I0(τ) + 18I2(τ) + 4I4(τ)− 7J1(τ)− 2J3(τ)]}

M9(τ) =
1
5
τ
√
ττ∗{3[2I1(τ) + 2I3(τ)− J2(τ)]

− 2
5
τ∗[8I1(τ) + 18I3(τ) + 4I5(τ)− 7J2(τ)− 2J4(τ)]}

N10(τ) = 2
√
ττ∗

{
3
√
πτs[J0(τ)− 2I1(τ)]− 8

√
τ
[
I0(τ) + I2(τ)−

1
2
J1(τ)

]}

M10(τ) = 4ττ∗
{
3
√
πτs[J1(τ)− 2I2(τ)]− 8

√
τ
[
I1(τ) + I3(τ)−

1
2
J2(τ)

]}

where

Ik(τ) =
X∫

0

Zk ierfcZ dZ =
1√
π
Lk(τ)− Jk+1(τ) k = 0, 1, . . . , 7

Lk(τ) =
X∫

0

Zke−Z
2
dZ Jk(τ) =

X∫

0

Zk erfcZ dZ X =
1
2
√
τ

(3.5)

and the variable Z has the form of Eq. (2.5).
Using the recursive formulas (Prudnikov et al., 1986, 1998), k = 2, 3, . . .

Lk(τ) =
1
2
[(k − 1)Lk−2(τ)−Xk−1e−X

2
]

Jk(τ) =
1

k + 1

[1
2
k(k − 1)Jk−2(τ) +

(
X2 − 1

2
k
)
Xk−1 erfcX − 1√

π
Xke−X

2
] (3.6)

and taking into account that

L0(τ) =
1
2
√
π(1− erfcX) L1(τ) =

1
2
(1− e−X2)

J0(τ) =
1√
π
− ierfcX J1(τ) =

1
4
erfX − 1

2
X ierfcX

(3.7)

integrals (3.5)2 are computed as

L2(τ) =
1
4
√
π erfX − 1

2
Xe−X

2
L3(τ) =

1
2
[1− (1 +X2)e−X2 ]

L4(τ) = 0.375
√
π erfX − 1

2
X
(
X2 +

3
2
)e−X

2

L5(τ) = 1−
(1
2
X4 +X2 + 1

)
e−X

2

L6(τ) = 0.9375
√
π erfX −X(0.5X4 + 1.25X2 + 1.875)e−X2

L7(τ) = 3−
(1
2
X6 +

3
2
X4 + 3X2 + 3

)
e−X

2

(3.8)
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and

J2(τ) =
1
3

{
X3 erfcX +

1√
π
[1− (X2 + 1)e−X2 ]

}

J3(τ) =
1
4

[
X4 erfcX +

3
4
erfX − 1√

π
X
(
X2 +

3
2

)
e−x

2
)]

J4(τ) =
1
5

{
X5 erfcX +

1√
π
[2− (X4 + 2X2 + 2)e−X2 ]

}

J5(τ) =
1
6

[
X6 erfcX + 1.875 erfX − 1√

π
X(X4 + 2.5X2 + 3.75)e−X

2
]

J6(τ) =
1
7

{
X7 erfcX +

1√
π
[6− (X6 + 3X4 + 6X2 + 6)e−X2 ]

}

J7(τ) =
1
8

[
X8 erfcX + 6.5625 erfX − 1√

π
X(X6 + 3.5X4 + 8.75X2 + 13.125)e−X

2
]

J8(τ) =
1
9

{
X9 erfcX +

1√
π
[24 − (X8 + 4X6 + 12X4 + 24X2 + 24)e−X2 ]

}

(3.9)

With account of relations (3.7)-(3.9), in the right side of equation (3.5)1, the following expressions
are obtained

I0(τ) =
1
2
√
π
Xe−X

2
+
1
4
erfX − 1

2
X2 erfcX

I1(τ) =
1
6

{ 1√
π
[1 + (2X2 − 1)e−X2 ]− 2X3 erfcX

}

I2(τ) =
1
8

[
X(2X2 − 1)e−X2

√
π +
1
2
erfX − 2X4 erfcX

]

I3(τ) =
1
5

{ 1
2
√
π
[1 + (2X4 −X2 − 1)e−X2 ]−X5 erfcX

I4(τ) =
1
6

[ 1
4
√
π
X(4X4 − 2X2 − 3)e−X2 + 0.375 erfX −X6 erfcX

]

I5(τ) =
1
7

{ 1√
π

[
1 +

(
X6 − 1

2
X4 −X2 − 1

)
e−X

2
]
−X7 erfcX

}

I6(τ) =
1
8

{ 1√
π
X(X6 − 0.5X4 − 1.25X2 − 1.875)e−X2 + 0.9375 erfX −X8 erfcX

}

I7(τ) =
1
9

{ 1√
π

[
3 +

(
X8 − 1

2
X6 − 3

2
X4 − 3X2 − 3

)
e−X

2
]
−X9 erfcX

}

(3.10)

Substituting functions Jk(τ), Ik(τ), k = 0, 1, . . . , 7, Eqs. (3.7)2, (3.9) and (3.10) to Eqs. (3.4),
temporal profiles of temperature Ni(τ) averaged over the plate thickness and the temperature
momentum Mi(τ), i = 1, 2, . . . , 10, Eqs. (3.3), and next, dimensionless stresses σ∗i (ζ, τ), Eqs.
(3.2), have been determined.
It should be noted that distributions of the thermal stresses corresponding to the profiles of

the specific friction power q∗i (t), i = 5, 7, 10, Eqs. (2.2), were studied in the article by Topczewska
(2017b), too.

4. Numerical analysis

Influence of the temporal profiles of the specific friction power q∗i (t), i = 1, 2, . . . , 10, Eqs.
(2.2) on the dimensionless temperature T ∗i (ζ, τ) (2.4) was detailed investigated in the article
by Yevtushenko et al. (2017a). Therefore, in this paper, the effect of this factor on the quasi-
-static normal thermal stresses σ∗i (ζ, τ), i = 1, 2, . . . , 10 Eqs. (3.1) and (3.2), initiated by the
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temperature, have been determined. Isolines of these stresses are shown in Figs. 2 and 3. The
presented data can be divided into two specific groups. The first one consists of the results
obtained for i=1,3,8 and i=5,7,10 (Topczewska, 2017b). These cases are characterized by the
fact that with the onset of the braking process, along with a rapid increase of temperature,
in the region 0 ¬ ζ ¬ 0.2 under the friction surface, compressive stresses (σ∗i < 0) appear.
Absolute values of the stresses in this zone decrease with time, achieving zero at the particular
time moment, then change the sign and become tensile stresses (σ∗i > 0). The time of change
of the stress sing (compressive into tensile) is strongly dependent on the time of achieving the
maximum temperature on the friction surface of the heated element. The faster temperature
reaches the maximum value, the earlier this transition occurs and the tensile stress achieves a
higher value on the outer surface at the moment of standstill. The second region 0.75 ¬ ζ ¬ 1
of the compressive stresses occurs adjacent to the unheated, bottom surface of the element.
Evolution of the stresses in this region is similar, as in the previous – at the initial stage

Fig. 2. Isolines of the dimensionless normal transverse stresses σ∗i , i = 1, 2, 3, 4

of braking the compressive stresses appear, then change their sign with approaching to the
stop moment. Between these zones of tensile stresses, there is a region of compressive stresses,
which rapidly increase at the initial stage of braking, achieving their maximum values after
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Fig. 3. Isolines of the dimensionless normal transverse stresses σ∗i , i = 5, 6, 7, 8, 9, 10
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a relatively short time. Subsequently, these stresses decrease with time, disappearing near the
moment of standstill. Values and evolutions of the stresses in the all above-mentioned regions
are interdependent. The higher values of tensile stresses on the surface occurs, the higher values
of the compressive stresses are achieved. The time of occurrence of the maximum tensile stresses
inside the friction element is almost equal to the time of appearance of the greatest values of
compressive stresses on its heated surface.

Stresses isolines σ∗i (ζ, τ), i = 2, 4, 6, 9, from the second group, reflect a monotonical increase
of the corresponding temperatures T ∗i (ζ, τ) during braking with set distance from the heated
surface ζ (Yevtushenko et al., 2017a). In contrast to the first group, in the considered regions
of the greatest concentration of compressive stresses, adjacent to the upper and lower edge of
the friction element, the maxima are located closer to the end of the braking process, and the
maximum absolute values on the friction surface ζ = 0 are achieved at the stop moment τ = τs.
In this second group, between the lines of zero stresses, which remain during the whole braking
process at depths ζ ≈ 0.2 and ζ ≈ 0.75, also the region of tensile stresses occurs. These stresses
monotonically increase with time, reaching the maximum value at the stop moment.

Fig. 4. Evolutions of the dimensionless normal transverse stresses σ∗i on the surface of friction ζ = 0:
(a) i = 1, 2, . . . , 6; (b) i = 7, 8, 9, 10

Changes of the dimensionless thermal stresses σ∗i (0, τ), i = 1, 2, . . . , 10 with time on the
friction surface of the element are presented in Fig. 4. As shown in the article by Yevtushenko et
al. (2017a), temporal profiles of the specific friction power q∗i (τ), i = 1, 2, . . . , 10 (2.1)-(2.3) can
be classified into one of three specific groups. The first group includes functions q∗i (t), i = 1, 3, 5,
which reach the maximum value at the initial moment of braking, and then monotonically
decrease to zero at the standstill moment. The corresponding stresses on the heated surface,
after start of the process are compressive, and their absolute values rapidly increase, reaching
the maximum values 0.2, 0.15 and 0.29 at moments 0.04τs, 0.05τs and 0.04τs for i = 1, 3, 5,
accordingly (Fig. 4a). Then, the compressive stresses on the heated surface disappear with time,
and at the moments 0.72τs (i = 1), 0.97τs (i = 3) and 0.53τs (i = 5) change the sign of stresses,
and the tensile stresses appear.

The second group contains the functions q∗i (t), i = 2, 4, 6 (2.1) and (2.2), which monotonically
increase from zero at the initial moment of the braking process to the maximum value at the stop
moment. In a similar way, the evolutions of the corresponding dimensionless temperatures T ∗i ,
i = 2, 4, 6 are calculated on the friction surface ζ = 0 from equations (2.4)2, (2.4)4 and (2.4)6,
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respectively. Dimensionless thermal stresses σ∗i , i = 2, 4, 6 on the heated surface are compressed
during the whole braking, and their absolute values monotonically increase with time from zero
at the start moment to the maximum values 0.13 (i = 2), 0.09 (i = 4), 0.22 (i = 6), at the
standstill (Fig. 4a).

The last one of the three highlighted groups consists of four time profiles of the specific
friction power q∗i (t), i = 7, 8, 9, 10, which have a local maximum within the time braking interval.
Profiles of these functions affect the evolution of the corresponding stresses. At the initial stage
of braking, the absolute values of compressive stresses decrease, reaching a local minimum −0.16
at τ = 0.4τs (i = 7), −0.13 at τ = 0.07τs (i = 8), −0.09 at τ = 0.56τs (i = 9) and −0.13 at
τ = 0.16τs (i = 10) (Fig. 4b). Stresses σ∗i , i = 7, 8, 10 at the moments τ = 0.88, τ = 0.82 and
τ = 0.8, accordingly, change the sign, and their highest values 0.05, 0.044 and 0.044 are achieved
at the stop moment. In the case i = 9, stresses on the friction surface of the element compress
the material during the whole braking process.

5. Conclusions

It is known that the sum of the intensities of heat fluxes generated due to friction on the contact
surface of the friction pair (which are directed along the normal to the inside of the friction
elements) are equal to the specific friction power (Ling, 1973). Changes of friction power with
time can be different, and their typical cases were classified in the monograph by Chichinadze
et al. (1967). Using this classification, in the articles by Topczewska (2017a) and Yevtushenko
et al. (2017a) it has been established that the temporal profile of the specific friction power
has crucial influence on the distribution of temperature in the pad and the brake disk, and the
maximum value of temperature on the contact surface of these elements. In this paper, based
on exact analytical solutions to the boundary-value problem of heat conduction for a semi-space
heated on its surface by the heat flux with intensity equal to the specific power of friction, the
exact solution of the boundary quasi-static problems of thermoelasticity has been received. This
allows one to conduct numerical analysis and to investigate the influence of the time profile of
friction power on the state of thermal stresses in a selected element of the friction pair. As a
result, it has been established that the values and distribution of the thermal stresses initiated
by frictional heating depends mainly on the temporal profile of a specific friction power. If the
friction power monotonically increases during braking (i = 2, 4, 6) or its maximum value is
reached near the moment of standstill (i = 9), on the friction surface of the element there occur
merely compressive normal stresses. However, when the maximum values of the friction power
and also temperature are achieved earlier during the braking process (i = 1, 3, 5, 7, 8, 10), then
due to relative cooling of the surface, before the standstill moment, the stresses change the sign
and tensile stresses appear. In the case of exceeding the ultimate strength of the friction material
by the value of this stress, initiation of the superficial thermal cracks may appear (Evtushenko
and Kutsei, 2006; Yevtushenko et al., 2011).

It has been established that the relationship between the maximum values of specific friction
power and the normal transverse stresses is directly proportional. However, the moment of
thermal stresses change of sign on the friction surface (transition from compressive to tensile
stresses) mainly depend on the time of achieving the maximum temperature. The most rational
modes of frictional heating from the “stresses” point of view corresponds the following temporal
profiles q∗i (t), i = 2, 4 and 9. For the same brake work, evolutions of the stresses corresponding
to these time profiles are the most uniform and the change of their sign does not occur. Their
extreme values are the lowest in comparison with other cases.
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This article presents semi-analytical solutions for stress distributions in exponentially and
functionally graded rotating annular disks with arbitrary thickness variations. The disk is
under pressure on its boundary surfaces and exposed to temperature distribution varying
linearly across thickness. Material properties are supposed to be graded in the radial di-
rection of the disk and obeying to two different forms of distribution of volume fraction of
constituents. Different conditions at boundaries for stresses and displacement are discus-
sed. Accurate and efficient solutions for displacement and stresses in rotating annular disks
are determined using infinitesimal theory. Numerical results are carried out and discussed
for different cases. It can be deduced that the gradient of material properties and thick-
ness variation as well as the change of temperature sources have a specific effect in modern
applications.

Keywords: functionally graded, variable thickness, semi-analytical approach, rotating, ther-
mal effect

1. Introduction

Stress analyses of rotating circular disks have long been an important topic in engineering
applications. Disks made of homogeneous materials have been discussed extensively with con-
stant and thickness variation (Hartog, 1952). Cavallaro (1965) presented variable-thickness disks,
symmetrical with respect to both their axes and their mid-planes, under the effect of centrifu-
gal and thermal loadings. Wu and Ramsey (1966) presented solutions for stresses in rotating,
symmetrical, three-layer circular disks. Murthy and Sherbourne (1970) presented rotating aniso-
tropic variable-thickness disks under centrifugal loading. Yella Reddy and Srinath (1974) derived
closed-form solutions for the bending response of rotating variable-thickness and variable-density
disks. Sherbourne and Murthy (1974) presented a dynamic relaxation technique to study stresses
and displacements of rotating variable-thickness disks with different boundary conditions.
An extension to rotating solid and annular disks with variable profiles made of viscoelastic

materials has been investigated. Feng (1985) presented governing equations of rotating disks
subjected to large elastic and viscoelastic deformations. Allam et al. (2008) presented a circular
variable-thickness elastic disk under the effect of steady coaxial current and bearing coaxial
viscoelastic coating. Zenkour and Allam (2006) presented an analytical solution for displacement
and stresses in rotating fiber-reinforced viscoelastic variable-thickness disks. Allam et al. (2007)
presented analytical solutions for inhomogeneous rotating variable-thickness viscoelastic disks.
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Recently, the research on rotating circular disks has become more and more active after chan-
ging the material model, especially in the case of functionally graded materials (FGMs) (Argeso,
2012; Das et al., 2012; Hassani et al., 2012; Peng and Li, 2012a,b; Golmakani, 2013; Kadkho-
dayan and Golmakani, 2014; Zenkour, 2014; Dai and Dai, 2015; Leu and Chien, 2015; Sahni and
Sahni, 2015; Hosseini et al., 2016; Zhenga et al., 2016; Entezari et al., 2017; Essa and Argeso,
2017; Tutuncu and Temel, 2013). Allam and Zenkour (2005) presented viscoelastic rotating di-
sks of made of an exponentially graded (EG) varying thickness and fiber-reinforced viscoelastic
material. Zenkour (2005) obtained accurate elastic solutions for EG rotating annular disks with
different conditions. You et al. (2007) obtained closed-form solutions of FG rotating circular
disks under uniform angular velocity and uniform temperature change taking into consideration
that material properties were functions of the radial coordinate. Bayat et al. (2008), Asghari and
Ghafoori (2010) and Ghorbanpour Arani et al. (2010) used a semi-analytical method to present
elastic and magneto-thermo-elastic solutions for FG rotating disks with a variable profile. Vullo
and Vivio (2008) obtained elastic stresses and strains in rotating variable-thickness solid and
annular disks under thermal load with density variation along the radial coordinate. Bayat et
al. (2009a,b) used the first-order shear deformation theory to discuss elastic and thermoelastic
bending responses of rotating disks with graded material properties. Bayat et al. (2009c) derived
thermoelastic responses for axisymmetric FG rotating variable-thickness disks with temperature-
-dependent material properties. Zenkour (2009) presented two models of sandwich rotating solid
disks with the EG core with free or clamped-edge conditions. The finite difference, finite element
and semi-exact elastic solutions of thermoelastic analysis of FG rotating disks were presented
by Afsar and Go (2010), Hassani et al. (2011), Sharma (2013), Zafarmand and Hassani (2014),
Arnab et al. (2014), and Entezari et al. (2017).
An additional extension to thermo-piezo-magneto-mechanical stresses analyses of FG rota-

ting disks was presented by Ghorbanpour Arani (2010a, b). Dai et al. (2017) presented tempe-
rature, moisture, displacement and stress distributions of an exponentially graded piezoelectric
(EGP) rotating disk. Dai and Dai (2017) presented a rotating disk with variable thickness in
thermal environment made of an FG magneto-electro-elastic material (MEEM). In this article,
the problem of stresses and deformation of a rotating variable-thickness inhomogeneous and FG
annular disk is presented. Numerical results are investigated according to different profiles of the
annular disk. Two specific thickness variations namely power and exponential laws for thickness
variation are considered. A comparison between different cases is made and some conclusions
are presented.

2. Formulation of the problem

Here, the basic equations of elasticity are used (Mashat and Zenkour, 2014). The constitutive
equations are represented as

σr =
E

1− ν2
(
ν
u

r
+
du

dr

)
− E

1− ν αT

σθ =
E

1− ν2
(u
r
+ ν

du

dr

)
− E

1− ν αT
(2.1)

where u represents the radial displacement, σr and σθ denote radial and hoop stresses, T is tem-
perature distribution, E denotes Young’s modulus, ν denotes Poisson’s ratio and α represents
the thermal expansion coefficient. It is considered that thickness is a function of the radial coor-
dinate, that is h(r) represents variable-thickness of the rotating disk. So, the dynamic equation
of a rotating variable-thickness disk may be represented by

d

dr
(hrσr)− hσθ + hρω2r2 = 0 (2.2)
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where ω represents angular velocity and ρ denotes material density. Assume that the material
of the rotating disk is isotropic with uniform Poisson’s ratio while the elastic modulus, density,
and thermal coefficient are all radially varying. Equation (2.2) with the help of Eq. (2.1) yields

d2u

dr2
+
(1
r
+
1
E

dE

dr
+
1
h

dh

dr

)du
dr
+
[ν
r

( 1
E

dE
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1
h

dh
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)
− 1
r2

]
u

+ (ν + 1)
[ω2ρr
E
(1− ν)− αdT

dr
+
(dα
dr
+ α
1
E

dE

dr
+ α
1
h

dh

dr

)
T
]
= 0

(2.3)

3. Various disk profiles

3.1. Thickness profiles

The present rotating disk is annular and made of a variable-thickness, single-layer of func-
tionally or exponentially graded material with the inner radius a and the outer one b. Two
thickness disk profiles are supposed here. In the first one, the thickness is varied with radius of
the disk according to the following power-law form

h(r) = h0
[
1− n

(r
b

)]k
(3.1)

where h0 denotes the thickness at the axis of the disk and n and k are dimensionless parameters.
The parameter n defines thickness at edge of the disk relative to h0 while the parameter k defines
the shape of the disk profile. The uniform-thickness disk is deduced when either n = 0 or k = 0
while linearly-decreasing thickness is deduced if k = 1. In addition, if k < 1 the disk profile is
convex while if k > 1 it is concave. Figure 1 illustrates the case of a convex disk with n = 0.415196
and k = 3. The dimensionless thickness h = h(r)/h0 is displayed in terms of dimensionless radius
r = r/b for a = 0.2m.

Fig. 1. Power disk profiles, n = 0.415196 and k = 3

The second thickness of the disk profile is considered to vary radially according to this
exponential form

h(r) = h0 exp
[
−n
(r
b

)k]
(3.2)

Also, in this case n defines thickness at edge of the disk and k determines the shape of the disk
profile. Figure 2 shows two plots of this disk profile in two cases: (a) n = 2 and k = 0.5 while
(b) n = 0.415196 and k = 3 for the same inner radius a.
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Fig. 2. Exponential disk profiles: (a) n = 2, k = 0.5, (b) n = 0.415196, k = 3

3.2. Material properties profiles

The material properties of the annular disk are considered to vary across the radial direction.
Young’s modulus E, thermal expansion coefficient α, and material density ρ are assumed to vary
according to the following simple power law

P (r) = P0
(r
b

)β
(3.3)

where P0 is the material property (E0, α0 and ρ0) at the outer surface of the disk and β denotes
the inhomogeneity parameter. The above formula means that the annular disk is inhomogeneous
with respect to its coefficients ρ, α, and E.
For the functionally graded (FG) annular disk, the property variation P (r) of the thermal

coefficient, density and modulus of elasticity across the radial direction is considered as (Ruhi
et al., 2005)

P (r) = Pa + (Pb − Pa)
(r − a
b− a

)β
(3.4)

where Pa and Pb denote the corresponding properties of the inner and outer surfaces of the
rotating disk. The grading index parameter β  0 represents the volume fraction exponent. The
above power law reflects a simple rule of mixture in terms of volume fraction of constituents,
and it is widely admitted form of property variation.

3.3. Temperature profiles

The temperature distribution across the radial direction is derived from heat conduction
equation

κ∇2T (r) + q(r) = 0 (3.5)

where ∇2 = (d2/dr2) + (1/r)(d/dr), κ denotes thermal conductivity, and q represents the heat
generation function. The temperature satisfies the following boundary conditions

T (r)
∣∣
r=a
= T0

dT (r)
dr

∣∣
r=b
= 0 (3.6)

in which T0 denotes the reference temperature. The internal energy generation within both
surfaces is given by the heat generating function

q(r) = −Q
(r − a

a

)(r − b
b

)
a ¬ r ¬ b (3.7)
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where Q represents a uniform rate of internal energy generation. So, Eq. (3.5) gets the solution

T (r) =
Qr2

144κab
[9(r2 + 4ab)− 16r(a+ b)] + c1 ln(r) + c2 (3.8)

in which c1 and c2 represent arbitrary integration constants obtained from conditions appeared
in Eq. (3.6) as

c1 =
Qb2

12κa
(b− 2a)

c2 =
Q

144κab
[a3(7a− 20b)− 12b3 ln(a)(b − 2a)] + T0

(3.9)

In addition to Eq. (3.8), one can use another simple and efficient form of temperature. That is

T (r) = Ta +
Tb − Ta
ln ba

(ln r − ln a) (3.10)

4. Solution of the problem

It is known that it is difficult to get a general solution of the second-order differential equation
with variable coefficients as Eq. (2.3). A semi-analytical approach is presented here for this
purpose. The radial domain will be divided into some virtual sub-domains with thickness s(m)

as illustrated in Fig. 3. Evaluating the coefficients of Eq. (2.3) at r = r(m), which is said to be

Fig. 3. Dividing radial domain into some finite sub-domains

the mean radius of m-th division, and using them instead of variable coefficients one obtains

d2u(m)

dr2
+N (m)1

du(m)

dr
+N (m)2 u(m) −N (m)3 = 0 (4.1)
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where

N
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)
T (r(m))

]

(4.2)

Now, Eq. (4.1) becomes a system of M -equations. So, it is easy to obtain the solution of Eq.
(4.1) as

u(m) = B(m)1 e
β1r +B(m)2 e

β2r +
N
(m)
3

N
(m)
2

(4.3)

where m represents the number of virtual sub-domains, and β1 and β2 denote roots of
β2 + N (m)1 β + N (m)2 = 0, and B(m)1 and B(m)2 denote uncharted constants for the m-th sub-
-domain. Indeed, the above solution is valid for

r(m) − s(m)

2
¬ r ¬ r(m) + s(m)

2
(4.4)

where r(m) and s(m) represent the mean radius and radial width ofm-th sub-domain, respectively.
The uncharted B(m)1 and B(m)2 can be derived by applying necessary conditions between each
two adjacent sub-domains. The continuity conditions at the interfaces may be expressed as

u(m)
∣∣
r=r(m)+S

(m)

2

= u(m+1)
∣∣
r=r(m+1)−S

(m+1)

2

σ(m)r

∣∣
r=r(m)+S

(m)

2

= σ(m+1)r

∣∣
r=r(m+1)−S

(m+1)

2

(4.5)

The continuity and boundary conditions yield a set of linear algebraic equations inB(m)1 andB
(m)
2

(m = 1, 2, . . . ,M). After getting B(m)1 and B
(m)
2 and using them in Eqs. (4.3), u

(m) are completely
determined. The accuracy of the results improves if the number of divisions is increasing.

5. Numerical results and discussion

Many examples for the analysis of inhomogeneous or FG rotating annular disks are illustrated
to discuss radial and hoop stresses, temperature and radial displacement. The following non-
-dimensional variables are fixed through numerical examples

{r, u} = 1
b
{r, u} T =

T

T0
(5.1)

while other non-dimensional forms of stresses will be given according to the case studied. Now,
we will discuss four examples to cover all the presented cases. In all cases studied, one can use
some values for the parameters as a = 0.2m, b = 1m, and ω = 100 s−1.
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5.1. Example 1

In this case, thickness, material properties, and temperature profiles are given according to
Eqs. (3.1), (3.3) and (3.10), respectively. For the thickness profile, the geometric parameters are
given by n = 0.415196 and k = 3. The mechanical boundary conditions are represented as

u
∣∣
r=a
= 0 σr

∣∣
r=b
= −p (5.2)

where p is the outer pressure. In this case, the dimensionless stresses are given by

σi =
σi
p

i = r, θ (5.3)

The elastic and thermal constants are assumed as: E0 = 390GNm−2, ρ0 = 3.9Mgm−3, ν = 0.25,
α0 = 7 · 10−6K−1, Ta = 373K, Tb = 273K.

Fig. 4. Temperature distribution in an inhomogeneous rotating annular disk

The distribution of temperature is given in Fig. 4. The temperature, as expected, decreases
as the radial direction increases. The radial stress σr, hoop stress σθ and radial displacement u
are plotted in Figs. 5a,b,c. Different values of the inhomogeneity parameter β are considered.
Figure 5a shows that σr for different values of β at r = 1 is equal to −1, which satisfies the second
part of conditions appeared in Eq. (5.2). The radial stress σr increases as β decreases while it is
decreasing along the radial direction. Figure 5b plots the hoop stress σθ across the radial direction

Fig. 5. (a) Radial stress, (b) hoop stress and (c) radial displacement distribution of the inhomogeneous
rotating annular disk for different values of β

of the inhomogeneous annular disk. It is directly increasing to obtain its absolute maximum at
the outer edge of the disk except for β = 1. The value of β = 4 yields the smallest hoop stress at
the inner edge and greatest one at the outer edge. However, the value of β = 1 yields the greatest
hoop stress at the inner surface and the smallest one at the outer surface. Figure 5c plots the
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radial displacement distribution along the radial direction of the inhomogeneous annular disk.
The radial displacement u for different values of β at r = 0.2 is equal to zero, which satisfies
the first part of the boundary conditions given in Eq. (5.2). The radial displacement u increases
along the radial direction. Its maximum occurs at the outer edge for β = 1 only. However, this
position of its maximum may be moved to be nearer to the inner surface as β increases.

5.2. Example 2

Here, thickness, material properties, and temperature profiles are given according to Eqs.
(3.2), (3.3) and (3.10), respectively. The geometric parameters are taken as n = 0.415196 and
k = 3. However, the mechanical conditions at boundaries are represented as

σr
∣∣
r=a
= −p σr

∣∣
r=b
= 0 (5.4)

The results for such an inhomogeneous disk are illustrated in Figs. 6a,b,c. The non-
-dimensional forms for radial and hoop stresses appeared in Eq. (5.3) are repeated here. Fi-
gure 6a shows that σr for different values of β at r = 0.2 is equal to −1 and at r = 1 is equal
to 0 according to conditions in Eq. (5.4). The differences between radial stresses σr increase at
r/b = 0.5 with the occurrence of the absolute maximum value of σr. Figure 6b shows that σθ is
directly increasing to get its absolute maximum at the outer surface of the inhomogeneous disk,
except for β = 1. The value of β = 4 yields the smallest hoop stress at the inner edge and the
greatest hoop stress at the outer edge. However, β = 1 yields the greatest hoop stress at the
outer edge and the smallest hoop stress at the outer surface of disk. Figure 6c shows that u is
decreasing to assume its absolute minimum at the outer edge for β > 1. However, it increases
to get its absolute maximum at outer edge of the inhomogeneous disk.

Fig. 6. (a) Radial stress, (b) hoop stress and (c) radial displacement distribution in the inhomogeneous
rotating annular disk for different values of β

5.3. Example 3

The inner surface of the FG rotating annular disk is traction free while the outer one is under
constant pressure. The mechanical boundary conditions are given in the form

σr
∣∣
r=a
= 0 σr

∣∣
r=b
= −p (5.5)

where p is the outer pressure. The dimensionless stresses are also given as in Eq. (5.3). The
thickness profile is given according to Eq. (3.2) with geometric parameters n = 2 and k = 0.5.
The material properties profile is given according to Eq. (3.4) with ν = 0.3 and Ea = 390GNm−2,
Eb = 200GNm−2, ρa = 3.9Mgm−3, ρb = 7.7Mgm−3, αa = 7 · 10−6K−1, αb = 11 · 10−6K−1.
The temperature profile is also given according to Eq. (3.10) with Ta = 373K and Tb = 273K.

The stresses and radial displacement are illustrated in Figs. 7a,b,c. From these figures, all stresses
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and displacement increase with the decrease of the gradient parameter β. Figure 7a plots the
radial stress distribution along the radial direction of the FG rotating disk. It is shown that σr
for various values of β at r = 0.2 is equal to 0 and at r = 1 is equal to −1 according to conditions
presented in Eq. (5.5). The differences between radial stresses σr increase near to the middle
plane (far from internal and external boundaries). Figure 7b plots hoop stress σθ along the
radial direction. It is directly decreasing from its absolute maximum at the inner edge to get its
absolute minimum at outer edge of the disk. Figure 7c shows that u is no longer decreasing and
has its absolute minimum near the inner surface of the disk. Then, the radial displacement u is
directly increasing to get its absolute maximum near the outer edge of the FG rotating annular
disk.

Fig. 7. (a) Radial stress, (b) hoop stress and (c) radial displacement distribution in the FG rotating
annular disk for different values of β

5.4. Example 4

In this case, we take the same assumption of Example 3 except for temperature. It is given ac-
cording to Eq. (3.8) with the help of Eq. (3.9). The uniform rate of internal energy generation Q,
the thermal conductivity κ and the reference initial temperature T0 are given, respectively, by
Q = 12Wm−3, κ = 0.35W(Km)−1, Ta = 273K.
The mechanical boundary conditions are given by

σr
∣∣
r=a
= −p1 σr

∣∣
r=b
= −p2 (5.6)

where p2 and p1 = 0.6p2 are outer and inner pressures, respectively. The dimensionless stresses
are given by

σi =
σi
p2

i = r, θ (5.7)

The dimensionless temperature distribution is plotted in Fig. 8. In addition, the radial and
hoop stresses and radial displacement are illustrated in Figs. 9a,b,c. Figure 9a shows the radial
stress distribution along the radial direction of the FG rotating disk. It is obvious that σr for
various values of β at r = 0.2 is equal to −0.6 and at r = 1 is equal to −1, according to the
conditions in Eq. (5.6). The radial stress σr has its absolute maximum value near the middle
plane (far from internal and external boundaries). Figure 9b plots hoop stress σθ along the radial
direction. It is directly decreasing from its absolute maximum at the inner edge to get its absolute
minimum at the outer edge of the disk. Figure 9c shows that u is no longer decreasing and has
its absolute minimum near the inner edge of the disk. Then, it is directly increasing to get its
absolute maximum near the outer surface. It is to be noted that all stresses and displacement
increase as the gradient parameter β decreases.
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Fig. 8. Temperature distribution in the FG rotating annular disk

Fig. 9. (a) Radial stress, (b) hoop stress and (c) radial displacement distribution in the FG rotating
annular disk for different values of β

6. Concluding remarks

• In this article, semi-analytical solutions for stress distributions in inhomogeneous and FG
variable-thickness rotating annular disks are investigated.
• The semi-analytical method is improved for the thermomechanical problem where stresses
are produced based on different mechanical loading conditions.
• A selection of proper values of the graded index β and suitable loads helps engineers to
design FG rotating disks that can meet some special requirements.
• The main conclusion is that the semi-analytical solution is an accurate and reliable, and
the method is simple and effective.
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In the design of flexural strength, the strength reduction factor φ decreases from tension-
-controlled sections to compression-controlled sections to increase safety with decreasing
ductility. This paper presents how to determine the reduction factor for flexural strength
of reinforced concrete beams according to ACI code. In the reliability-based design, the
reliable prediction of the flexural strength of reinforced concrete members is assured by the
use of reduction factors corresponding to different target reliability index β. In this study,
for different β and coefficients of variation of the flexural strength parameters, the flexural
strength reduction factor has been investigated by using experimental studies available in
the literature. In the reliability analysis part of the study, the first-order second moment
approach (FOSM) has been used to determine the reduction factor. It has also been assumed
that the random variables are statistically independent.

Keywords: reinforced concrete, beam, flexure strength, reduction factor, target reliability

1. Introduction

In the design of flexural strength, tension-controlled sections are desirable for their ductile be-
havior for giving sufficient warning prior to failure. Hence, reinforced concrete (RC) elements
are designed to behave in a ductile manner, whenever possible. This behavior can be ensured
by limiting the amount of reinforcement such that tension reinforcement yields prior to concrete
crushing. In ACI 318 codes (1995, 1999, 2002, 2005, 2008, 2011, 2014), a lower strength reduction
(φ) factor is used for compression-controlled sections compared to the one for tension-controlled
sections because the compression-controlled sections are less ductile. Naaman (2004) noted that
changes made from the ACI 318 (1999) to the ACI 318 (2002) codes relocated the limits for
tension and compression controlled sections and added a transition region between the two. The
flaw lies in this definition for these regional boundaries.
In the codes, it is intended to provide the target failure probability by means of safety fac-

tors that are load factors and strength reduction factors (Arslan et al., 2017). Safety factors
depend on the selected target reliability index β, which is established in terms of the accepta-
ble probability of failure varying with the considered loading condition, type of failure mode
and material (Arslan et al., 2016). According to Du and Au (2005), the reliability indexes ba-
sed on the requirements of the strength limit state for bridge girders are 3.9-4.4, 5.2-5.3 and
3.4-3.5 according to AASHTO (1998), the Chinese Code (1991) and the Hong Kong Code (2002),
respectively. Nowak et al. (2001) compared the reliability levels of prestressed concrete girders
designed using Spanish Code (1998), Eurocode ENV 1991-3 (1994), and AASHTO (1998), and
indicated that the reliability indexes varied considerably for the three codes. The reliability
indexes for bridge girders were 7.0-8.0, 5.1-6.8 and 4.5-4.9 according to Eurocode ENV 1991-3
(1994), the Spanish Code (1998) and AASHTO (1998), respectively. In this study, the change in
the strength reduction factor considered in predicting the flexural strength of tension-controlled
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sections according to ACI 318 (2014) is investigated and compared for different reliability indexes
and coefficients of variation of the flexural strength parameters.

2. Design of RC beams for flexure

According to ACI 318 (2014), the nominal flexural strength Mn of a beam section is computed
from internal forces at the ultimate strain profile when the extreme compressive fiber strain is
equal to 0.003. Sections in flexure exhibit different modes of failure depending on the strain level
in the extreme tension reinforcement. According to Section 21.2 of ACI 318 (2014), these modes
are defined as tension-controlled sections, compression-controlled sections and a transition region
between the tension- and compression-controlled sections. Tension-controlled sections have the
net tensile strain in the extreme tension steel either equal to or greater than 0.005. Compression-
-controlled sections have the net tensile strain in the extreme tension reinforcement either equal
to or less than the compression-controlled strain limit when the concrete in compression reaches
the strain limit of 0.003. The compression-controlled strain limit is the net tensile strain in the
reinforcement at balanced strain conditions. Compression-controlled sections have strains equal
to or less than the yield strain, which is equal to 0.002 for Grade 420 reinforcement. There exists
a transition region between the tension- and compression-controlled sections.
The nominal flexural strength of a rectangular section with tension reinforcement is computed

from the internal force couple for tension failure by the yielding of the reinforcement. The nominal
flexural strength of the beams Mn can be calculated as

Mn = Asfyd− 0.59
A2sf

2
y

bfc
(2.1)

in which As is the area of the flexural reinforcement, fy is the yield strength of the reinforcement,
fc is the compressive strength of concrete, d and b are the effective depth and beam width,
respectively.
The governing equation given by ACI 318 (2014) states that the reduced (design)

strength φMn must exceed the ultimate (factored) moment Mu, and the safety criteria for
flexural design of the RC beams can be defined as

φMn Mu (2.2)

in which φ is the strength reduction factor for flexure. According to ACI 318 (2014), the φ for
an element depends on parameters such as the ductility and the importance of the element in
terms of the reliability of the entire structure. For tension-controlled sections, a φ of 0.90 is used.
Compression-controlled sections are defined as having strain limit at the nominal strength at or
below the yield strain of the reinforcement. For compression-controlled sections, the φ is either
0.65 or 0.75 depending on the nature of the lateral confinement reinforcement. For sections with
reinforcement strains between the aforementioned two limits, the strength reduction factor φ
is determined by a linear interpolation between the value of φ for tension- and compression-
-controlled sections.

3. Reliability analysis

In reliability analysis, the main objective of engineering planning and design is to insure the
performance of an engineering system. Under conditions of uncertainty, the assurance of the per-
formance is possible with the use of safety factors. The reliability assessment requires knowledge
of the performance function to define the safety factors (Ang and Tang, 1984). The performance
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function, Z = g(X1,X2, . . . ,Xn), can be determined in terms of many random variables as load
components, resistance parameters, material properties. In this equation, Xi are basic random
variables influencing the limit state. The failure surface can be defined as Z = 0. The safety or
reliability is defined by Z > 0, and the failure state is Z < 0. In the reliability based design,
the problem is to determine the partial safety factors of the variables according to the target
reliability index β. In this study, the first-order second moment approach (FOSM) is used and
the design points γimXi corresponding to the target reliability index β are obtained. In the space
of reduced variates, β being a measure of reliability is defined as the shortest distance from the
failure surface to the origin.
The limit state function can be defined with Eq. (3.1) by multiplying the safety factor γi

with each of the basic design variables

g(γ1mX1, γ2mX2 , . . . , γimXi) = 0 i = 1, 2, . . . , n (3.1)

x∗i (= γimXi) is the most probable failure point on the failure surface, and the determination
of x∗i requires an iterative solution. In the space of reduced variates, the most probable failure
point is x

′∗
i = −α∗iβ. The sensitivity coefficient α∗i is defined by

α∗i =
∂g

∂X ′i

/√√√√
n∑

i=1

( ∂g
∂X ′i

)2
∗

(3.2)

The partial safety factors required for the given β are defined as γi(= x∗i /mXi). The original
variates are given by x∗i = mXi(1−α∗i βVXi), in which mXi and VXi are the mean value and the
variance coefficient of the original variable Xi with normal distribution, respectively. VXi is the
ratio of standard deviation σXi to the mean value mXi . The partial safety factors are calculated
as (Nowak and Collins, 2000)

γi = 1− α∗i βVXi (3.3)

In this study, the distributions of random variables in the performance function are given
in Table 1. In lognormal and extreme type I distributions, mXi and σXi are replaced by the
equivalent normal mean mN

Xi
and standard deviation σNXi . In addition, it is also assumed that

the random variables are statistically independent.

3.1. Establishment of performance function

According to ACI 318 (2014), the strength reduction factor for flexure ranges from 0.70
to 0.90 depending on the nature of the lateral confinement reinforcement and the strain level in
the extreme tension reinforcement. The reduction factors for RC beams have been investigated
by considering the reliability indexes β (5.2, 4.75, 4.27, 3.72, 3.5, 3.09 and 2.33) corresponding
to various failure probabilities pF (10−7, 10−6, 10−5, 10−4, 2.33 · 10−4, 10−3 and 10−2). The
performance function used in the calculations is given by

g(X) = γ1Mn − γ2Mu (3.4)

in which Mu is the ultimate (factored) moment at the RC beam section that can be taken as
the test result and Mn is the nominal flexural strength of the beam defined in ACI 318 (2014).
γ1 and γ2 are the strength reduction factors for the corresponding variables.
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3.2. Coefficients of variation of design parameters

The ultimate (factored) and nominal flexural strength of the beams obtained through expe-
riments and equation have been modeled as random variables to perform a probability-based
analysis. In modeling of those parameters as random variables, the values of coefficients of va-
riations have been determined based on the studies available in the literature and codes. They
are summarized in Table 1. In the literature review (Table 1), it has been observed that the
coefficient of variation of the concrete compressive strength Vfc varies between 0.10 and 0.21,
depending on the construction quality (Arslan et al., 2015). By taking advantage of studies in
the literature and codes, it is assumed that Vfc is 0.05, 0.10 and 0.15, respectively, in this study.

Table 1. Coefficients of variation of the variables

Cases
Coefficients of variation

fy fc As b d Mu

Case 1 0.05

0.04 0.03 0.03 0.04

Case 2 0.03 0.10
Case 3 0.15
Case 4 0.05
Case 5 0.05 0.10
Case 6 0.15
Case 7 0.05
Case 8 0.07 0.10
Case 9 0.15
Case 10 0.05
Case 11 0.10 0.10
Case 12 0.15
Distribution Log- Log-

Normal Normal Normal
Extreme

type -normal -normal type I

The coefficient of variation of the reinforcement yield strength Vfy has also been reported
by many researchers, and Vfy ranges from 0.05 to 0.15 (Arslan et al., 2016). Vfy was taken as
0.03 by Nowak et al. (2005), 0.05 by JCSS (2000), 0.06 by Soares et al. (2002), 0.07 by Akiyama
et al. (2012), 0.08 by Val et al. (1997), Hosseinnezhad et al. (2000) and Low and Hao (2001),
0.08-0.11 by Ostlund (1991), 0.12 by Enright and Frangopol (1998), 0.15 by Mirza (1996). In
the present study, model variations of fy are taken as 0.03, 0.05, 0.07 and 0.10, respectively.
The coefficients of variation of the effective depth Vd, width Vb and tensile reinforcement

area VAs of beams have also been reported by many researchers. Vd was taken as 0.02 by Lu
et al. (1994), 0.03 by Wieghaus and Atadero (2011), 0.04 by Nowak and Szerszen (2003) and
Szerszen et al. (2005). Vb was taken as 0.04 by Nowak and Szerszen (2003) and Szerszen et al.
(2005). It is assumed that the Vd, Vb and VAs are 0.03, 0.03 and 0.04, respectively, in this study.
To carry out the reliability analysis of RC beam specimens, a meaningful probability di-

stribution for the nominal flexural strength parameters and ultimate flexural strength is also
necessary. In the present study, randomness of the applied load is described using Extreme ty-
pe I distribution. In the studies by Hognestad (1951) and Mirza (1996), it was assumed that
the coefficient of variation of strength due to test procedure was 0.04, which is the value used
in this study.

3.3. Properties of beams

In the determination of the flexural strength reduction factors, 84 beams with flexural failure
collected from 3 different researches (Johnson and Cox, 1939; Ashour, 2000; Pam et al., 2001)
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have been evaluated. The number of beams produced from normal-strength concrete (NSC) and
high-strength concrete (HSC) with fc  55MPa are 52 and 32, respectively. The beams have a
broad range of design parameters: 22.0 ¬ fc ¬ 48.6MPa, 0.17 ¬ ρ ¬ 2.37%, 200 ¬ b ¬ 305mm
and 215 ¬ d ¬ 305mm for NSC beams and 57.1 ¬ fc ¬ 107.1MPa, 1.03 ¬ ρ ¬ 4.04%,
120 ¬ b ¬ 200mm and 208 ¬ d ¬ 260mm for HSC beams.

4. Investigating the strength reduction

The ACI 318 code imposes a φ factor of 0.65 when the strain in the tension reinforcement equals
0.002 for Grade 420 reinforcement. The φ increases linearly to the maximum value of 0.90 as
the tension strain increases from 0.002 to 0.005. A tension-controlled section is defined as a
cross section in which the tensile strain in the extreme tension reinforcement at the nominal
strength is greater than or equal to 0.005. Tension-controlled sections are desirable for their
ductile behavior, which allows redistribution of the stresses and sufficient warning against an
imminent failure. It is always a good practice to design RC elements to behave in a ductile
manner, whenever possible. For tension-controlled sections, a φ factor of 0.9 has been used.
In the design of RC beams, to apply a higher resistance factor φ of 0.9, the member should

exhibit desirable behavior. In this study, φ factors of the ACI 318 code are investigated for
tension-controlled beam sections. For different Vfc and Vfy , the value of φ corresponding to β
(2.33, 3.09, 3.50, 3.72, 4.27, 4.75 and 5.20) and different Vfc and Vfy are summarized for NSC,
HSC and all beams (NSC and HSC) in Table 2. For a given β and different Vfc and Vfy , the
value of φ for HSC beams is found to be smaller than the one for NSC beams, so it can be
inferred that φ for NSC beams is more safe than that for HSC beams.
Saatcioglu (2014) indicated that the ACI 318 (2005) adopted strength reduction factors that

were compatible with ASCE7-02 (2002) load combinations, except for the tension controlled
section for which the φ was increased from 0.80 to 0.90.
In this study, it is founded that 0.80 value of φ corresponds to the target values of β = 3.5,

Vfc = 0.05 and Vfy = 0.10 in all analyzed beams. In ACI 318 (2014), φ considered in predicting
flexural strength of beams is updated as 0.90, which corresponds to the target values of β = 3.5,
Vfy = 0.05 and Vfc = 0.05, in all analyzed beams. It is observed that this value is conservative
for β in the range from 2.33 to 5.20 for Vfy = 0.05 and Vfc ¬ 0.15 in NSC beams, and it can
also be noted that it is conservative for β in the range from 2.33 to 5.20 for Vfy = 0.03 and
Vfc ¬ 0.15 in HSC beams.
The values of φ obtained from the analyses which have been performed by considering diffe-

rent Vfc (0.05, 0.10 and 0.15), Vfy (0.03, 0.05, 0.07 and 0.10) and β (5.2, 4.75, 4.27, 3.72, 3.50,
3.09 and 2.33) values of the beam sections are shown in Fig. 1.

Fig. 1. Effect of variation in the β on φ; (a) NSC, (b) HSC
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Table 2. Average φ for different values of COV and β values

Beams
Coefficients of β
variation 2.33 3.09 3.50 3.72 4.27 4.75 5.20

NSC

Vfy = 0.03
Vfc = 0.05 0.934 0.929 0.927 0.926 0.925 0.925 0.924
Vfc = 0.10 0.932 0.927 0.926 0.925 0.924 0.923 0.923
Vfc = 0.15 0.930 0.925 0.923 0.922 0.921 0.921 0.920

Vfy = 0.05
Vfc = 0.05 0.911 0.903 0.901 0.900 0.899 0.898 0.897
Vfc = 0.10 0.910 0.902 0.900 0.899 0.898 0.897 0.896
Vfc = 0.15 0.908 0.900 0.898 0.897 0.895 0.894 0.894

Vfy = 0.07
Vfc = 0.05 0.880 0.869 0.866 0.865 0.862 0.861 0.860
Vfc = 0.10 0.880 0.868 0.865 0.864 0.862 0.860 0.859
Vfc = 0.15 0.878 0.867 0.863 0.862 0.860 0.859 0.858

Vfy = 0.10
Vfc = 0.05 0.828 0.808 0.803 0.801 0.797 0.795 0.794
Vfc = 0.10 0.827 0.807 0.802 0.800 0.797 0.795 0.793
Vfc = 0.15 0.826 0.806 0.801 0.799 0.796 0.794 0.792

HSC

Vfy = 0.03
Vfc = 0.05 0.921 0.913 0.911 0.910 0.909 0.908 0.907
Vfc = 0.10 0.920 0.912 0.910 0.909 0.907 0.906 0.906
Vfc = 0.15 0.917 0.909 0.907 0.906 0.904 0.903 0.902

Vfy = 0.05
Vfc = 0.05 0.896 0.885 0.881 0.880 0.878 0.877 0.876
Vfc = 0.10 0.895 0.883 0.880 0.879 0.877 0.875 0.874
Vfc = 0.15 0.893 0.881 0.878 0.877 0.874 0.873 0.872

Vfy = 0.07
Vfc = 0.05 0.864 0.847 0.842 0.840 0.837 0.835 0.834
Vfc = 0.10 0.863 0.846 0.841 0.839 0.836 0.834 0.833
Vfc = 0.15 0.862 0.844 0.839 0.837 0.834 0.832 0.831

Vfy = 0.10
Vfc = 0.05 0.812 0.782 0.773 0.770 0.764 0.762 0.760
Vfc = 0.10 0.811 0.781 0.772 0.769 0.764 0.761 0.759
Vfc = 0.15 0.810 0.780 0.771 0.768 0.763 0.760 0.758

NSC
+
HSC

Vfy = 0.03
Vfc = 0.05 0.929 0.923 0.921 0.920 0.919 0.918 0.918
Vfc = 0.10 0.928 0.921 0.920 0.919 0.918 0.917 0.916
Vfc = 0.15 0.925 0.919 0.917 0.916 0.915 0.914 0.913

Vfy = 0.05
Vfc = 0.05 0.905 0.896 0.894 0.893 0.891 0.890 0.889
Vfc = 0.10 0.904 0.895 0.892 0.891 0.890 0.889 0.888
Vfc = 0.15 0.902 0.893 0.890 0.889 0.887 0.886 0.885

Vfy = 0.07
Vfc = 0.05 0.874 0.860 0.857 0.855 0.853 0.851 0.850
Vfc = 0.10 0.873 0.860 0.856 0.854 0.852 0.850 0.849
Vfc = 0.15 0.872 0.858 0.854 0.853 0.850 0.849 0.848

Vfy = 0.10
Vfc = 0.05 0.822 0.798 0.791 0.789 0.785 0.782 0.781
Vfc = 0.10 0.821 0.797 0.791 0.788 0.784 0.782 0.780
Vfc = 0.15 0.820 0.796 0.790 0.787 0.783 0.781 0.779

It is seen that φ decreases with an increase in the value of Vfy . The rate of increasing in the
value of φ for low values of β is higher than that for high values of β. When β becomes higher,
the variation of φ versus β almost becomes a smooth curve for NSC and HSC beams. For given
Vfy and β, φ for HSC beams are found to be smaller than the one for NSC beams, so it can be
inferred that φ for NSC beams is more safe than that for HSC beams. For the same Vfy Vb, Vd,
VAs and β values, it can also be said that φ values for NSC, HSC and all beams (NSC and HSC)
are very close to each other for different Vfc .
For some experimental beams, the effects of variations of the tensile strain in the tension

reinforcement εs, the compressive strength of concrete fc, the ratio of tensile strain to yield
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strain in the tension reinforcementεs/εy, the ratio of percentage of tension reinforcement to
the percentage of balanced reinforcement ρ/ρb, the ratio of neutral axis depth to the effective
depth x/d, and effective depth of the beam d on the φ are plotted in Fig. 2 for β = 3.5, Vfy = 0.05,
Vfc = 0.05, Vb = 0.03, Vd = 0.03 and VAs = 0.04.

Fig. 2. Effect of variation in εs, fc, εs/εy, ρ/ρb, x/d and d on φ

The relationship of φ and εs at the nominal strength for the analyzed beams is shown in
Fig. 2a. According to ACI 318, if the reinforcement strain at the nominal strength is greater than
0.005, φ equals to 0.90 for the desirable behavior of beam sections. 20% of the tests (4 for NSC
and 12 for HSC of 84 tests) delivered relatively low εs values εs ¬ 0.005, where the corresponding
strength reduction factors are mostly less than 0.90 for β = 3.5, Vfy = 0.05 and Vfc = 0.05. It
is observed that the φ factor increases with εs for NSC and HSC beams. Based on the results
of analyses, ACI 318 provisions are non-conservative for εs ¬ 0.02. The φ factor for the existing
test data yields a large scatter in the results, especially for beams with εs ¬ 0.02.
Figure 2b shows the φ-fc for the analyzed beams. Based on the studies of the stress-strain

behavior of NSC and HSC, it is shown that concrete becomes increasingly more brittle as its
compressive strength is increased. Despite HSC being a more brittle material compared with
NSC, the x/d values of HSC sections are smaller than tkose of the NSC sections for a given ρ.
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Hence, HSC flexural members exhibit greater ductility owing to lower neutral axis depths (Arslan
and Cihanlı, 2010). Based on the results of analyses, ACI 318 provisions are non-conservative for
HSC flexural beams. The φ factor for the existing test data yields a large scatter in the results,
especially for HSC beams with fc > 75MPa.
The φ-εs/εy for the analyzed beams are shown in Fig. 2c. According to ACI 318, if εs is at

least 2.5 times the yield strain (εy ∼= 0.002 = fy/Es), then the maximum value of φ = 0.90 can
be used. 32% of the tests (10 for NSC and 17 for HSC of 84 tests) delivered relatively low εs/εy
values (εs/εy ¬ 5), where the corresponding strength reduction factors are mostly less than 0.90
for β = 3.5, Vfy = 0.05 and Vfc = 0.05. It is observed that the φ factor increases with εs/εy for
the beams. The φ factor for the existing test data yields a large scatter in the results, especially
for HSC beams with εs/εy ¬ 5.
The effect of ρ/ρb on φ is illustrated in Fig. 2d. The ACI 318 (1999) and previous codes

limit the tension reinforcement ratio ρ to no more than 75% of the ratio (0.75ρb) that would
produce balanced strain conditions. The ACI 318 (2002) limits the net tensile strain εt of the
extreme tension steel at the nominal strength to be not less than 0.004. Meanwhile, when the net
tensile strain in the extreme tension steel is sufficiently large (equal to or greater than 0.005), the
section is defined as tension-controlled where ample warning of failure with excessive deflection
and cracking may be expected. The effect of this limitation is to restrict ρ in RC beams to about
the same ratio as in editions of the code prior to 2002. 69% of the tests (26 for NSC and 32 for
HSC of 84 tests) delivered relatively high ρ/ρb values (ρ/ρb  0.25), where the corresponding
strength reduction factors are mostly less than 0.90 for β = 3.5, Vfy = 0.05 and Vfc = 0.05. The
results of the φ factor of beams with ρ/ρb < 0.25 are limited for all the beams (6 for NSC of
84 tests).
Figure 2e shows the φ-x/d for the analyzed beams. The design codes BS8110, EC 2 and

GBJ 11 limit the neutral axis depth x to no more than a certain fraction of the effective depth d.
It can be noted that in the design of beams, using the simplified stress block BS 8110 (1997)
limits x to 0.5d for all concrete with fcu ¬ 100MPa to ensure that the section is under-reinforced
and the strain in the longitudinal reinforcement is not less than 0.0035. EC 2-1 (1992) limits
the x to no more than 0.45d when fcu < 50MPa or 0.35d when fcu  50MPa. GBJ 11 (1989)
requires x to be smaller than 0.35d for all concrete grades. The values of φ decrease significantly
as x/d increases from 0.2 to 0.5. The corresponding φ of HSC beams are smaller than 0.90 for
β = 3.5, Vfy = 0.05, Vfc = 0.05, Vb = 0.03, Vd = 0.03 and VAs = 0.04. Based on the results
of analyses, the φ factor for x/d > 0.30 is non-conservative for 22 flexural beams (5 for NSC
and 17 for HSC of 84 tests). The φ factor for the existing test data yields a large scatter in the
results, especially for x/d  0.20.
The φ-d for the analyzed beams are shown in Fig. 2f. 6% of the NSC beam tests (3 of 52

tests) have been conducted for d < 250mm and only 9% of the HSC beam tests (3 of 32 tests)
have been conducted for d  250mm. The φ factor for the existing test data yields a large
scatter in the results, especially for HSC beams with d < 250mm.

5. Conclusion

The change in the strength reduction factor for flexure according to the ACI 318 is investigated
for different coefficients of variation and β values. The following conclusions can be drawn from
the results of this study.

• It is found that φ of 0.90, which is a value recommended by the ACI 318 (2002) and
ACI 318 (2011), corresponds to the target values of β = 3.5, Vfy = 0.03 and Vfc = 0.05 in
all analyzed beams. It is observed that this value is conservative for β in the range from
2.33 to 5.20 for Vfy = 0.05 and Vfc ¬ 0.15 in NSC beams, and it can also be noted that it
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is conservative for β in the range from 2.33 to 5.20 for Vfy = 0.03 and Vfc ¬ 0.15 in HSC
beams.
• For the given β = 3.5, Vfy = 0.05, Vfc = 0.05, Vb = 0.03, Vd = 0.03 and VAs = 0.04,
φ for the HSC beams are found to be smaller than those for the NSC beams, so it can be
inferred that φ for the HSC beams is more non-conservative than that for the NSC beams.
• According to ACI 318, if εs is at least 2.5 times the yield strain (εy ∼= 0.002 = fy/Es),
then the maximum value of φ = 0.90 can be used. 32% of the tests (10 for NSC and 17 for
HSC of 84 tests) delivered relatively low εs/εy values (εs/εy ¬ 5), where the corresponding
strength reduction factors are mostly less than 0.90 for β = 3.5, Vfy = 0.05 and Vfc = 0.05.
It is observed that the φ factor increases with εs/εy for beams. The φ factor for the existing
test data yields a large scatter in the results, especially for HSC beams with εs/εy ¬ 5.
• The values of φ decrease significantly as x/d increases from 0.2 to 0.5. The corresponding φ
of HSC beams are smaller than 0.90 for β = 3.5, Vfy = 0.05, Vfc = 0.05, Vb = 0.03,
Vd = 0.03 and VAs = 0.04. Based on the results of analyses, the φ factor for x/d > 0.30 is
non-conservative for 22 flexural beams (5 for NSC and 17 for HSC of 84 tests). The φ factor
for the existing test data yields a large scatter in the results, especially for x/d  0.20.

In order to make a more reliable evaluation, the determination of the reduction factor for fle-
xural strength of RC beams for a greater number of beams with different material and geometric
properties should be realized.
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This paper presents results of monotonic tensile and creep tests conducted on typical
Al-Cu-Mg alloy (commercial 2024) specimens. Tensile tests carried out at room (20◦C)
and elevated (100◦C, 200◦C, 300◦C) temperatures made it possible to determine strength
properties of the material (Young’s modulus, yield stress, ultimate tensile strength). Creep
tests were performed at elevated temperature (100◦C, 200◦C and 300◦C) with a constant
force. In order to obtain material creep characteristics, creep-rupture tests were carried out.
Then creep tests were conducted with two different strain values: one corresponding to the
beginning of the secondary creep and the other corresponding to a certain value of the
tertiary creep. After preliminary creep deformation at two various strain levels, specimens
were cooled at ambient temperature and then subjected to monotonic tensile tests. The
characteristics of the material were obtained for pre-strained specimens at different tempe-
ratures. Specimens fracture surfaces obtained as a result of tensile (at elevated and room
temperature), creep and combined tests were analyzed.

Keywords: creep and tensile tests, metals and alloys, scanning electron microscopy, numerical
calculations, mechanical properties

1. Introduction

EN-AW 2024 aluminum alloy finds widespread applications in mechanical engineering and, par-
ticularly, in aviation. It is commonly used in the aerospace industry, e.g. as a structural element
of a wing or fuselage. At high cruising speeds, temperature of these components can rise to
120◦C (Chakherlou et al., 2010). For riveted joints and earlier cold expansion, elevated tem-
peratures may cause creep and stress relaxation. Aluminum alloys are widely used as housings
for coreless low-speed wind turbine generators. The operating temperature of generators, when
the maximum power is reached, may exceed 250◦C (Karakaş and Szusta, 2016). As a result of
speed of rotation, centrifugal forces may cause creep. After cooling to ambient temperature, the
material is already different from the original.
Numerous studies concerning mechanical properties of 2024 aluminum alloy, particularly

strength and durability, are conducted. Considering the criterion of the type of load acting on
structural elements, studies can be divided into several groups related to loadings: monotonic,
including elements with notches (e.g. Derpenski and Seweryn, 2011; Haigen et al. 2017), fatigue
(e.g. Kowalewski et al., 2014; Szusta and Seweryn, 2017), dynamic (e.g. Kumar et al., 2011;
Wang et al., 2013), creep (and relaxation) (e.g. Lumley et al., 2002; Lin et al. 2013a).
Studies of Zhao et al. (2013) and Naimi et al. (2013) presented results of investigations of

the effect of high, cold plastic deformation succeeded by aging at elevated temperature on the
strength parameters of alloy 2024. The effect of creep time, temperature and preliminary loadings
on hardness and yield point was the subject of many other studies (Ro et al., 2006; Li et al.,
2010; Guo et al., 2013). Results of such tests, conducted on alloy 7B04-T7451, were presented
by Li et al. (2010). There, a significant change of the yield point was obtained, depending
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on aging conditions. Increasing preliminary load and aging time (with constant temperature
150◦C) caused the yield point (σy) to increase at an aging time up to 5 hours. After that time
was exceeded, the value of σy was reduced, and that reduction was higher when higher loadings
were applied during aging. Guo et al. (2013) compared hardness of alloy 7075 subjected to prior
purely thermal loadings with the hardness of alloy subjected to thermo-mechanical loadings.
Lower hardnesses were obtained for thermal aging at temperatures lower than 140◦C. Above that
temperature, specimens previously subjected to thermo-mechanical loadings exhibited greater
hardness. The paper by Ro et al. (2006) presented test results relating to the effect of aging at
the same temperature but for different times on the plastic properties and hardness of alloy 2024.
They showed a decrease of the yield point for short aging times, an increase for medium times,
and a decrease once again for long times. The effect of pre-deformation at various temperatures
on the value of the yield point, ultimate tensile strength and elongation of the same alloy was
presented by Lin et al. (2014). A decrease of the yield point and ultimate tensile strength was
observed for pre-deformation of 185-225MPa at a temperature of 200◦C while for lower stress
values, that difference was greater. In turn, preliminary loading at 150◦C and 170◦C improved the
value of both the yield point and ultimate tensile strength. The effect was reversed for elongation:
pre-deformation at 200◦C increased elongation, and at lower temperatures – reduced elongation.
Wang et al. (2016) described results of investigations on the effect of preliminary compressive
strains (3% and 5%) during aging of alloy 2219 at a temperature of 175◦C on its mechanical
properties. A significant increase of both the yield point and tensile strength was obtained
relative to the material subjected only to thermal aging. Chen et al. (2012) presented test
results for alloy 7050 concerning thermal (160◦C) and thermo-mechanical loadings for different
aging times. Different values of strength parameters were obtained depending on the share
of mechanical loads (age-formed) or lack thereof (stress-free aging) in the preliminary ageing
process. The yield point decreased as a result of the action of external loadings during the
ageing process, while tensile strength generally increased. The longest aging time (24 h) was
the exception, leading to a reduction of tensile strength. The material elongation decreased
significantly when preliminary loadings occurred. Papers by Yang et al. (2016, 2017) concerned
tests of alloy 2219. The influence of creep pre-deformation at a constant temperature (165◦C) at
different load levels and for different aging times on the material yield point value was analyzed
in those papers. Compared to the material without pre-deformation, i.e. subjected only to the
action of temperature, the yield point of the material with pre-deformation increased nearly
two-fold for short aging times. That difference decreased as aging time increased. The highest
differences were obtained for the lowest preliminary tensile loads, i.e. 120MPa. A model was
also proposed allowing for determination of the yield point of the material previously subjected
to thermo-mechanical loadings, among other things. A proposal of a model accounting for the
effects of pre-deformation at elevated temperatures was also presented by Zhang et al. (2013).
It was verified successfully on alloy 2124. Similar models have been verified experimentally for
several 7XXX series alloys (Ho et al., 2004; Zhan et al., 2011; Singh et al., 2016).

The fundamental goal of the tests presented in this paper is to investigate the effect of
creep pre-deformation of specimens made of EN AW-2024 (T3511) aluminum alloy on strength
properties at room temperature. The results of monotonic tensile tests conducted on specimens at
room temperature and at elevated temperature (100◦C, 200◦C, 300◦C) are presented here. These
results made it possible to determine basic material characteristics of the studied alloy. The next
part concerns tests of preliminary material creep at elevated temperature (100◦C, 200◦C, 300◦C)
and at various strain levels. The stage after that consists of monotonic tensile tests conducted
on specimens subjected to preliminary creep at room temperature, enabling determination of
strength parameters of the material with pre-deformation. Most of papers in this field focus
on the effect of initial creep carried out at temperatures of 150-200◦C on properties of the
analyzed alloy (Ro et al., 2006; Lin et al., 2013b, 2014). The research presented in this paper
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concerns pre-deformation realized at both 200◦C temperature and 100◦C and above all – at 300◦C
temperature. It should also be noted that in the case of low creep temperature (100◦C), high load
values are used. Thus, here the dominant effect deciding on the later properties of the material
is not the temperature effect but the mechanical one. The most important results concern pre-
deformation at 300◦C. Initial creep carried out at this level and its effect on monotonic properties
of alloy 2024 still remains not fully investigated.

2. Test stand and specimens

EN AW-2024 aluminum alloy in form T3511 was used in the tests. Bars with length of 3m and
diameter of 16mm were prefabricated for making axisymmetric specimens. According to atte-
station, the material was hardened AlCu4Mg, and the rod was manufactured by extrusion. The
material chemical composition was: Si (0.13%), Fe (0.25%), Cu (4.4%), Mn (0.62%), Mg (1.7%),
Cr (0.01%), Zn (0.08%), Ti (0.05%).
Specimens applied in monotonic tensile and creep tests were characterized by identical shape

and dimensions. Gauge length and diameter dimensions were 13mm and 6.5mm, respectively.
The gripped part of specimens was threaded, as dictated by the design of the creep testing
machine (threaded pull rods).
Monotonic tensile tests and creep tests were conducted on a 4-column Kappa 100 SS creep

testing machine from the Zwick/Roell with an electro-mechanical drive. An electric Maytec fur-
nace with three heating zones, with a temperature range up to 900◦C, controlled by universal
Zwick/Roell controller was used for tests at elevated temperature. A device specially designed
and made for measuring deformations was used (Tomczyk and Koniuszewski, 2017). This device
allowed for measurement of specimen deformations at elevated temperature by means of any
gauge (e.g. extensometer) serving for measurement of strains at room temperature. Axial exten-
someter (Epsilon 3542050M-50-ST) with a variable measuring base of 25/50mm and a range of
+25mm and −5mm was used in cooperation with the grip described above.

3. Results of tests

3.1. Monotonic tensile and creep-rupture tests for the material with no pre-deformation

In order to determine basic strength parameters of the material at elevated temperature
(100◦C, 200◦C, 300◦C) and room temperature (20◦C), monotonic tensile tests were conducted
on a series of three specimens at each temperature according to EN ISO 6892-1 (2016) and EN
ISO 6892-2 (2011). Results in the form of averaged nominal (engineering) tensile curves and true
curves σ1 = σ1(ε1) and σeq = σeq(εeq) are given in Fig. 1.
It should be added that true stress-strain curves were obtained on the basis of numerical

calculations using the finite element method, since the average experimental relation between
load and displacement of the gauge length was known. The MSC.Marc software package was
used for simulations, while the procedure of curve determination was similar to the procedure
described by Derpenski and Seweryn (2011). The elastic-plastic material model with isotropic
hardening and the Huber-von Mises yield criterion was applied in that procedure. This made
it possible to obtain principal stress and strain (σ1, ε1) as well as equivalent stress and strain
(σeq, εeq) according to the Huber-von Mises hypothesis.
Average values of basic parameters, such as Young’s modulus E, yield point σy, ultimate

tensile strength σu, strain εu (corresponding to σu), strain at break εB are presented in Table 1.
It should be noted that values σc and εc correspond to the maximum values of principal true
stress σ1 and strain ε1 were obtained based on the true stress-strain curves.
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Fig. 1. Nominal (continuous line), actual σ1 = σ1(ε1) (dashed line) and σeq = σeq(εeq) (dotted line)
monotonic tensile curves obtained at different temperatures for specimens without creep

pre-deformation

Table 1. Values of strength parameters at various temperatures (based on nominal tensile
curves) as well as the critical stress and strain value σc, εc (based on the true curve σ1 = σ1(ε1))

T [◦C] E [GPa] σy [MPa] σu [MPa] σc [MPa] εu [%] εB [%] εc [%]

20 74 447 580 686 12.1 13.3 13.8
100 71 418 536 647 10.3 12.7 14.5
200 70 372 460 657 9.1 19.8 38.7
300 56 214 219 283 2.1 17.0 52.9

Fracture surfaces of specimens subjected to tension at temperatures of 20◦C and 100◦C are
essentially similar in nature (Fig. 2). Nevertheless, it is clearly visible that the fracture plane
angle of orientation relative to the specimen axis is close to 45◦, which suggests that shear
stress has the main influence on the failure process. The fracture surface is smooth (with low
roughness), however, at the highest magnification, remnants left behind by growing micro-voids
and sheared bridges between them are visible. Damage initiation took place as a result of the
maximum principal stress σ1 occurrence exactly on the specimen axis.
Further, sudden development of damage based on final shearing of the bridges between

voids was dictated by the action of the maximum shear stress. Numerous, unevenly distributed
precipitates can be observed in dimples, and they are significantly responsible for the material
hardening. The damage initiation process usually begins at the boundary between the matrix
and the coarse precipitate (e.g. Li et al., 2013).
Specimen fractures obtained in monotonic tensile tests at temperatures of 200◦C and 300◦C

are completely different in nature (Fig. 3a). Here, two fracture planes are clearly visible. In the
central part, the plane is perpendicular to the specimen axis and has a fibrous character with
clearly visible dimples, which are remnants after voids that grew in the loading direction and
were ruptured. This fracture plane is distinguished by high roughness. In the case of the fracture
surface obtained at 200◦C, this roughness is clearly lower than on the surface of the fracture
obtained at 300◦C. The second plane of failure is oriented at an angle of 45◦-50◦ relative to
the specimen axis, and its surface is visibly smoother than the previous surface. It links the
central plane, corresponding to ductile fracture, with the free exterior surface of the specimen.
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Fig. 2. Specimen fracture obtained in the monotonic tensile test at temperature 20◦C

Fig. 3. Specimen fracture surfaces obtained in: (a) monotonic tensile test at a temperature of 300◦C,
(b) creep-rupture test at T = 300◦C and with constant load F = 3.06 kN
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It occupies a much smaller area of the fracture surface than in the case of tension at 300◦C.
The fracture mechanism here was fundamentally different than in the case of temperatures of
20◦C and 100◦C. As a result of necking, the stress state changed from uniaxial to tri-axial with
the maximum principal stress σ1 clearly dominant on the specimen axis. That stress caused
crack initiation on the plane perpendicular to the axis in the central part of the specimen cross
section. Smaller voids were gradually joined and clearly deformed in the direction of σ1. Void
deformations indicate that higher temperature produced greater deformation.
At the time at which the stress reached the critical value, successive bridges between the

voids were ruptured. After this process, the material was suddenly sheared along planes of
the maximum shear stress, ultimately causing formation of a fracture. The presence of fine
precipitates can be observed at the bottom of pores.
The results obtained over the course of monotonic tensile tests made it possible to estimate

loadings in creep tests at different elevated temperatures. At the temperature of 100◦C a constant
loading F = 17.55 kN was applied. At 200◦C and 300◦C, loadings F = 9.26 kN and F = 3.06 kN
were applied respectively. The creep tests were conducted according to EN ISO 204 (2009). The
tests were conducted for a series of four specimens at each temperature after which the results
of these tests in the form of creep-rupture curves were averaged relative to time.
The fracture surface corresponding to creep-rupture tests at 200◦C and 300◦C (Fig. 3b)

has a bi-planar nature, similarly as in the case of monotonic tension. However, the part of the
surface perpendicular to the specimen axis, mainly related to normal plastic strain, occupies
a much larger area in comparison to the shear plane. The fracture mechanism was similar to
that observed in Fig. 3a, i.e. material rupturing first took place in the central area of the cross
section followed by sudden shearing. The progression of the pore deformation process under the
action of constant loading was much slower in comparison to monotonic tension at the same
temperature. The much more deformed remnants (dimples) in the direction of the axis left
behind after ruptured or sheared bridges between the pores, particularly visible in Fig. 3b, are
indicative of this. The nature of fracture in Fig. 3b exhibit similarity to the post-creep fractures
obtained by Li et al. (2013) for 2124 alloy. However, it must be noted that, in the cited paper,
the creep tests were conducted at a temperature of 260◦C and tensile stress of 120, 130 and
140MPa. The fractures presented in this paper were obtained for 275MPa and 200◦C as well as
90MPa and 300◦C (Fig. 3b). The growth of voids due to the increase of loading during creep at
constant temperature was demonstrated here. However, a similar effect can be achieved by e.g.
increasing temperature in the creep process.

3.2. Monotonic tensile test for the material with pre-deformation

The level of strain for creep pre-deformation was determined on the basis of averaged creep-
-rupture curves. It was decided to adopt two different strain levels corresponding to the begin-
ning of the secondary creep εs and a certain tertiary creep εt. This means that the process of
preliminary creep in one series of specimens, at a given temperature and under a given loading,
lasted until the strain εs was reached, and in the second series – until strain εt was reached.
Unloading of the measuring base of specimens, after the set strain levels were reached, took
place at a rate of 2mm/min. The specimens were cooled at room temperature. εs and εt stra-
in values could differ depending on temperature at which tests were conducted. In the case of
creep at 100◦C, εs = 10% and εt = 15% strain levels were applied. At 200◦C and 300◦C, levels
εs = 0.6%, εt = 2.3% and εs = 0.4%, εt = 2.3% were applied respectively. Ultimately, two
series of specimens pre-deformed in the creep process at a set temperature were obtained, and
each series consisted of 3 specimens. They were subjected to monotonic tensile tests at room
temperature in order to determine basic strength parameters. The values of basic strength pa-
rameters obtained on the basis of the nominal curves and the critical stress and strain values σc
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and εc corresponding to the maximum σ1 and ε1 are given in Table 2. Figure 4 presents nominal
(engineering) monotonic stress-strain curves obtained at room temperature for the specimens
previously subjected to pre-deformation at different temperatures and for two different strain
levels, as well as the true σ1 = σ1(ε1) and σeq = σeq(εeq) curves corresponding to them.

Table 2. Strength parameters obtained for each specimen subjected to preliminary creep and
average values for both strain levels (based on the nominal tensile curves) as well as the critical
stress and strain values σc, εc (based on the true curve σ1 = σ1(ε1))

T [◦C] εs [%] εt [%] E [GPa] σy [MPa] σu [MPa] σc [MPa] εu [%] εB [%] εc [%]

100
10 – 71.6 598 610 680 4.6 5.3 7.1
– 15 72.1 635 640 673 2.7 2.7 3.5

200
0.6 – 74.1 475 550 716 7.9 13.9 20.8
– 2.3 74.1 443 490 642 4.9 13.1 25.3

300
0.4 – 71.2 255 363 518 7.1 17.9 36.5
– 2.3 72.6 186 316 380 8.7 13.1 15.2

Let us note that creep at 200◦C and 300◦C took place under lower loading than that cor-
responding to the yield point, and at 100◦C – under a higher loading. Therefore, in the latter
case, the hardening process related to crossing of the yield point and unloading of the specimen
mostly dictated the material properties after the creep pre-deformation process. Thus, the signi-
ficant increase of the offset yield stress compared to the original material can be observed, with
a simultaneous decrease of total elongation (Fig. 4a). We can observe an interesting situation in
the case of pre-deformation εs = 0.6% at a temperature of 200◦C. The creep process, up to the
aforementioned, with a relatively low strain value, caused hardening of the material in compari-
son to the original material, despite the high temperature. The offset yield point increased with
simultaneous reduction of the ultimate tensile strength.

Fig. 4. Nominal (continuous line), actual σ1 = σ1(ε1) (dashed line) and σeq = σeq(εeq) (dotted line)
monotonic tensile curves obtained for specimens subjected to creep pre-deformation at different
temperatures and strain levels against the background of the tensile curve for specimens without

pre-deformation at room temperature: (a) 100◦C, (b) 200◦C, (c) 300◦C

The results of numerical simulations in the form of principal and equivalent stress and strain
distributions in the specimen transverse plane of symmetry are presented in Fig. 5. They corre-
spond to the situation at the instant at which the specimen ruptured and at which the critical
stress and strain values were reached. Due to symmetry, distributions are presented for half
of the tested specimen, i.e. for radius r changing from the axis to the exterior surface of the
measuring base. In all cases, failure was determined by the principal stress and strain σ1 and ε1,
the value of which always exceeds the equivalent stress and strain in the central area of the cross
section, which indicates the presence of a tri-axial stress and strain state. The principal stress
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reaches its maximum values exactly on the specimen axis, while the equivalent stress reaches
its minimum on the axis. It should be noted that the equivalent values reach their maximum
earlier – before σ1 and ε1 reach the critical values.

Fig. 5. Distributions of the equivalent stress and strain (dashed line) and the maximum principal stress
and strain (continuous line) along the specimen transverse plane of symmetry obtained on the basis of
numerical simulations of tensile tests of the material at room temperature with pre-deformation at

temperatures: (a) 100◦C, (b) 200◦C, (c) 300◦C

In the case of the fracture surface obtained in the creep-rupture test at 100◦C, its clear
similarity to fracture obtained in the monotonic tensile test at the same temperature can be
observed. However, it must be noted that the above mentioned fracture surfaces are characterized
by much greater roughness, which is mainly caused by the long-acting load exceeding the material
yield point at the set temperature. The maximum shear stress ultimately caused fracture, as
indicated by the orientation of the fracture plane. However, the damage was first initiated on
the specimen axis as a result of the action of the principal stress. Numerous precipitates found
in the remnants left behind after ruptured bridges between the pores in the central part of the
cross section are indicative of this. They are not hidden as a result of closure of these remnants
by sheared material.

Figures 6 and 7 present examples of fracture surfaces obtained in monotonic tensile tests of
specimens (at room temperature) subjected to creep pre-deformation at different temperatures
and under different levels of strain. The essential differences between fractures corresponding
to tension with creep pre-deformation at 100◦C (Fig. 6) and fractures of specimens without
pre-deformation (Fig. 2) pertain to specimens with pre-deformation εt = 15%, which is linked
to significant hardening of the material. Here, the fracture surface is made up of two planes,
where both are inclined at an identical angle to the specimen vertical axis of symmetry. The
temperature at which the pre-deformation took place was too low to enable significant plastic
deformation. This is indicated by the remnants left behind by ruptured bridges between the
pores in the form of rather small dimples (Fig. 6). The area occupied by these dimples is very
small, and in the case of pre-deformation at a level of εs = 10% – almost not visible.
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Fig. 6. Example of a fracture surface of the specimen with creep pre-deformation (T=100◦C,
F = 17.55kN, εt = 15%) subjected to monotonic tension at room temperature

This may indicate that, in the case of high pre-deformations (εt = 15%), the fracture process
in the monotonic tensile test was initiated in the central part, after which sudden shearing of
the material occurred immediately.
There are no significant differences between the fracture surfaces for the material with pre-

-deformation εs = 0.4% and εt = 2.3% at 300◦C. There exist two planes: the first plane of crack
initiation perpendicular to the axis of the specimen and the second plane of shearing (Fig. 7b).
The share of the first plane in the fracture surface is much lower here than in the case of tension
at 300◦C (Fig. 3a). For both levels of strain, the voids were joined and clearly deformed in the
direction of creep axial loading in the central part of the cross section. After unloading, the voids
that were not ruptured took on a spherical shape once again and were ruptured during tension
at room temperature, and so, without such strong strains.
The fracture process in the central part of the cross section preceded ultimate shearing of

the specimen material. Pre-deformation εs = 0.4% caused a significant decrease in the yield
stress and the critical stress, but a strong increase in strain at the moment of the specimen
rupture (Fig. 4c). Pre-deformation εt = 2.3% at the same temperature resulted in an even
stronger decrease in the yield stress and the critical stress. However, it induced significantly a
less increase in strain at the moment of the specimen rupture – the material was thus significantly
damaged.
For specimens with pre-deformation at 200◦C, the level of pre-deformation decides about

the character of fracture. Let us note that, for pre-deformation εs = 0.6%, material hardening
occurred first (compared to material without pre-deformation) and softening occurred later
(Fig. 4b). No significant material deformation occurred during pre-deformation εs = 0.6% –
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Fig. 7. Example of a fracture surface of the specimen with creep pre-deformation at: (a) T = 200◦C,
F = 9.26kN, εs = 0.6%, (b) T = 300◦C, F = 3.06kN, εt = 2.3% subjected to monotonic tension at

room temperature

there were not many large voids, and their visibly sheared remnants had a spherical character
(rather than longitudinal). Sparse precipitates could be observed. The absence of a large number
of deep voids after pre-deformation caused the yield point to increase during the monotonic
tension process. However, the later growth of these voids caused the material to be incapable of
carrying shear stress, resulting in their easy and sudden shearing, which might caused reduction
of the ultimate tensile strength. The fracture character was similar here to the fracture obtained
in the tensile test of the material with no pre-deformation (Fig. 2).

It is worth emphasizing that the time for which the material is held at elevated temperature is
very significant, and this time has also a significant impact on the values of strength parameters
(see e.g. Ro et al., 2006; Li et al., 2010; Guo et al., 2013). In the case of pre-deformation
at 200◦C, the time was differed significantly for εs = 0.6% (approx. 30min) and εt = 2.3%
(approx. 300min). For higher pre-deformation (εt = 2.3%) the fracture mechanism was very
similar to the mechanism in specimens pre-deformed at 300◦C.

It should be pointed out that fractures obtained for specimens with lower pre-deformation εs
at 100◦C and 200◦C are characterized by the presence of a large number of small dimples –
remnants left behind after small pores. In the case of greater pre-deformation εt at the same
temperatures, smaller dimples occupy a significantly lesser area. A similar effect was observed in
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the study by Lin et al. (2013b) when temperature was increased at the same stress or when the
stress was increased at the same temperature over the course of pre-deformation of alloy 2024.
A similar effect of the pore growth due to rise of stress in creep-rupture tests of alloy 2124
at a temperature of 260◦C was also obtained by Li et al. (2013). The character of fracture
in the case of specimens with pre-deformation at a temperature of 300◦C does not exhibit
significant differences in terms of the value of this pre-deformation. The plane of crack initiation
perpendicular to the specimen axis and shear plane is clearly visible here. The share of the
shear plane in the entire area of the fracture is significantly less than, e.g. in the case of tension
at 300◦C (Fig. 3a).

4. Summary

This paper presents results of monotonic tensile tests conducted at room temperature and ele-
vated temperature as well as of creep tests conducted at elevated temperature on aluminum
alloy EN-AW 2024. It also contains a comparison between monotonic tensile curves obtained
for specimens without pre-deformation and with pre-deformation. Specimen fracture surfaces
obtained in monotonic tensile and creep tests were also compared, and fundamental differences
between them were indicated.
A clear decrease in basic strength parameters, such as Young’s modulus, yield point and

ultimate tensile strength, was observed with a temperature increase. While this reduction is slight
at 100◦C, the parameters drop significantly at 300◦C. The offset yield point and ultimate tensile
strength are reduced two-fold compared to the values corresponding to the room temperature.
Specimen fracture surfaces obtained in tensile tests at elevated temperature clearly demonstrate
that the material plastic properties increase with temperature growth.

Fig. 8. Schematic representation of damage evolution and failure of the material

Fractographic analysis of the fracture surfaces proves that the following stages can be distin-
guished in the failure process (Fig. 8):
1. Damage initiation exactly on the specimen axis as a result of the action of maximum
principal plastic stress or strain (or both simultaneously) during monotonic tensile or
creep tests. This initiation occurs on the boundary between the matrix and precipitate,
particularly when the latter has a coarse character. The precipitates visible in fracture
surfaces prove this.
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2. Growth and deformation of pores (damage).
3. Joining of pores together by rupturing bridges between them in the central part of the
cross section (close to the axis of symmetry). The size of this area depends mostly on
temperature and loading, but also on the duration of its action (during creep process).

4. Rapid shearing of the material close to the lateral surface of the specimen along the planes
of maximum shear stress. On these planes, the precipitates may be hidden due to closure
of the remnants (dimples) left behind after sheared bridges between the pores.

Analysis of the results allows one to observe two antagonistic processes. On the one hand,
there occurs material hardening as a result of large plastic deformation and the migration and
blocking of dislocations on grain boundaries associated with it. On the other hand, the material
is weakened due to nucleation and growth of micro-voids as well as rupturing and shearing of
bridges between them. Both mechanisms can be found in problems related to low speed wind
turbine generators (see Introduction).
Strong pre-deformations at low temperatures result in a significant increase in the yield

strength σy with a slight change in the critical stress σc. At the same time, the ductility of the
material decreases, which is evidenced by a significant drop in the value of deformations at the
moment of sample rupturing. Minor changes in σy and σc are observed at both values of strain
(εs and εt) for the material with pre-deformation at higher temperature. There is also a strong
increase in strain at the moment of specimen rupture. Low creep pre-deformation εs at high
temperature 300◦C causes a significant decrease in σy and σc with a simultaneous increase in
strain at the moment of sample rupturing. On the other hand, significant pre-deformation εt at
the same temperature causes an even greater decrease in σy and σc. The increase in deformation
at the moment of rupture is significantly smaller, which indicates strong earlier damage of the
material. Young’s modulus does not change significantly due to pre-deformation at elevated
temperature.
Creep pre-deformation performed at different temperatures makes it possible to shape the

material strength properties. Selection of the proper parameters of this pre-deformation, such
as temperature, stress and strain, provides the possibility of improving material characteristics.
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Rectangular ducts are fabricated using thin sheets of a metal with different joint conditions.
Due to the presence of these joints, ducts deviate from their assumptive ideal shapes. The
objective of the present work is to study the effect of different joint conditions and wall
thickness on dynamic characteristics of the ducts. Experimental Modal Analysis (EMA)
is performed on three rectangular ducts of different joint types. Numerical Modal Analy-
sis (NMA) is also performed by considering that the ducts are of ideal rectangular shape
(without joint condition). Correlation analysis is performed between EMA and NMA in
terms of Modal Assurance Criteria (MAC), Relative Frequency Difference (RFD) plots and
auto-MAC. It is observed that natural frequencies are in good agreement but there is a
discrepancy in mode shapes.

Keywords: rectangular duct, duct joint, experimental modal analysis, modal assurance cri-
teria

1. Introduction

Dynamic characteristics such as natural frequencies, mode shapes and damping factors of an
engineering structure are determined by modal analysis, either analytically, numerically or expe-
rimentally (Ewins, 2000a). Finite Element Analysis (FEA) is a quick and easy way to know
dynamic characteristics of any structure, but determination of its damping parameters is diffi-
cult. Another method is using the analytical technique for solving mathematical models which
represent the actual structure. Experimental Modal Analysis (EMA) is most common and ef-
fective method to determine, improve and optimize dynamic characteristics of an engineering
structure (Ewins, 2000a). The analytical and FEA models can be verified using EMA. Kenne-
dy and Pancu (1947) first proposed the most significant method of EMA before Fast Fourier
Transforms (FFT) was invented. Fu and He (2001) provided a detailed theory of analytical and
experimental modal analysis to characterize the dynamic behavior of any structure. Significant
advances in experimental techniques enhanced the modeling of a structure and determining its
dynamic properties. Experimental results can be used as reference (i) to modify the existing
structure and to optimize the structure design by an iteration process, (ii) validate analytical
models in order to refine future designs (Maia, 1988).
Prior to the actual modal test, it is essential to identify the optimal number, locations of

excitation and the response measurement points to acquire all the modes excited within the inte-
rested frequency range. In the literature, few researchers proposed techniques for calculating the
optimum number and position of measurements for the modal test based on Frequency Response
Functions (FRF) (Schwarz et al., 2002) and finite element analysis (Linehan and Napolitano,
2012). Similarly, it is important to choose an apt excitation method, as the influence of each
mode on the overall response of the structure depends on the type of the excitation. Shaker and
impact hammer are the most common types of excitations. Dynamic characteristics are extracted
from the measured FRF’s using curve fitting methods. Selection of the curve fitting techniques
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is important in extracting dynamic characteristics from the measured time domain or frequency
domain data (Maia, 1988; Ibrahim, 1999). In this regard, different algorithms are developed,
which are based on Single-Degree of Freedom (SDOF) and Multi-Degree of Freedom (MDOF)
methods (Brandon and Cowley, 1983; Maia and Silva, 1997). The modal vectors obtained from
experimental measurements are compared using numerical modal vectors by correlation analy-
sis, in terms of the Modal Assurance Criteria (MAC) plot. Allemang (1999) and Ewins (2000b)
discussed various existing methods to perform systematic comparison and correlation between
two sets of vibration data, namely numerical and experimental data.
Different analytical methods are proposed in the literature for calculating natural frequencies

and mode shapes of rectangular and circular ducts with different axial boundary conditions
(Blevins, 1979; Lee, 1993; Chavan and Venkatesham, 2015). Majorly in the literature, an ideal
rectangular duct geometry is considered in analytical and numerical studies. However, practical
ducts are fabricated with different joint conditions. Hence, it is important to study the effect
of these joints on dynamic characteristics. Xiao et al. (2011) studied the effect of variation in
geometry, boundary conditions and material properties on the vibration characteristics of the
cylinder. Zaman et al. (2013) discussed the effect of bolted joints on dynamic characteristics
of the beam and frame structures. They showed that natural frequencies are varied due to the
presence of joints. Adequate literature is unavailable to show the joint effect and geometric
distortion on the dynamic characteristics.
The current paper discusses the effect of joint conditions (used for fabrication) and wall

thickness on dynamic characteristics of a duct, experimentally. To understand the effect of these
parameters, the present study considers three different ducts which differ mainly by the type of
joints (such as Pittsburgh lock joint, welded joint and adhesive joint) used in fabrication. Ducts
with different wall thickness are considered to study the modal density effect. In the present
paper, Section 2 describes theoretical background for estimating the dynamic characteristics and
correlation analysis. Pre-test analysis, the experimental test setup, modal test procedure and
numerical modal analysis are explained in Section 3. In Section 4, experimental and numerical
modal analysis results are discussed while in Section 5 conclusions are presented.

2. Theoretical background

This Section provides a brief theoretical explanation about the estimation of dynamic characte-
ristics such as natural frequencies and mode shapes of a structure. It also outlines the available
techniques to perform the correlation of experimental and numerical results after modal analysis.
Here, dynamic characteristics can also be referred as modal parameters.

2.1. Natural frequencies and mode shapes

The conventional hypothesis for calculating dynamic characteristics of a structure is using
the equation of motion. For free vibration analysis of a multi-degree freedom system, this is
written in terms of mass, stiffness and damping matrices as follows (Blevins, 1979)

MN×N ẍN×1 +CN×N ẋN×1 +KN×NxN×1 = 0 (2.1)

where N is the number of degrees of freedom (DOF) in the system,M, C and K designate the
matrices of mass, damping, and stiffness respectively. ẍ, ẋ and x are the second, first and zeroth
derivatives of system displacements. Solving Eq. (2.1), which is similar to the general eigenvalue
problem, results in N eigenvalues (natural frequencies) and N eigenvectors (mode shapes)

λi = −ξiωi + jωi
√
1− ξ2i (2.2)
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where λi is the i-th pole of the FRF, ωi is the i-th circular natural frequency of the system and
ξi is the damping ratio for the i-th natural frequency of the system.

2.1.1. Numerical modal analysis (NMA) approach

Equation (2.1) can be solved using an analytical and FEA method. Calculation of the mass
and stiffness matrix for simple geometry is straightforward, but for complex geometries, FEA is
an appropriate method. In this method, continuous geometry is discretized with the finite number
of elements. So, it is an approximation to infinite degrees of freedom system with finite degrees.
This assumption leads to discretized equations which can be solved using different numerical
methods for eigenvalues and eigenvectors. For this numerical analysis, convergence study is
required for accurate result predictions. This methodology is well established in the literature
and a good number of commercial softwares are available in the market. The prediction analysis
can be referred to as numerical modal analysis in this paper.

2.1.2. Experimental modal analysis (EMA) approach

In the EMA approach, dynamic characteristics of a structure are estimated using measured
frequency response functions (FRF). These FRFs can be obtained by exciting the structure and
measuring the system inputs and outputs at various positions on the structure. There are mainly
three important steps involved for performing EMA, namely, establishing the measurement
set-up, acquiring the data and extracting the modal parameters. The detailed procedure for
the experimental test setup and extraction of natural frequencies and mode shapes is given in
Section 3.

2.2. Modal assurance criteria

There are different methods available for performing the correlation analysis of EMA and
NMA results (FEA analysis). The frequently used method is the modal assurance criterion
(MAC) plot. It compares the EMA vector and FEA vector. MAC is a scalar quantity and it
varies between 0 and 1. If two vectors are the same, then MAC value is 1. Generally, MAC value
of 0.6 and above is considered as acceptable (Vacher et al., 2010).
If ΦEMAi is the modal vector from EMA and ΦFEMj is from FEA, then MAC is defined as

MAC ij =
|ΦEMAi ΦFEMj |2

(ΦEMAi ΦEMAi )(ΦFEMj ΦFEMj )
(2.3)

where Φ is the modal vector, i and j are the mode numbers of the experimental and numerical
results, respectively.

2.3. Relative frequency difference

Relative Frequency Difference (RFD) is a simple plot which calculates the RFD between two
different natural frequency sets. RFD values should be as low as possible, typically, an error of
10% is acceptable. Higher values are observed while moving away from the diagonal elements
(Ewins, 2000b). The acceptable error may vary for different types of test structures and testing
methods.
If f ie is the experimental natural frequency of i-th mode and f

j
n is the numerical natural

frequency of j-th mode, then RFD is given as

RFD ij =
f jn − f ie
f ie

(2.4)
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2.4. Drive point residue

Drive Point Residue (DPR) can be specified as equivalent to modal participation factors,
and DPR measures how well each mode is excited or its participation in the overall response of
the structure at a chosen driving point. The definition of DPR for mode k and mode i is given
by Allemang (1999)

DPRk(i) =
Φ2ik
2mkωk

(2.5)

where Φ is the mode shape (modal vector), ω is the circular natural frequency, m is the modal
mass. The degrees of freedom (DOF) with the maximum average DPR for chosen mode shapes
are considered to be a better excitation DOFs for the interesting set of target modes.

3. Experimental setup and numerical analysis

The present Section discusses the pre-test analysis, setup and procedure for experimental and
numerical modal analysis. Firstly, specifications such as dimensions, type of the joint for the
fabrication and material properties of the different ducts are discussed. Three different types of
rectangular ducts are considered in the analysis as shown in Fig. 1 are as follows:

Case 1. Duct with Pittsburgh lock joint (Duct 1)

In this configuration, the rectangular sheet of mild steel is bent at three corners, and
the edges are joined using Pittsburgh locking mechanism. Dimensions of the duct is:
0.3m×0.4m×1.2m with 20 gauge (∼ 1mm). Material properties are: Young’s modulus
E is 200GPa, Poisson’s ratio µ is 0.3 and density is 7850 kg/m3.

Case 2. Duct with welded joints at four edges (Duct 2)

The duct is fabricated by welding joints at four right angle corners of individual pla-
tes. The arc welding technique is used for fabrication. Two pairs of plates with dimen-
sions 0.3m×1.5m and 0.4m×1.5m are used. The overall dimensions of the duct are:
0.3m×0.4m×1.5m with 10 gauge (∼ 3mm). Duct material properties are: Young’s mo-
dulus E is 200GPa, Poisson’s ratio µ is 0.3 and density is 7850 kg/m3.

Case 3. Duct with adhesive joint (Duct 3)

In this configuration, to fabricate a duct closer to an ideal rectangular shape, an acrylic
sheet with the smooth plane surface is used. The individual plates are joined by an adhesive
joint. Cyanoacrylate adhesive is used which establishes strong bond and smooth connecti-
vity between the plates. The overall dimensions of the duct are: 0.206m×0.258m×0.9m
with 4 gauge (∼ 5mm). The material properties are: Young’s modulus E is 3.2GPa.
Poisson’s ratio µ is 0.4, and density is 1100 kg/m3.

3.1. Numerical modal analysis

Numerical modal analysis is performed on all duct cases using commercial software (ANSYS)
to calculate natural frequencies and mode shapes of the ducts. However, the description is
provided for Case 1 only since a similar procedure applies to all cases. Rectangular duct of
dimensions 0.3m×0.4m×1.2m with wall thickness of 1mm is modelled (as ideal duct i.e. without
joint condition) and meshed using SHELL 63 elements. An element size of 0.005m is chosen for
meshing based on convergence study. The simply supported boundary condition is applied at
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Fig. 1. Duct configurations with different joint conditions used in the experimental modal analysis

Fig. 2. Finite Element Model of a rectangular duct with simply supported boundary conditions

both ends of the duct. Figure 2 shows the meshed model with boundary conditions of the duct
structure.

Mild steel properties such as: Young’s modulus 200GPa, density 7850 kg/m3, Poisson’s ra-
tio 0.3 and structural damping ratio of 0.01 are applied to the duct structure. Numerical modal
analysis is performed to calculate the modal parameters up to 200Hz frequencies. These para-
meters are used for pre-test analysis and also for correlation with EMA results.

3.2. Pre-test analysis

Preceding to the EMA, a pre-test is performed to find an appropriate reference point and
response locations to mount the accelerometers. Thus, accurate structural modal parameters can
be captured from modal test. This analysis is done for all cases within the interested frequency
range of 10-200 Hz. The results are given for Case 1 only, as shown in Fig. 3, which indicates the
location, number of excitations and response measurement points. Figure 3a shows that nodal
point numbers, 128 with +x-direction and 84 with +z-direction are suitable DOFs for excitation
in the experimental modal test. The locations of these points are (x = 0.3, y = 0.1, z = 0.24) and
(x = 0.18, y = 0.5, z = 0.4) as shown in Fig. 3b. Here, due to closely spaced modes, 160 response
measurement points are considered to efficiently characterize individual mode shapes as shown
in Fig. 3c.
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Fig. 3. Pre-test analysis: (a) drive point residue, (b) drive points to excite the structure, (c) response
measurement points highlighted with dots

3.3. Experimental test setup

Preparation of measurement set-up involves preparation of boundary conditions, selection of
the excitation method, type of transducers and measurement locations. EMA is performed on
ducts in Case 1 and Case 2 with simply supported (S-S) boundary condition (BC) and Case 3
with free-free (F-F) BC as shown in Fig. 4. The S-S condition is achieved by making the contact
point with duct walls at the front and rear portion of the duct. Steel balls are inserted into the
rectangular frames to make them as a point of contact with the duct at the front and rear cross
sections. The F-F boundary condition is achieved by suspending the duct with flexible bungee
ropes.

Fig. 4. EMA test setup: (a) simply supported boundary conditions, (b) free-free boundary condition

The modal test is performed by the roving hammer method. As the reciprocity principle
holds good, the drive points obtained from pre-test analysis are used as response points. High
sensitivity, lightweight tri-axial and uni-axial accelerometers of IEPE type are used to capture
the vibration response. Weight of tri- and uni-axial sensors are 3 and 10 grams, respectively. An
impact hammer of IEPE type with 100 gram head weight is used for excitation in order to induce
vibrations in the structure. Once the measurement set-up is established, FRFs are measured with
appropriate settings such as sampling frequency, bandwidth, number of samples and windowing
function. It is important to verify the quality of acquiring data to ensure consistent measurements
by observing the input excitation, coherence and FRFs. The measured FRFs are used to extract
modal parameters of the duct. There are several methods to extract modal parameters in both
the time domain and frequency domain as mentioned in Section 1. Multivariate Mode Indicator
Function (MvMIF) is used for extracting modal parameters. Selection of poles is verified by
comparing the measured drive point FRF and synthesized MvMIF curve. Figure 5 shows the
stability diagram for multi-degree of freedom (MDOF) analysis to select poles and vectors.
Selected stabilized poles are indicated by solid squares.
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Fig. 5. Stability diagram for MDOF analysis of the duct as a function of frequency

4. Results and discussion

Experimental and numerical modal analysis results corresponding to all three ducts cases are
discussed here. As a primary step, auto-MAC analysis is performed. Natural frequencies obtained
from the experimental and numerical analysis are compared in the form of tables and RFD plots.
Next, mode shapes are compared by visual inspection and correlation analysis in terms of MAC
values.

4.1. Auto-MAC correlation

Auto-correlation analysis is performed for experimental mode shapes to (i) verify that a
sufficient number and location of measurements are chosen for performing the model test and
(ii) determine the correlation of individual modes with other modes within the interested frequ-
ency range (Linehan and Napolitano, 2012). Auto-MAC plots are shown in Fig. 6 for three cases
(Ducts 1-3). The auto-MAC matrix is almost diagonal because the individual modal vector is
orthogonal to other modal vectors.

Fig. 6. Auto-MAC plots of experimental modal analysis results for all three ducts cases

From the auto-MAC plot of Case 1, it is observed that some individual modes are correlated
with multiple modes. This is due to close spacing of modes, which leads to poor MAC values.
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For example, mode 4 is correlated with modes 5, 6 and mode 10 with modes 9, 11. In Case 2,
most of the off-diagonal MAC values are very low except for modes 3, 4 and modes 14, 15. This
is due to symmetric modes and existence of welded joints. Auto-MAC plot in Case 3 is perfectly
diagonal.

4.2. Comparison of natural frequencies

Analytical natural frequencies for Duct 1 and Duct 2 are calculated using the analytical
models available in literature (Chavan et al., 2015). Comparison of experimental, numerical and
analytical natural frequencies for Duct 1 and Duct 2 is shown in Table 1. It is observed that
analytical and numerical results are in good agreement and match well with experimental results
with less than a 10% error. However, in Duct 1, modes 5, 8 and 10 are not captured in EMA due
to higher modal density and the symmetric condition of duct geometry (as the repeated modes
are difficult to be obtained from an experiment). Similarly, mode 9 in Duct 2 case.

Table 1. Comparison of natural frequencies for Duct 1 and Duct 2

Mode
No.

Duct 1 Duct 2
Natural frequencies [Hz] Natural frequencies [Hz]

Experimental Numerical Analytical Experimental Numerical Analytical

1 19.82 20.64 20.69 57.00 58.71 58.79
2 22.67 25.52 25.58 66.00 67.77 67.91
3 25.63 26.85 27.07 79.00 76.96 77.87
4 31.65 30.70 30.91 82.00 83.05 83.27
5 – 33.77 33.85 86.00 84.12 84.84
6 37.6 37.75 37.97 92.00 96.66 97.40
7 41.12 40.03 40.24 108.00 104.66 105.00
8 – 44.53 44.74 115.00 115.08 116.10
9 46.83 45.44 45.54 – 115.53 116.37
10 – 48.39 48.62 128.00 123.71 124.45

Table 2 shows a comparison of natural frequencies obtained from the experimental modal
test and predicted by numerical analysis for Duct 3. It shows that the predicted frequencies are
well captured by the experimental modal test with less than a 5% error.

Table 2. Comparison of natural frequencies for Duct 3

Mode Natural frequencies [Hz] Mode Natural frequencies [Hz]
No. Experimental Numerical No. Experimental Numerical

1 54.45 54.57 6 133.08 136.46
2 – 54.81 7 136.23 136.47
3 87.69 89.47 8 158.43 160.02
4 92.55 93.60 9 159.37 160.79
5 107.48 109.81 10 164.06 163.01

Numerical modal analysis is performed for Duct 1 with different thickness and compared
with the experimental results as shown in Table 3. It is observed that the experimental results
are close to the numerical results of duct with 1mm thickness. It can be noticed (from Table 3)
that as thickness of the duct wall increases (from 1mm to 3mm), the natural frequency also
increases. It indicates that the modes are well separated. The similar behaviour is observed
between Duct 1 and 2.
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Table 3. Comparison of natural frequencies of experimental and numerical analysis with diffe-
rent thickness for Duct 1

Mode
No.

Natural frequencies [Hz]
Experimental Numerical
1mm 1mm 1.5mm 2mm 2.5mm 3mm

1 19.82 20.64 30.97 41.29 51.61 61.93
2 22.67 25.52 38.29 51.05 63.81 76.57
3 25.63 26.85 40.25 53.61 66.94 80.21
4 31.65 30.70 46.04 61.37 76.70 92.02
5 – 33.77 50.65 67.54 84.42 101.30
6 37.6 37.75 56.62 75.49 94.35 113.20
7 41.12 40.03 60.01 79.94 99.80 119.58
8 – 44.53 66.78 89.03 111.26 133.48
9 46.83 45.44 68.15 90.87 113.58 136.29
10 – 48.39 72.59 96.78 120.96 145.14

RFD plots can also be used to check the relation between measured and predicted natural
frequencies. Minimum RFD value indicates that two-mode sets are close to each other. The
RFD plot for all cases is shown in Fig. 7. It is observed that RFD values are minimum along the
diagonal, and it is clear that both measured and predicted frequencies are in good agreement.
Thus it is interpreted that material properties used in numerical simulations are appropriate
(Ewins, 2000b). The RFD of experimental and numerical results is less than 10% for all the
cases. It is clear from the RFD plot that experimental and numerical natural frequencies are
matched well.

Fig. 7. Relative frequency difference plot between experimental and numerical modal analysis results for
all ducts

4.3. Mode shape comparison

One of the quick ways to compare experimental and numerical results is the visual inspection
of mode shapes. For easiness of visual observation of mode shapes, the colour bar is maintained
the same in both experimental and numerical results. Figure 8 shows comparison of numerically
predicted and experimentally measured mode shapes for the first four modes of Duct 1 and
Duct 2. In the case of Duct 1, it is observed that there is a poor agreement between experimental
and numerical mode shapes. For example, the modal displacement is not significant on the side
plate for modes 1, 2 and 4 due to the joint between the top and side plate. Modal strain energy
is not transferring from one plate to another due to high stiffness and irregularity of the joint.
In Duct 2 case, it is observed that experimental mode shapes reasonably resemble the numerical
mode shapes.
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Fig. 8. Comparison of the first four mode shapes for Duct 1 (Pittsburgh lock joint) and Duct 2
(welded joints)

Figure 9 shows a comparison of the measured ang predicted mode shapes for Duct 3. It is
observed that experimental mode shapes are matched very well with numerical mode shapes
except for the first mode, since it is difficult to capture twisted modes in EMA. The extent of
correlations between these mode pairs can be verified by MAC values which are shown in the
next Section.

Fig. 9. Comparison of experimental and numerical mode shapes for Duct 3 (adhesive joint)

4.4. Modal assurance criteria

Correlated modes are calculated in terms of MAC values, which vary from 0 to 1. Generally,
the reasonable MAC value 0.6 is acceptable, but for good correlation of experimental and nu-
merical results, MAC values should be greater than 0.9 (Vacher et al., 2010). The MAC plot for
all the cases is shown in Fig. 10. In Duct 1, it is observed that only two mode pairs have MAC
values greater than or equal to 0.6 and the remaining modes have a poor correlation. It clearly
shows that the first numerical mode shape is correlated with the second experimental mode
(MAC is 0.59). One of the higher mode pairs such as FE mode 13 and experimental mode 11
have MAC values greater than 0.8.
The MAC plot for sixteen experimental modes and twenty-one FEA modes are calculated

and plotted for Duct 2 (Fig. 10b). Few off-diagonal mode pairs display that MAC values are
greater than 0.5 which indicates that one mode has a correlation with multiple modes. This is
due to the presence of welded joints, which makes the structure stiffer at the joints and each
wall of the duct behaves as an individual plate constrained at the edges. Experimental modes
2-4, 8 and 10 have MAC values greater than 0.6.
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The effect of thickness is also observed between Case 1 and Case 2. It shows that modal
density is high in Case 1 when compared to Case 2.

Fig. 10. Comparison of mode shapes for EMA and NMA results in terms of the Modal Assurance
Criteria plot

In Duct 3, correlation analysis is done for eleven experimental modes with twelve FEA modes.
From the MAC plot shown in Fig. 10c, it is observed a good agreement between the predicted
and measured mode shapes except for two fundamental modes (as these are two rotated modes).
However, there exists a cross-correlation between modes 7 and 8 (as they are symmetric modes)
which can be corrected by updating the FEA modal model. A mode pair table for correlated
mode pairs with MAC values greater than or equal to 0.9 is shown in Table 4. It is observed
that modes 3, 4 and 5 have excellent correlation with the MAC value equal to 0.99. The results
of Duct 3 (acrylic), which is close to an ideal rectangular shape without any joint problem show
good correlation with MAC value of 0.99.

Table 4. Mode pair table with MAC values for Duct 3

Experimental Numerical
natural natural MAC Value

frequencies [Hz] frequencies [Hz]

87.7 89.5 0.981
92.5 93.6 0.985
107.5 109.8 0.992
133.1 136.5 0.935
158.4 160.0 0.894
169.3 174.2 0.914
179.8 185.0 0.928
190.1 193.7 0.922
87.7 89.5 0.981
92.5 93.6 0.985
107.5 109.8 0.992

As the rectangular ducts are axisymmetric in structure, repeated roots (symmetrical modes)
exist. It is difficult to capture these symmetrical modes in the experimental modal test. This
can be observed from natural frequency comparison tables (for ducts of Case 1-3), where few
modes are missing (Tables 1 and 2).
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4.5. Effect of boundary condition

To study the effect of the boundary condition on mode shapes of a duct with the joint
condition, EMA is performed on Duct 2 with free-free BC along with simply supported BC.
Experimental and numerical natural frequencies are in a good agreement with less than a 10%
error. The experimental mode shapes are compared with the numerical mode shapes, and the
corresponding MAC plot is shown in Fig. 11. It can be observed that a single mode is correlated
with multiple modes, and MAC vales are low. Similar behaviour is also observed in the MAC plot
of Duct 2 with S-S BC (Fig. 10b). So, it is clearly observed that the presence of joint conditions
plays a critical role than the boundary conditions.

Fig. 11. Modal Assurance Criteria plot for Duct 2 with free-free boundary condition

5. Conclusions

Experimental modal analysis is performed for three different rectangular ducts to study the
effect of joint conditions on dynamic characteristics of the duct. An ideal rectangular duct shape
is considered for numerical calculation. Frequency and RFD plots are used to compare predicted
and measured natural frequencies. It is observed from all the cases that experimental modal
frequencies are in good agreement with numerical natural frequencies with less than the 10%
error. Mode shapes of predicted and measured results are compared in terms of visual inspection,
MAC plot and mode pair table. Low MAC values are observed for Duct 1 and Duct 2 when
compared to Duct 3. However, the effect of boundary conditions is also studied on Duct 2
considering free and simply supported boundary conditions. So, based on the observation of all
the results, it is concluded that joint conditions play a critical role in mode shape behavior and
have a less influence on natural frequency estimation. Further studies are required to incorporate
joint stiffness effects in analytical and numerical models to predict dynamic characteristics of
rectangular ducts.
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A numerical analysis of loss has been carried out to explore the loss mechanism of leading
edge tubercles in a high speed compressor cascade. Taking the lead from flippers of the
humpback whale, tubercles are passive structures of a blade for flow control. Evaluation
of the overall performance in terms of entropy increase shows that the loss reduction is
achieved both at high negative and high positive incidence angles, while a rise in the loss is
obtained near the design point. And a smaller wave number as well as a smaller amplitude
results in lower additional losses at the design point. Spanwise and streamwise distributions
of pitchwise-averaged entropy increase combined with flow details have been presented to
survey the loss development and, subsequently, to interpret the loss mechanism. The tubercle
geometry results in the deflection flow and the consequent spanwise pressure gradient. This
pressure gradient induces formation of counter-rotating streamwise vortices, transports away
the low-momentum fluid near wall from crests towards troughs and leads to local high loss
regions behind troughs as well as loss reduction behind the crests in comparison to the
baseline. The interaction between these vortices and flow separation by momentum transfer
leads to separation delay and the consequent loss reduction at the outlet.

Keywords: compressor cascade, flow separation, passive flow control, leading edge tubercles,
streamwise vortices, loss analysis

Nomenclature

c, cz – blade and axial blade chord [mm]
H, t, l – blade span, pitch and camber length, respectively [mm]
β, γ – flow angle and stagger angle with respect to axial direction [◦]
∆β – deflection angle [◦]
ω – total pressure loss coefficient [–]
∆s – specific entropy increase relative to incoming flow [J/(kg·K)]
∆sref – reference specific entropy increase [J/(kg·K)]
p, pt – static and total pressure [Pa]
Cp – pressure coefficient [–]
M – Mach number [–]
i – incidence angle [◦]
A,W – amplitude and wavelength of leading edge tubercles [mm]
N – wave number of leading edge tubercles [–]
X,Y,Z – spanwise, pitchwise and axial direction
S – camber length direction
ξz – streamwise vorticity [s−1]
V – velocity [m/s]
LE, TE – leading edge and trailing edge [–]
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1. Introduction

Flow separation is a common phenomenon in the axial compressors that occurs near the blades.
Severe separation contributes greatly to passage blockage and to aerodynamic losses. Worse
yet, compressor stall may be induced, which subsequently leads to a sharp decrease in the
aerodynamic performance.
Studies of active and passive flow control have been carried out with the aim of depressing

flow separation. An overview of possible flow control methods in gas turbine engines is given by
several researchers (Lord et al., 2000). Active flow control techniques have the advantage of being
suitable for a wide range of operation conditions. Due to their increased complexity, however,
gas turbine manufacturers are not fond of them as much as passive flow control techniques
such as bowed stators (Fischer et al., 2003), non-axisymmetric profiled endwalls (Dorfner et al.,
2011), vortex generators (Hergt et al., 2013). Another way for passive flow control is application
of leading edge tubercles. This method is inspired by previous works on the morphology of
humpback whale flippers by marine biologists (Fish and Battle, 1995).
A number of previous experimental and numerical works have been performed to explore the

effects of leading edge tubercles on the performance of humpback whale flippers and isolated
airfoils. A numerical study for the NACA 634-021 wing with and without tubercles shows that
large streamwise vortices are formed in the regions posterior to the troughs between tubercles
(Fish and Lauder, 2006). Johari et al. (2007) also take the NACA 634-021 airfoil as the baseline
and carry out an experimental investigation comparing the effect of varying the wavelength and
amplitude of sinusoidal tubercles on airfoil performance. Miklosovic et al. (2004) constructed two
idealized scale models of a humpback pectoral flipper with and without leading edge tubercles
and conducted wind-tunnel tests on them at Re = 505 000-520 000. The results showed that
tubercles delayed the stall angle by approximately 40% while decreasing drag and increasing
lift in the post-stall regime. Pedro and Kobayashi (2008) performed a numerical simulation of
the setup used for the experimental studies (Miklosovic et al., 2004) with the detached eddy
turbulence model. They indicated that the higher aerodynamic performance for the scalloped
flipper results from the presence of streamwise vortices originated by the tubercles (Pedro and
Kobayashi, 2008).
Also, leading edge tubercles have been applied in cascades. An experimental investigation

(Keerthi et al., 2014) was carried out to quantify aerodynamic benefits of sinusoidal tubercles
in a linear compressor cascade with different tubercle configurations at low Reynolds numbers
(Re = 130 000). The results indicated that the performance of the cascade had substantially
improved due to the effect of tubercles in terms of delaying the stall angle.
In consideration of the fact that the application of leading edge tubercles is not widespread in

turbomachinery, the present work is committed to clarifying the effects of leading edge tubercles
on the performance of a high-speed linear compressor cascade and elaborating the underlying
loss mechanism of tubercle structures. The overall performance in terms of entropy increase is
evaluated over the operating range of the cascade with different tubercle configurations. Span-
wise and streamwise entropy distributions are utilized to investigate the difference in the loss
development between the cascades with and without leading edge tubercles. Entropy distribu-
tions with flow visualizations on several axial cross-sections are examined in detail to interpret
the loss development procedure.

2. Numerical setup

2.1. Baseline cascade

A high-speed linear compressor cascade is used in this study. The blade profile of the baseline
cascade is modified from an airfoil of a high loading stator of a compressor. The airfoil is suitable
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to be used in axial compressors with a subsonic inlet flow over the full blade span. The blade
profile and geometrical definitions are shown in Fig. 1.

Fig. 1. Blade profile and geometrical definitions

The general design parameters of the cascade are listed in Table 1. The cascade is built with
a blade aspect ratio of 0.48 and a design inlet Mach number of 0.64. This aspect ratio is selected
in order to study the effects of leading edge tubercles in a certain blade span of about 50% chord
length. Furthermore, this value is also related to the number and wavelength of tubercles. Based
on the design inflow angle (β1 = 42◦), numerical simulations are performed in a wide operation
range of incidence angles from −16◦ to 16◦.

Table 1. General design parameters of the cascade

M1 β1 β2 γ ∆β H c l H/c c/t

0.64 42◦ −9◦ 16.9◦ 51◦ 24.5mm 51mm 53.2mm 0.48 2

2.2. Leading edge tubercles

The structure of tubercles is built by using a sinusoidal-like curve as the leading edge. The
characteristic geometry definitions of tubercles are shown in Fig. 2a. What calls for special at-
tention is that the horizontal axis S represents the camber length direction and the longitudinal
axis X means the spanwise direction. The amplitude A and wavelength W , characteristic dimen-

Fig. 2. (a) Characteristic geometry definitions of tubercles. (b) A sketch of profiles for the crest, middle
and trough cross-sections
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sions of the sinusoidal-like curve are selected to study their effects on the compressor cascade
performance.
In order to have a distinct comparison of the baseline geometry and two modified ones, a

sketch of three blade profiles is shown in Fig. 2b. They have the same shape despite the difference
in the leading edge.
Different computational cascade models are constructed covering variations in the amplitude

and wavelength (or wave number). Different amplitudes of A = 0.02l, 0.03l and 0.04l (named as
A2, A3 and A4) combined with several wavelengths of W = 0.16c, 0.12c and 0.096c (or several
wave numbers of N = 3, 4 and 5) are systematically investigated in this work. These parameter
values are selected according to the suggestions given by studies of pioneering researchers (Johari
et al., 2007; Hansen et al., 2011). Table 2 shows notations of various configurations. According
to the table, nine cascades are named by combining A2-A4 with N3-N5. Besides, ORI represents
the baseline cascade.

Table 2. Notations of different configurations

Notations A2 A3 A4 N3 N4 N5

Amplitude 0.02l 0.03l 0.04l – – –
Wavelength – – – 0.16c 0.12c 0.096c
Wave Number – – – 3 4 5

2.3. Numerical method

ANSYS-CFX software package has been used to perform RANS simulations on the baseline
cascade and on the cascade with different leading edge tubercles. The overall performance of
these cascades was investigated with the S-A turbulence model. As one of the most prominent
turbulence models, the S-A model is widely used in turbomachinery due to its numerical effi-
ciency and robustness. The Reynolds number based on the characteristic chord length and inlet
velocity was about 7.9 · 105.
In the simulations of these cascades, fine multiblock structured grids with an H-O-H topology

were constructed. The grid consisted of 3.1 million nodes with 97 pitchwise and 69 spanwise.
Thus, the blade boundary layer was sufficiently resolved, where y+ ≈ 1 was realized.

Fig. 3. Schematic diagram of cascade grids with and without leading edge tubercles;
(a) baseline cascade, (b) cascade with tubercles

Figure 3 shows a schematic diagram of the baseline cascade and the cascade with leading edge
tubercles. At the inlet of the domain, boundary conditions consisted of uniform total pressure,
total temperature and flow direction. The turbulence intensity of 5% was selected. At the outlet
boundary, an average static pressure of 101325 Pa was imposed. Solid boundaries were applied
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at the blade surfaces with no slip and impermeability conditions. The side boundaries of the
passage were modeled with matching translational periodicity. At the passage endwalls, the
translational periodicity was also used so as to obtain an “infinite blade cascade”.
A linear cascade constructed with the controlled diffusion airfoil (Steinert et al., 1991) was

simulated to validate the numerical method mentioned above. The loading and flow phenomenon
in this cascade was similar to the investigated cascade in the paper. Figure 4 shows experimental
and numerical results of Mach number characteristics at the design point. The parameter ω is
calculated by following equations

pt =
∑
ṁpt∑
ṁ

ω =
pt1 − pt2
pt1 − p1

(2.1)

where pt means the mass flow averaged total pressure in a local plane. The predicted results
reasonably agree with the experimental data. This gives some confidence on the CFD model
used in the following study.

Fig. 4. Comparison of Mach number characteristics of experimental and numerical results

3. Results and discussion

3.1. Overall loss characteristics

For adiabatic flow through a stationary blade row, the total temperature is constant, and so
entropy changes depend only on total pressure. Hence, for stator blades and cascade flows, total
pressure losses can be taken to be synonymous with specific entropy increase (Denton, 1993).
In order to compare the overall loss characteristics of cascades with and without leading edge

tubercles, the variation of the mass flow averaged specific entropy increase relative to incoming
flow ∆s in the outlet plane is described for different wave numbers and amplitudes. The entropy
increase is calculated and normalized with the reference value ∆sref , the entropy value in the
outlet plane at the incidence angle of i = 0◦.
In Fig. 5, the normalized entropy increase ∆s/∆sref in the outlet plane is plotted against

incidence angles for all the cascades. It is seen that the normalized entropy increase for the
baseline cascade equals to 1 at the incidence angle of 0◦. The minimum entropy increase of the
baseline cascade is obtained at the incidence angle of −4◦. All the modified cascades have the
same minimum loss incidence angle. Figure 5a shows the loss characteristics for cascades with a
wave amplitude of 0.02l and different wave numbers of 3, 4 and 5. For A2N3, A2N4 and A2N5
cascades, it is observed that the loss reduction is achieved in the range from −16◦ to −8◦ and
from 8◦ to 16◦, compared to the baseline. However, in the operation conditions from −8◦ to 4◦
incidence angles, the leading edge tubercles result in no loss reduction. In high negative incidence
angles ranged from −16◦ to −8◦, the loss reduction gets larger as the wave number increases.
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And yet in high positive incidence angles ranged from 8◦ to 16◦, no definite trend in the loss
reduction is observed as the wave number increases. Figure 5b shows the loss characteristics
for A2N5, A3N5 and A4N5 cascades, with a wave number of 5 and different wave amplitudes
of 0.02l, 0.03l and 0.04l. In high negative incidence angles of −16◦ and −12◦, it is shown that
the loss reduction, compared to the baseline, gets larger as the wave amplitude increases. The
same relation between the loss reduction and wave amplitude is observed in the high positive
incidence angles of 12◦ and 16◦. However, A2N5, A3N5 and A4N5 cascades show similar loss
reductions as the wave amplitude increases at the incidence angle of i = 8◦.

Fig. 5. Normalized entropy increase variation with incidence angle: (a) different wave numbers,
(b) different wave amplitudes

Fig. 6. Cascade loss characteristics for different wave numbers and amplitudes: (a) i = 0◦, (b) i = 8◦

In order to further explore the influence of tubercles on losses, Fig. 6 shows the results
of normalized entropy increase predicted at two incidence angles of i = 0◦ and 8◦ for all the
cascades. Compared to the baseline, a rise in the entropy increase is observed for all the tubercle
configurations at i = 0◦, just as shown in Fig. 6a. A smaller amplitude is shown to result in lower
additional losses. It means that among all these amplitude configurations, the A2 configuration
with an amplitude of 0.02l produces the least negative influence on the cascade performance.
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Also, there exists a positive relation between the loss and wave number, which indicates a
higher loss for a larger wave number, namely a smaller wavelength. For A2N5, A3N5 and A4N5
configurations, the losses respectively rise by 4.2%, 6.7% and 8.3% compared to the baseline.
Figure 6b shows that all cascades with leading edge tubercles obtain a decrease in the loss at
i = 8◦. And the loss reduction gets larger as the wave number increases. The normalized entropy
increase equals to 6.4333 in the baseline configuration. The loss reductions for A2N5, A3N5 and
A4N5 configurations, respectively, equal to 12.4%, 12.3% and 13.3% in contrast to the baseline.
These values are close to each other.

3.2. Spanwise and streamwise entropy distributions

In this Section, spanwise and stremwise distributions of pitchwise-averaged entropy increase
are analyzed to survey the loss development in the baseline and A2N5 cascades.
Spanwise distributions of the normalized entropy increase at axial positions of z/cz = 30%,

90% and 150% are shown in Fig. 7. It is noted that the axial positions of z/cz = 0%, 100% and
150% represent the leading edge, trailing edge and outlet. Three wave periods are included in
the range from 20% to 80% span for A2N5. It is shown that the normalized entropy increase
has little change along the span for ORI both at i = 0◦ and 8◦. For A2N5, a periodical variation
of the entropy increase along the span is observed at both operating incidence angles. We focus
on one of the periods in the range from 40% to 60% span for further analysis. The locations
of M0, trough, middle and crest sections are shown in Fig. 8. In Fig. 7a, a rise in the loss is
observed in the range from 52% to 58% span for A2N5 compared to ORI at the axial position of
z/cz = 30%, and the maximum rise of loss locates at the trough section. At z/cz = 90%, the loss
reduction is almost not observed over the full span for A2N5. At z/cz = 150%, there exists loss
reduction merely in a small range from 54% to 56% for A2N5, and the maximum loss reduction
also locates at the trough section. In Fig. 7b, it is shown that there exists a reduction in the loss
between 43% and 47% span at z/cz = 30% for A2N5, compared to ORI. And the maximum loss
reduction locates at the crest section at i = 8◦. At z/cz = 90%, no loss reduction is achieved
over the whole span for A2N5. However, at z/cz = 150%, the loss reduction is achieved over the
whole span. It is seen that the spanwise variance of ∆s tends to be smaller along the streamwise
direction for A2N5 and, finally, an approximately uniform distribution of ∆s is achieved.

Fig. 7. Spanwise distributions of normalized entropy increase for baseline and A2N5 cascades:
(a) i = 0◦, (b) i = 8◦

Streamwise distributions of the normalized entropy increase at several spans for the baseline
and A2N5 cascades are presented in Fig. 9. For A2N5, the M0, trough, middle and crest respec-
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Fig. 8. Locations of M0, trough, middle and crest sections

Fig. 9. Streamwise distributions of normalized entropy increase for baseline and A2N5 cascades:
(a) i = 0◦, (b) i = 8◦

tively correspond to 60%, 55%, 50% and 45% spans shown in Fig. 8. For the baseline cascade,
ORI represents the middle section of 50% span. Actually, the entropy distributions at these four
spans have little difference between one another.
In Fig. 9a, ∆s of ORI rises gradually downstream LE at i = 0◦, and the value of normalized

entropy increase equals to 1 at the outlet. As for the M0 section, ∆s also shows a gradual rise
downstream LE, and the growing rate is larger than that of ORI. The loss reduction is observed
from LE to 60% z/cz compared to ORI. The ∆s curve at the middle section is almost the same
as that at the M0 section. At the trough section, a rapid increase of ∆s from LE is followed
by a decrease till 90% z/cz. The maximum value is reached at 25% z/cz . At the crest section,
∆s shows the similar trend to that at theM0 section despite a slight difference downstream TE.
From LE to 80% z/cz, the loss reduction is observed compared to ORI. Among all four sections
for A2N5, only ∆s of the trough section is smaller than that of ORI at the outlet.
In Fig. 9b,∆s of ORI shows a rapid rise downstream LE at i = 8◦, and the value of normalized

entropy increase equals to 6.5 at the outlet. At the M0 and middle sections, a sharp increase of
∆s is seen from LE to 20% z/cz , followed by a tender decrease till 46% z/cz and a subsequent
sustained growth till the outlet. As for the trough section, the trend of ∆s downstream LE is
similar to that at the M0 and middle sections. A local peak value of the entropy increase lies in
the 36% z/cz . At the crest section, an upward trend of ∆s is observed between LE and 50% z/cz .
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Differently, the loss reduction is achieved from LE to 42% z/cz at the crest compared to ORI.
It is worth nothing that the normalized entropy increases at the M0, trough, middle and crest
sections come to the same value of 5.6 at the outlet, which is smaller than that for the baseline.
The streamwise entropy results are in good consistence with the spanwise distributions of ∆s.
From the above analysis of spanwise and streamwise entropy distributions, it is concluded

that the loss reduction at the outlet is merely obtained at the trough section for A2N5 in
contrast to ORI at i = 0◦, while the loss reduction is achieved over the whole span at i = 8◦.
The introduction of leading edge tubercles turns the uniform spanwise distribution of ∆s into
a nonuniform one and leads to local high loss regions in the fore part of the blade. Also, it is
indicated that there exists a spanwise fluid migration downstream LE for A2N5, which narrows
the gap of ∆s among theM0, trough, middle and crest sections and accounts for the loss decrease
from 25% to 90% z/cz behind the trough. It is inferred that entropy variations are induced by an
altered flow field by leading edge tubercles. The following Section combines the loss development
process with flow visualizations, making further efforts to interpret the loss mechanisms.

3.3. Discussion of loss mechanism

This Section gives a discussion of the loss development process along the streamwise direction
as well as flow visualizations, making further efforts to interpret the loss mechanisms with A2N5.

Fig. 10. Distributions of the normalized entropy increase on different axial cross-sections:
(a) ORI, i = 0◦, (b) A2N5, i = 0◦, (c) ORI, i = 8◦, (d) A2N5, i = 8◦

In Fig. 10, distributions of the normalized entropy increase at i = 0◦ and 8◦ on different axial
cross-sections are shown. The ORI configuration, representing the baseline cascade, shows an
almost uniform loss distribution along the blade span in Fig. 10a and 10c. High loss regions are
mainly distributed near the blade suction side at i = 8◦, see Fig. 10c. From Fig. 10b and 10d,
it is observed that the introduction of the leading edge tubercles results in the redistribution
of the entropy increase along the span. In the A2N5 cascade, high losses accumulate in several
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rounded areas near the blade suction side at 10% z/cz rather than long narrow strips in the
baseline. It is found that high loss regions are in the downstream location of the wave troughs.
And the number of high loss regions is equal to the wave number. Without doubt, high loss
regions at i = 0◦ are much smaller than those at i = 8◦. Figure 10d also shows an evidence of
the spanwise fluid migration near the blade suction side, which results in the uniform spanwise
distribution of ∆s downstream TE.
Figure 11 shows an isosurface of zero streamwise velocity at i = 8◦, which is indicative of the

size of the separated region. The baseline case is also presented for comparison. It is apparent
from the figure that the size of the recirculation region for A2N5 is dramatically reduced, and
that separation is delayed relative to the baseline. It can also be seen from the figure that the flow
separation is delayed behind crests to a greater extent than behind the troughs. The reduced size
of the separation region explains the improved aerodynamic performance. However, separation
bubbles are still observed behind the troughs, which correspond with the high loss regions shown
in Fig. 10d.

Fig. 11. Isosurface of zero streamwise velocity at i = 8◦: (a) ORI, (b) A2N5

Slices of streamwise vorticity plotted in Fig. 12 provide insight into the locality where the
normalized entropy increase is greater than 1 at i = 0◦ and 8◦ and indicate the development of
counter-rotating vortices along the streamwise direction.

Fig. 12. Slices of streamwise vorticity for A2N5: (a) i = 0◦, (b) i = 8◦
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In Fig. 12a, pairs of counter-rotating streamwise vortices are induced by leading edge tu-
bercles and located behind the troughs. The vorticity generally expands in area and declines in
strength along the streamlines. And the vortical structure is still visible at 100% z/cz . As a kind
of secondary flow, the induced vortices may raise the entropy increase and account for a relati-
vely high loss between LE and TE at the trough section shown in Fig. 9a. It is apparent from
Fig. 12b that two different pairs of counter-rotating streamwise vortices are produced behind
the wave trough. The wall vortices are adjacent to the primary vortices and have an opposite
sense of rotation. The wall vortices gradually disappear along the streamlines and there are only
primary vortices visible downstream 15% z/cz. The strength of primary vortices declines along
the streamlines and there are almost no vortical structures visible downstream 70% z/cz . It
indicates that streamwise vortices feed into the separated flow region and sufficiently interact
with flow separation by transfer of the momentum. The interaction significantly delays the flow
separation near the blade suction side shown in Fig. 11. It should be noted that there is no
flow separation at i = 0◦ and this explains the visible vortical structure at 100% z/cz . The wall
vortices with primary vortices may be related to the loss increase upstream TE at the trough
section and the sharp rise of ∆s at the M0 and middle sections between LE and 20% z/cz in
comparison to the baseline. Another observation that the counter-rotating primary vortices in a
pair go away from each other along the streamlines indicates the spanwise movement of vortices,
which transports momentum in the spanwise direction.
Figure 13 shows distributions of the pressure coefficient on the suction surface and 3D stream-

lines at i = 0◦ and i = 8◦. The pressure coefficient is defined as

Cp =
p− p1
pt1 − p1

(3.1)

where pt1 and p1 mean the reference total pressure and static pressure in the inlet plane. It
is observed in Fig. 13 that the incoming flow is deflected by tubercle geometry such that the
bulk of the flow is redirected behind the trough. The deflection results in the spanwise pressure
gradient, which transports away the low-momentum fluid near the wall from the crests towards
troughs. This pressure gradient also accounts for the production of counter-rotating streamwise
vortices.

Fig. 13. Distributions of the pressure coefficient on the suction surface and 3D streamlines for A2N5:
(a) i = 0◦, (b) i = 8◦

From the above analysis, loss development procedures along the streamwise direction for ORI
and A2N5 cascades are clarified. Loss generations for ORI at i = 0◦ are primarily ascribed to the
viscous boundary-layer near the blade suction side. At a more critical condition of i = 8◦, the flow
separation and consequent recirculation flow occupies the major part of the high loss. For A2N5,
the deflection flow resulted from the tubercle geometry leads to the spanwise pressure gradient
which transports away the low-momentum fluid near the wall from crests towards the troughs.
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The loss increase at the trough section and loss reduction at the crest section are ascribed to
the low-momentum fluid migration in the fore part of the blade. The resulted from the spanwise
pressure gradient, two different pairs of counter-rotating streamwise vortices, wall vortices and
primary vortices locate behind the troughs and extend to the M0 and middle sections in the
spanwise direction at i = 8◦. The interaction between these vortices and the flow separation by
the momentum transfer leads to separation delay and consequent loss reduction at the outlet.

4. Conclusions

Taking the lead from humpback whale flippers, leading edge tubercles are applied in a high
speed compressor cascade. This paper clarifies the influence of tubercles on loss distributions
and elaborate the underlying loss mechanism. Several conclusions are drawn as follows:

• For all configurations of leading edge tubercles investigated in this work, the loss reduction
is achieved both at high negative and high positive incidence angles, while a rise in the
loss is obtained near the design point. A smaller wave number or a smaller wave amplitude
results in lower additional losses at i = 0◦, while a larger wave number brings about
a greater loss reduction. There is no linear relation between the amplitude and loss at
i = 8◦.
• Loss generations for ORI at i = 0◦ are primarily ascribed to the viscous boundary-layer
near the blade suction side. At a more critical condition of i = 8◦, the flow separation
occupies the major part of the high loss. For A2N5, the introduction of leading edge
tubercles turns the uniform spanwise loss distribution into a nonuniform one and leads to
local high loss regions behind the troughs in the fore part of the blade, both at i = 0◦

and 8◦. The flow separation is delayed behind the crests to a greater extent than behind
the troughs, and the loss reduction is achieved over the whole span in the outlet plane at
i = 8◦.
• The loss mechanism of tubercle structures by which the size of the flow separation region
is reduced has been explored. The tubercle geometry results in the deflection flow and
the consequent spanwise pressure gradient. This pressure gradient transports away the
low-momentum fluid near the wall from crests towards troughs and also accounts for the
formation of counter-rotating streamwise vortices, including wall vortices and primary
vortices. The interaction between these vortices and flow separation by the momentum
transfer leads to separation delay and consequent loss reduction.
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In this article, the buckling behavior and bifurcation point of Functionally Graded Piezoelec-
tric (FGP) beams are investigated based on Euler-Bernoulli beam theory. The finite element
method is employed to model the beam in thermal environment. The material properties
of the beam are considered to vary gradually in the thickness direction and the beam is
subjected to electrical and thermal loading. In this paper, direct and inverse piezoelectric
effects are considered and buckling of the beam in the sensor state is investigated. By solving
the eigenvalue problem, the buckling load of the FGP beam is obtained and the effect of
various parameters such as power law index, temperature, applied voltage and beam aspect
ratio on the buckling load are investigated. The results show that the boundary conditions
are the main factor that affects the buckling load of the FGP beam.

Keywords: FGPM beam, buckling load, inverse piezoelectric effect, thermal environment

1. Introduction

In the recent years, smart materials have found more applications as sensors and actuators in
structures. Piezoelectric materials are the most significant materials that are used in structures
for the purpose of monitoring and controlling as sensors and actuators. They are used in elec-
tromechanical, medical and aerospace industries (Takagi et al., 2003). Also Functionally Graded
Materials (FGMs) have received more attention in the recent decades because of their especial
behavior in thermal environments. These materials can endure high thermal stresses and ther-
mal shocks because of smooth distributions of the materials through thickness. New functionally
graded piezoelectric materials are introduced by combining the concept of so called piezoelectric
materials and FGMs. There are many reports on related topics that have been presented in the
last years and some of them are mentioned here. Kapuria and Alam (2004) introduced an efficient
coupled one-dimensional nonlinear zigzag theory for buckling analysis of hybrid piezoelectric be-
ams under electromechanical loading. They used an analytical solution for buckling of simply
supported beams. Li et al. (2006) investigated thermal post-buckling of FGM Timoshenko be-
ams subjected to a transversely non-uniform temperature rise. They used the shooting method
to solve the problem, and the thermal buckling and post-buckling response of FGM Timoshenko
beams with fixed-fixed edges were obtained. Jerome and Ganesan (2010) used a generalized plane
strain finite element formulation for the buckling analysis of piezocomposite beams. They used
a 2D finite element formulation to improve accuracy in prediction of the buckling load of the
piezocomposite. Kiani and Eslami (2010) investigated the buckling load of functionally graded
Euler-Bernoulli beams in thermal environments. In this work, the effect of three types of thermal
loading was investigated on the critical buckling load of FGM beams. Wattanasakulpong et al.
(2011) investigated thermal buckling of FGM beams using third-order shear deformation beam
theory. The Ritz method was adopted to obtain the eigenvalue problem of thermal buckling
in various types of immovable boundary conditions. Kiani et al. (2011) investigated thermo-
-electrical buckling of piezoelectric functionally graded beams based on Timoshenko theory. The
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electric field in the piezoelectric layer was assumed constant through the thickness. The results
were obtained for three types of thermal loading. Fallah and Aghdam (2011) suggested a simple
analytical expression for large amplitude free vibration and a post-buckling analysis of functio-
nally graded beams resting on elastic foundation. Euler-Bernoulli assumptions with von Karman
type nonlinear strain-displacement relations were used to derive the governing equation of mo-
tion. Komijani et al. (2012) investigated non-linear thermo-electrical stability of an FGPM beam
using Timoshenko beam theory. All of thermo-electro-mechanical properties were assumed to
vary in the thickness direction and expressed by a power law distribution. The Ritz finite element
method was used to solve the governing equation. Fu et al. (2012) analyzed buckling and free
vibration of the FGM beam with two clamped ends and surface-bonded piezoelectric actuators
in thermal environments. The governing equation was derived by Hamilton’s principle. Rahimi
et al. (2013) studied the free vibration and post-buckling behavior of functionally graded be-
ams using Timoshenko beam theory. They investigated the post-buckling behavior of the FGM
beams and obtained an exact solution based on the applied axial load. Li and Batra (2013)
achieved an analytical relations between the critical buckling load of a FGM Timoshenko beam
and the corresponding homogeneous Euler-Bernoulli beam subjected to axial and compressive
load for various boundary conditions. Rafiee et al. (2013) investigated nonlinear thermal buc-
kling of carbon nanotube reinforced composite beams with surface-bonded piezoelectric layers.
The governing equations of the beam were obtained based on the Euler-Bernoulli beam theory
and considering von Karman type geometric nonlinearity. The critical temperature at which
buckling occurred was obtained in that article. Esfahani et al. (2013) studied thermal buckling
and post-buckling analysis of FGM Timoshenko beams resting on the non-linear elastic founda-
tion. Different types of boundary conditions such as clamped, simply supported and roller edges
were considered, and the generalized differential quadrature method was employed to solve the
problem. Komijani et al. (2014) analyzed buckling, post-buckling and small amplitude vibrations
of functionally graded beams resting on a nonlinear elastic foundation and subjected to in-plane
thermal loads. The microstructural length scale based on the modified couple stress theory was
used to derive the governing nonlinear equilibrium equations of the FGM beam. Nasirzadeh et
al. (2014) used an exact solution to investigate the stability of FGP beams based on the Euler-
-Bernoulli beam theory. Ghiasian et al. (2015) studied dynamic buckling of the FGM Timoshenko
beam subjected to sudden uniform temperature rise considering imperfection. The analysis was
performed with an assumption of temperature dependency of each thermo-mechanical property
of the FGM beam. The obtained non-linear algebraic equations were solved via the Newton-
-Raphson iterative scheme. Li and Qiao (2015) studied buckling and post-buckling behavior of
shear deformable anisotropic laminated composite beams with initial imperfection subjected to
axial compression. The governing equations were based on the higher order shear deformation
beam theory with a von Karmann type nonlinearity. In that paper, composite beams with the
fixed-fixed, fixed-hinged, and hinged-hinged boundary conditions were considered. The results
were obtained by combining Newton’s iterative method and Galerkin’s method. Chen et al.
(2015) investigated the elastic buckling and static bending of shear deformable functionally gra-
ded (FG) porous beams based on the Timoshenko beam theory. The partial differential equation
was derived based on Hamilton’s principle, and the Ritz method was employed to obtain the
critical buckling load of porous beams.

In this paper, the buckling analysis of FGP beam is investigated considering the inverse
piezoelectric effect. The finite element method is employed to model the beam. The effect of
two different types of thermal loading on the buckling load of the beam is investigated. The
main aim of the study is to evaluate the influence of functional grading of the properties on the
buckling behavior of the beams in thermal environments. Various numerical results are presented
in graphical forms to give an insight into the influence of material composition, loading type
and boundary condition on the buckling load and bifurcation point of the FGP beam.
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2. Theoretical formulation

2.1. Geometry and material definition

The beam has length l, height and width h and b, respectively, which is shown in Fig. 1.
The coordinate system of the FGPM beam oriented in such a way that the x-axis is in the
longitudinal direction in the middle of the beam and the z-axis and y-axis are in the thickness
of the beam up to the plate and perpendicular to it, respectively (Fig. 1).

Fig. 1. Definition of geometry and coordinate system of the FGP beam

With regard to gradual changes in the material properties through the thickness of the beam,
on the basis of the power distribution law, the effective properties of material can be defined as
follows

P (z) = PL + PUL
(1
2
+
z

h

)
(2.1)

where PUL = PU − PL and PL, PU are the properties in the bottom and upper surface of the
FGP beam, respectively.

2.2. Kinematic and constitutive relations

In this study, considering Euler-Bernoulli beam assumptions, the displacement field is pre-
sented as follows (Bathe, 1996)

û(x, z) = u(x)− zw,x ŵ(x, z) = w(x) (2.2)

where ŵ(x), û(x) are beam displacements in the z and x coordinates in a general point, and
w(x), u(x) show the displacement of the beam in mid-plane, and w,x is the beam slope. The
displacement field based on Euler-Bernoulli beam theory allows only the axial component of the
strain component εx and the other components to be zero. The strain-displacement relations
considering non-linear von Karman strain can be defined for the normal strain as

εx = u,x +
1
2
(w,x)2 − zw,xx (2.3)

The characteristic equation of the FGP beam under thermal, electrical and mechanical forces in
matrix form is expressed as follows

σ = Qε− eTE−Qα∆θ D = eε+ kE+P∆θ (2.4)

in which D, E, σ represent vectors of electric displacement, electric field and stress, respecti-
vely. Also the matrices P, k, e, Q and α represents the pyroelectric vector, dielectric matrix,
piezoelectric matrix, elastic stiffness matrix and thermal expansion vector.
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2.3. Thermal and electrical loading

In this paper, the effect of two different types of thermal loading (uniform temperature rise
and linear temperature rise) on the buckling load of the beam is studied. In the first case, the total
volume of the beam is subjected to the temperature rise of ∆θ = θ−θ0 where θ0 is the reference
temperature. In the second case, the upper layer of the beam is subjected to temperature rise
but the lower surface remains in the reference temperature. In this case, by using the narrow
beam assumptions, the heat transfer equation can be solved as follows (Kiani et al., 2011)

θ = θL + θUL
(1
2
+
z

h

)
θUL = θU − θL ∆θ = θ − θ0 (2.5)

where θL and θU are the lower and upper surface temperature of the beam, respectively.
Considering both the direct and reverse piezoelectric effect, the electrical potential function

can be assumed as (Komijani et al., 2013)

V (x, z) = cos(βz)ϕ(x) +
V0z

h
(2.6)

here V0 is the applied electrical potential to the beam, which is a constant value, and ϕ(x) shows
variation of the electric potential in the axial direction and β = π/h. The electric field is described
as follows

Ex = − cos(βz)ϕ,x Ey = 0 Ez = β sin(βz)ϕ(x) −E0 (2.7)

where

E0 =
V0
h

(2.8)

2.4. Governing equations

The governing equation of the beam considering the reverse effect under mechanical, thermal
and electrical loads will be derived by using the principle of minimum potential. Accordingly, it
can be written as

δΠ = δU + δWext = 0 (2.9)

where U is the total potential energy of the beam and Wext is the work of external forces. The
total potential energy of the piezoelectric beam can be defined as follows

δU =
∫∫∫

V

[δεTσ − δETD− δθS] dV (2.10)

It is obvious that

δθ = 0 (2.11)

The electric field variation by considering Eq. (2.7) can be obtained as

δEx = − cos(βz)δϕ,x δEy = 0 δEz = β sin(βz)δϕ (2.12)

The linear part of the strain and the nonlinear part of it can be written as

ε = εL δε = δεL + δεNL (2.13)
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where

δεL = [(δu,x − zδw,xx), 0, 0, 0, 0, 0]T δεNL = [w,xδw,x, 0, 0, 0, 0, 0]T (2.14)

By replacing relations (2.11) to (2.14) in relation (2.10), the total potential energy can be
divided into two types of elastic potential energy and geometrical potential energy in tension.
These equations can be written as

δUela =
∫∫∫

V

[δεTL(QεL − eTE−Qα∆θ)] dV +
∫∫∫

V

[−δET(eεL + kE+P∆θ)] dV

δUgeo =
∫∫∫

V

[δεTNL(QεL − eTE−Qα∆θ)] dV
(2.15)

The work done by external forces acting on the beam can be written as follows

δWex = −δuT
(
fp +

∫

A

fS dA
)
− δϕT

∫

A

qA dA (2.16)

In which qA, fS , fp represents charge density, surface forces and concentrated load, respectively.
By replacing relations (2.15) and (2.16) in the principle of minimum potential energy (Eq. (2.9)),
the total potential energy will be achieved as

δ∓ =
∫∫∫

V

[δεTL(QεL − eTE−Qα∆θ)] dV +
∫∫∫

V

[−δET(eεL + kE+P∆θ)] dV

+
∫∫∫

V

[δεTNL(QεL − eTE−Qα∆θ)] dV − δuT
(
fp +

∫

A

fS dA
)
− δϕT

∫

A

qA dA
(2.17)

2.5. Finite element formulation

To investigate stability behavior of the FGP beam, a two-node beam element is used (Fig. 2)
to model the beam. Each node in the element has 4 degrees of freedom as ϕ, w0,x, w0, u0 which
represent the electric potential, slope, deflection and axial displacement of the beam and as
nodal variables.

Fig. 2. Definition of the 2-node beam element

Dimensionless variables instead of the coordinate variable are used as follows

ξ =
x

a
η =

z

b
(2.18)

By using the Hermite and Lagrange interpolation functions, the axial displacement, vertical
deflection and electrical potential in the beam can be written as

u0 =
2∑

i=1

ψiu
e
0i w0 =

4∑

i=1

ψiΦ
e
i ϕ0 =

2∑

i=1

ψiϕ
e
0i (2.19)
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in which ψi and ψi denote the Lagrange and Hermite interpolation functions, respectively (Bathe,
1996).
Based on the above relationships, the linear and nonlinear strain vector and the electric field

vector are expressed based on nodal variables as follows

εL = BLue ε′NL = BNLu
e E = Bϕϕe +E0 (2.20)

where

E0 =





0
0
−E0





E =





− cos(βz)ϕ,x
0

β sin(βz)ϕ(x)




+





0
0
−E0





BL =




ψ1,x zψ1,xx zψ2,xx ψ2,x zψ3,xx zψ4,xx
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




BNL =




0 ψ1,x ψ2,x 0 ψ3,x ψ4,x
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




Bϕ =



− cos(βz)ψ1,x − cos(βz)ψ2,x

0 0
β sin(βz)ψ1 β sin(βz)ψ2




(2.21)

By using relation (2.20) and replacing it in equation (2.17), the final relation of the FGP
beam in matrix form can be obtained as

(Kuu − σ0KGuu)uet −Kuϕϕet = Fm + Fuθ
Kϕuu

e
t +Kϕϕϕ

e
t = Fϕ + Fϕθ

(2.22)

in which σ0 represents the negative pre-stress in the beam and Kuϕ, KGuu, Kuu and Kϕϕ show
the piezoelectric stiffness, geometric stiffness, elastic stiffness matrix and dielectric permittivity
matrix. Fuθ, Fϕ, Fm and Fϕθ are the thermal expansion, electrical, mechanical and pyro-electric
load vectors in the local coordinate system. They can be defined as below

Kuu =
∫∫∫

V

BTLQBL dV = b
∑

element

1∫

−1

1∫

−1

BTLQBL|J| dξ dη

KGuu =
∫∫∫

V

BTNLσ0BNL dV = b
∑

element

1∫

−1

1∫

−1

BTNLσ0BNL|J| dξ dη

Kϕu =
∫∫∫

V

BTϕeBL]; dV = b
∑

element

1∫

−1

1∫

−1

BTϕeBL|J| dξ dη
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Kϕϕ =
∫∫∫

V

BTϕkBϕ dV = b
∑

element

1∫

−1

1∫

−1

BTϕkBϕ|J| dξ dη (2.23)

Fm =
N∑

i=1

NTuH
Tfpi +

∫

A

NTuH
TfS dA

Fuθ =
∫∫∫

V

BTLQα∆θ dV Fϕ =
∫

A

NTϕqA dA

Fϕθ =
∫∫∫

V

−BTϕP∆θ dV Fϕϕ =
∫∫∫

V

−BTϕkE0 dV

By simplifying relation (2.21)3 based on the electrical potential and combining with Eq. (2.21)2,
the final equation of the FGP beam will be achieved as

(Kuu +KuϕK−1ϕϕKϕu −KGuu)uet = Fm + Fuθ +KuϕK−1ϕϕ(Fϕ +Fϕθ) (2.24)

The above equation expresses the final governing relation of the FGP beam using the finite
element model based on the Euler-Bernoulli theory under thermo-electro-mechanical loading. It
is obvious that based on homogenous and nonhomogeneous equations, the behavior of the beam
will be changed and this is affected by the boundary condition of the beam. It means that if
the boundary condition is in such a way that the problem change to the eigen-value problem,
the beam will buckle, which can be found by solving the eigenvalue problem. Otherwise, if Eq.
(2.24) has a non-zero value on the right hand side of the relation, it will be an ordinary equation
and represent only the bending problem.

3. Results and discussion

3.1. Comparison studies

In this Section, to verify the solution procedure, the results obtained in this paper are
compared with data reported in the literature. The buckling load of the FGP beam is listed
in Table 1 and the results are compared with the values reported by Komijani et al. (2013). The
boundary condition of the beam is clamped in both ends and there is no electrical and thermal
loading on the beam. The eigenvalue problem of Eq. (2.24) is solved and the results are shown
in Table 1. As it is seen from this table, the values of the buckling load of the FGP beam are in
good agreement with the data reported by Komijani et al. (2013).

Table 1. Buckling load of the FGP beam for various power law indexes, L/h = 60, ∆θ = 0,
V0 = 0

Power law index
0 0.2 2 10

Komijani et al. (2013) 6.892e+4 7.171e+4 7.919e+4 8.317e+4
Present study 6.603e+4 7.067e+4 8.010e+4 8.319e+4

3.2. Parametric studies

In this Section, the stability and buckling load of FGP beams will be investigated. The effect
of parameters such as temperature and electrical fields, power law index and aspect ratio of the
beam will be discussed.
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Figure 3 depicts the buckling load of the beam considering the direct and revers piezoelectric
effects based on different power law indexes in various aspect ratios. It is seen that the buckling
load increases with a decrease in the aspect ratio. On the other hand, the critical axial load
increases versus the power law index. This is explained as that the beam is stiffer for higher
power law indexes considering the elastic modulus. Also the sensor-actuator state has a greater
buckling load than the actuator state. This can be explained by considering the sensor stiffness
terms in Eq. (2.21)1.

Fig. 3. The critical buckling load of the FGP beam in sensor-actuator and sensor states versus the
power law index, ∆θ = 0, V0 = 0(v)

Fig. 4. Buckling load of the beam versus the power law index for various constant and linear
temperature rise, L/h = 25, V0 = 500(v)
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Figure 4 compares the effect of uniform and linear temperature fields on the buckling load
versus the power law index. The beam has a clamped-clamped boundary condition and is under
electrical loading (L/h = 25, V0 = 500(v). This figure shows that by increasing the temperature,
the buckling load rises. Also, by increasing the power law index, the buckling load of the beam
increases. This is explained by the difference in the elastic modulus and thermal expansion coef-
ficient of the beam materials, here PZT-4 and PZT-5H. It is worth to note that the buckling load
in thermal environment depends on the aspect ratio, elastic and thermal expansion coefficients.

In the next figures, the parameters kUT and kLT mean the power law index for uniform
temperature rise, linear temperature rise, and k means the power law index under electrical
loading.

Figure 5 compares the effect of uniform and linear temperature changes on the buckling load
of the clamped-clamped beam. The beam has a constant aspect ratio and is under electrical
loading (L/h = 25, V0 = 500(v)). This figure shows that by increasing the power law index, the
buckling load decreases. Also, for a constant power law index, the uniform temperature rise has
a greater effect on the buckling load than the linear one. This is explained by considering the
temperature distribution through thickness of the beam.

Fig. 5. The effect of uniform and linear temperature changes on the buckling load of the beam

Figure 6 depicts the buckling load of the beam versus the power law index under electrical
loading. The beam has an aspect ratio L/h = 25 and is under uniform and linear thermal
loading. It is inferred from this figure that the applied voltage has not a considerable effect
on the buckling load. However, these results show that by increasing the power law index, the
buckling load decreases because of a lower elastic modulus.

Figure 7 shows the deflection of the mid-plane of the beam for various power law indexes
and different aspect ratios. The behavior of the beam is very similar to the buckling analysis,
and the axial force in the bifurcation point increases with an increase in the power law index
and decreases with an increase in the aspect ratio.

Figures 8 and 9 show the bifurcation point of the beam for simply-clamped boundary condi-
tions. These figures show that the bifurcation point for the simply-clamped boundary conditions
takes a larger axial load that the simply-roller one.
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Fig. 6. The buckling load of the beam versus power law index for various electrical loadings

Fig. 7. Deflection of the FGP beam versus axial load for aspect ratios and simply-roller boundary
conditions, ∆θ = 0, V0 = 0(v), k = 0.5

Fig. 8. Deflection of the FGP beam versus axial load for various power law indexes and simply-clamped
boundary conditions, ∆θ = 0, V0 = 0(v), L/h = 25
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Fig. 9. Deflection of the FGP beam versus axial load for aspect ratios and simply-clamped boundary
conditions, ∆θ = 0, V0 = 0(v), k = 0.5

4. Conclusions

In this paper, buckling and bifurcation point of the Functionally Graded Piezoelectric (FGP)
beams are investigated based on the Euler-Bernoulli beam theory in a thermal environment by
using the finite element method. All mechanical and electrical properties of the beam are consi-
dered to change gradually in the thickness direction of the beam, and the inverse piezoelectric
behavior of the beam is investigated. In addition, the effects of various parameters of the beam
such as the power law index, temperature, applied voltage and the aspect ratio on the buckling
and bifurcation point of the beam are investigated. The results show that because of the coupled
electro-mechanical nature of the FGP beams, some boundary conditions have stable behavior
while some others are unstable in thermal environments. Also, considering the inverse effect of
the piezoelectricity increases the buckling load of the FGP beam.
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In this paper, a new method based on the Continuum Damage Mechanics (CDM) and the
Genetic Algorithm and Radial Basis Function neural network method (GARBF) is propo-
sed to predict fatigue life of LY12CZ notched plate. Firstly, the multiaxial fatigue damage
evolution equation is derived, and the fatigue life of the notched specimen is predicted based
on the CDM method. Secondly, the RBF method is introduced to modify the relative devia-
tion between the theoretical result and actual life. According to the drawbacks of the RBF
method, the GA is adopted to optimize network parameters to effectively improve the model
quality and reduce the training error. Then, the verification test indicates that the combined
method of CDM and GARBF is able to reduce the average relative error of the results of
fatigue life prediction to about 7%, which shows that the new method to predict the fatigue
life is more reliable. At last, compared with the predicted results of the traditional Back
Propagation (BP) neural network, the GARBF model proposed in this paper has a better
optimization effect and the result is more stable. This research provides a feasible way to
predict the fatigue lives of the notched plate based on the CDM and GARBF method.

Keywords: life prediction, CDM, LY12CZ, notched plate, GARBF

1. Introduction

In practical applications, many engineering structures are subject to cyclic loads, and fatigue
damage is a common form of failure (Schijve, 2001; Zhan et al., 2013). Fatigue damage is a pro-
gressive and localized material behavior which occurs when a structure component is subjected
to cyclic loading. Fatigue cracks are prone to initiate at the positions of notches and geometrical
irregularity due to stress concentration. The notch is considered as one of the most important
problems in the design of structure components. Different from the uniaxial fatigue problem,
the fatigue damage of a notched component involves multiaxial stress and strain states. So, it is
important to present a method for fatigue life prediction of notched plates.
In the past decades, many researchers have been focused on the fatigue experiment and sta-

tistic analysis (Suresh, 1998), which is a general method of fatigue life prediction in engineering.
However, this method takes too much time and sometimes the result is not satisfactory. So, it is
necessary to find an easy and reliable method. The critical plane approach (Karolczuk and Ma-
cha, 2005) and stress invariant approaches (Li et al., 2000) have been widely used in researches
and applications. However, these approaches often fail to capture the fatigue damage evolution
such as material degradation due to damage. Fatigue accumulation damage theory (Lemaitre
and Chaboche, 1990; Zhan et al., 2015b, 2016, 2017c) is considered to be one of the most ef-
fective methods for fatigue life prediction. The Continuum Damage Mechanics (CDM) provides
an effective method to describe degradation of mechanical properties of materials, which take
into account damage evolution using the concept of effective stress and has been widely used in
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recent years (Movaghghar and Lvov, 2012; Upadhyaya and Sridhara, 2012; Zhang et al., 2015a,
2017a,b).
While the methods based on the damage law are carried out, such problems also attract

some researchers engaged in the machine learning field. They attempt to take the advantages
of machine learning theories in complex system modeling to enhance the accuracy of fatigue
life prediction. Pujol and Pinto (2011) proposed a novel method based on neural network to
predict the fatigue life. Guo et al. (2014) introduced the support vector machine (SVM) method
to predict the life of the packaging EMC material. Liu and Xuan (2008) adopted the rough sets
theory to analyze important affecting parameters on low cycle fatigue life. The fatigue life pre-
diction is a complicated problem. There is a large amount of non-linear and non-smooth factors
that rapidly influence the actual material life. Compared to traditional theoretical methods, the
artificial neural network (ANN) method can better overcome these difficulties (Gao et al., 2015,
2016; Monteiro et al., 2016; Nagarajan and Jonkman, 2013; Reid etal, 2013). Introducing the
ANN method into the solution of fatigue life prediction has several advantages: (1) ANN is able
to approximate any non-linear and non-smooth function with any accuracy; (2) ANN has strong
anti-interference ability and good robustness; (3) The ANN structure is suitable for parallel data
processing, and the computation is efficient and fast; (4) ANN has good generalization ability.
In this paper, the Radial Basis Function (RBF) neural network method is adopted to predict
the fatigue life for LY12CZ notched plate. Some researches have shown that the RBF neural
network has better optimal approximation ability than the traditional Back Propagation neural
network (BPNN). Compared to BPNN, the RBF model has fewer parameters to be learnt. The
RBF neural network is composed of 3 layers: an input layer, a hidden layer and an output layer.
After suitable data pre-processing, the data will be imported into the hidden layer. The hidden
layer consists of several neurons, and each neuron can be regarded as a cluster center which is
able to generate the local response by the inputs. When the distance between the inputs and
the cluster center are close enough, the hidden neuron will make a non-zero response. The final
output of the RBF network is equal to a linear combination of all hidden layer neuron responses.
There are also some defects in the use of the RBF method. The RBF is not good at global

searching and is easy to fall into the local minimum. In this paper, the Genetic Algorithm (GA)
is adopted to optimize the training process of the RBF model. The GA is developed based
on the biological evolution process. Several biological concepts such as reproduction, crossover,
mutation, competition are introduced into the GA algorithm. The GA will adjust and improve a
series of feasible solutions in the process of evolution, and finally find the optimum solution in the
whole multi-dimensional space. The GA is a global optimization algorithm, so it can effectively
overcome the drawbacks of traditional methods (Camacho-Vallejo et al., 2015; Goldberg and
Samtani, 2015; Zhan et al., 2015c).
In this paper, the continuum damage mechanics (CDM) and an optimization model compo-

sed of the Genetic Algorithm and Radial Basis Function neural network method (GARBF) are
proposed to conduct the fatigue life prediction for LY12CZ notched plate in the case of cyclic
loading using the framework is shown in Fig. 1. Firstly, the multiaxial fatigue damage evolution
equation is derived. Secondly, according to the fatigue experimental data, the material para-
meters in the damage evolution equation are identified. Then the fatigue life prediction of the
notched specimen is conducted. On the basis of the CDM method, the Radial Basis Function
(RBF) method is introduced to modify the relative deviation between the theoretical result and
actual life. In addition, the Genetic Algorithm (GA) is adopted to improve the RBF training
effect in order to obtain a more reliable optimization model (GARBF). Finally, the verification
test indicates that the combined method of CDM and GARBF is able to reduce the average
relative error of fatigue life prediction to about 7%, and the life prediction result is more re-
liable. Compared to the traditional backpropagation (BP) neural network, the GARBF model
proposed in this paper has a better optimization effect and the result is more stable.
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Fig. 1. The framework of the methodology

2. The fatigue damage evolution model

In uniaxial cycle loading, based on the remaining life and continuum damage concepts, the
fatigue cumulative damage model can be illustrated as (Zhan et al., 2015c)

Ḋ =
dD

dN
= [1− (1−D)β+1]α(σmax,σm)

[ σmax − σm
M(σm)(1 −D)

]β
(2.1)

where D is the damage scalar variable and N is the number of cycles. σmax and σm are, re-
spectively, the maximum and mean applied stress. β is a material parameter. The expression of
α(σmax, σm) is defined as

α(σmax, σm) = 1− a
〈σmax − σf (σm)

σu − σmax

〉
(2.2)

where σu is the ultimate tensile stress, σl0 is the fatigue limit for fully reversed conditions. a and
b1 are material parameters. The expression of M(σm) is defined as

M(σm) =M0(1− b2σm) (2.3)

where M0 and b2 are material parameters. The number of cycles to failure NF for a constant
stress condition is obtained by integrating Eq. (2.1) from D = 0 to D = 1, leading to

NF =
1
1 + β

1

aM−β0

〈σu − σmax〉
〈σmax − σf (σm)〉

( σa
1− b2σm

)−β
(2.4)

where σa is the stress amplitude during one loading cycle.
In the practical engineering application, the stress and strain are always multiaxial. The

damage evolution law in the case of multiaxial loading is given as follows

Ḋ =
dD

dN
= [1− (1−D)β+1]α

( AII
M0(1− 3b2σH,m)(1−D)

)β
(2.5)

where AII is the amplitude of octahedral shear stress and σH,m is the mean hydrostatic stress.
The parameter α is defined by

α = 1− a
〈 AII −A∗II
σu − σe,max

〉
(2.6)
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where σe,max is the maximum equivalent stress which is calculated by maximising the von Mises
stress over a loading cycle. The Sines fatigue limit criterion A∗II in this model is formulated by

A∗II = σl0(1− 3b1σH,m) (2.7)

By integrating of Eq. (2.5) from D = 0 to D = 1 for a constant stress condition, the number of
cycles to failure NF is

NF =
1
1 + β

1

aM−β0

〈σu − σe,max〉
〈AII −A∗II〉

( AII
1− b2σH,m

)−β
(2.8)

3. The material parameters identification

The static properties of LY12CZ aluminium alloy and fatigue experiment results can be consulted
from a handbook (Wu, 1996), and the static mechanics properties are presented in Table 1. In
the modified damage evolution law, there are five parameters in the damage evolution equation.
The four material parameters (β,M0, b1, b2) can be determined by fatigue experimental data of
smooth specimens. For smooth specimens under conditions of uniaxial fatigue loading, an S-N
curve has been derived. When fatigue tests are carried out at a fixed stress ratio, the relation
between the number of cycles to failure NF and the maximum stress σmax can be obtained.
Parameters β and 1/[(1 + β)aM−β0 ] come from stress-controlled (R = −1) fatigue tests stress-
-life data. With the least square method, parameters b1 and b2 can be obtained from the fatigue
tests data at other different stress ratios. Then the independent parameters β and aM−β0 will be
used in the incremental damage formulation (Zhan et al., 2017d), and a is identified numerically
by using the fully reversed fatigue test data for the notched specimens. Finally, the identified
damage evolution parameters are listed in Table 2.

Table 1. Static properties of LY12CZ aluminium alloy

E [GPa] ν [–] σb [MPa] σs [MPa]

73 0.3 466 343

Table 2. Material parameters in the fatigue damage evolution equation

a β M0 b1 b2

0.62 1.76 712398 0.0001 0.0002

4. Fatigue life prediction for LY12CZ notched plate

Two kinds of the LY12CZ notched specimen are used and geometric profiles of which are shown
in Fig. 2. The corresponding stress concentration factors KT are 2 and 4, respectively. The
fatigue load, stress ratio and the predicted fatigue lives under different stress levels are shown
in Table 3.

5. Introduction of an RBF neural network model

The establishment of a theoretical model (CDM) provides an important basis and foundation for
the solution of notched specimen fatigue life prediction. As shown in Table 3, there is about 20%



Life prediction for LY12CZ notched plate based on... 1113

Fig. 2. The geometric profile of the notched specimen (dimensions in mm): (a) KT = 2, (b) KT = 4

Table 3. Comparisons between experimental lives and predicted results

Stress σmax Experimental Numerical Error
ratio [MPa] life results [%]

KT = 2

−0.2 175 34160 26370 22.80
−0.09 155 114000 90450 20.66
0.02 137 217200 238000 9.58
0.25 112 1094000 1354000 23.77
0.4 100 9490000 8035000 15.33
0.4 300 85390 74300 12.98
0.60 262 226100 288900 27.77
0.68 250 778600 881350 13.20
0.75 240 2037000 1672000 17.92
0.79 235 2445000 1906000 22.04

KT = 4

0.02 137 45350 35700 21.28
0.25 112 180900 157500 12.93
0.4 100 646000 803200 24.33
0.55 90 2458000 2079000 15.42
0.60 87 3319000 2885000 13.08
0.60 262 45320 36500 19.46
0.68 250 64200 78300 21.96
0.75 240 190400 174000 8.61
0.83 230 753200 845400 12.24
0.91 220 1483000 1727000 16.45

deviation between the actual fatigue life and the results calculated by CDM. The deviation is
mainly due to several factors: (1) some parameters in the theoretical model are not accurate;
(2) there are structural defects in the theoretical model; (3) experimental environment and
hardware conditions lead to certain system errors. In a word, the deviation is appeared by
complicated reasons. It is difficult to develop a theoretical approach to calculate. Therefore, the
RBF neural network method is adopted to modify the CDM model to obtain a more reliable
fatigue life prediction result.
The RBF neural network model is composed of 3 layers: an input layer, a hidden layer

and an output layer. Its topological structure is shown in Fig. 3. There are two neurons in the
input layer, one stands for the stress ratio R and another represents the ultimate stress σmax.In
order to enhance the training efficiency and speed up the convergence rate, the input data will
be standardized (σmax, R) before imported into the hidden layer. Each weight from the input
layer to the hidden layer is equal to 1. The neuron number in the hidden layer is set as h, and
each neuron represents a cluster center which is corresponding to the basis vector. The Gauss
function is selected as the radial basis function. The input sample in the training set is denoted
as:X = [x1, x2, . . . , xi, . . . , xp]T, and each sample contains 2 dimension data: xi = (σmax, R). The
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Fig. 3. The topological structure for an RBR neural network model

output label ∆N = [∆N1,∆N2, . . . ,∆N i, . . . ,∆Np]T is the relative deviation percent between
the actual life NA and the theoretical result NF , expressed as: ∆N i = (NA −NF )/NF . p is the
total sample number in the train set. The response output O1ij from the i-th sample to the
j-th neuron in the hidden layer can be calculated by Eq. (5.1), in which σ is the variance of the
Gauss function, cj stands for the j-th cluster center, ‖xi−cj‖ represents the Euclidean distance
between the input vector xi and cj

O1ij = exp
(
− 1
2σ2
‖xi − cj‖2

)
(5.1)

The final output N of the RBF model is the relative deviation percent between the actual life
and the theoretical result. The output is calculated by a linear combination of all Gaussian
function outputs in the hidden layer. wj is the weight from the j-th neuron in the hidden layer
to the output. Then, the final output for the i-th sample can be calculated as

O2i =
h∑

j=1

wjO1ij =
h∑

j=1

wj exp
(
− 1
2σ2
‖xi − cj‖2

)
(5.2)

6. The learning process for the RBF neural network model

The learning process for the RBF model is divided into the unsupervised learning stage and the
supervised learning stage.

6.1. Unsupervised learning stage

In the unsupervised learning stage, the K-means method is used to automatically cluster
the sample data and locate the center of each Gaussian kernel function. The iteration step is
shown as below.

Step 1. Initialization: h points are random selected as the initial cluster center

c1(σ1, R1), c2(σ2, R2), . . . , ci(σi, Ri), . . . , ch(σh, Rh)

Step 2. Clustering: Each point is sorted out into the corresponding cluster by the principle of
proximity.
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Step 3. Adjustment of the clustering center: The new position of each clustering center is
updated by calculating the average value of sample points. If all the clustering centers are
not changed any more, then the current centers will be regarded as the Gaussian kernel
function centers in the hidden layer of the RBF model, the iteration ends; Else, back to
Step 2.

6.2. Supervised learning stage

On the basis of theK-means clustering result in the unsupervised learning stage, the variance
of the Gaussian kernel function in the hidden layer can be obtained by Eq. (6.1), in which
dmax represents the maximum distance between the clustering centers

σ =
dmax√
2h

(6.1)

After the determination of the clustering centers c = (c1, c2, c3, . . . , ci, . . . , ch) and the variance σ,
the weight matrix can be calculated by solving the linear system in Eq. (6.2) with the least
squares method



w11 w12 · · · w1h
w21 w12 · · · w2h
w31 w12 · · · w3h







O11
O12
...

O1h



=



y1
y2
y3


 (6.2)

7. Optimization of the RBF model based on a GA algorithm

The selection of the Gaussian kernel center is the core element of the RBF neural network
design. In order to improve the neural network quality and reduce the training error, a Genetic
Algorithm is adopted to optimize the initial position of each Gaussian kernel center. Chromosome
encoding, fitness function selection and definition of the genetic operator are 3 parts of the GA
algorithm design.

7.1. Chromosome encoding

When a GA is used to solve a numerical optimization problem, the binary code cannot
achieve very good results. Therefore, the real number chromosome encoding is adopted, as
shown in Fig. 4. Each chromosome is composed of several gene segments, and each segment
represents a certain Gaussian kernel center position ci(σi, Ri).

Fig. 4. A sample of chromosome encoding

7.2. The fitness function and the roulette selection probability

The fitness function is used to evaluate the accuracy of calculated results. According to the
previous discussion, the objective function of RBF training is expressed as Eq. (7.1)1, and the
definition of the fitness function is shown in Eq.(7.1)2
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E =
1
2

i=p∑

i=1

(O2i − yi)2 Fitness =
1
E

Pk =
Fitnessk

i=Pop∑
i=1
Fitness i

(7.1)

For the k-th individuals in the population, its probability of being chosen for evolution is calcu-
lated by the individual fitness and the total fitness, as shown in Eq. (7.1)3. The selection process
is carried out by the roulette mode, as shown in Fig. 5. The whole disc area represents the total
fitness of the population, and the fitness of each individual is corresponding to a certain sector
area. The area the pointer finally stays determines which individual is selected. In this way, a
higher individual fitness means a greater possibility of being chosen, while a lower fitness also
has a little possibility to evolve.

Fig. 5. The roulette choosing mode

7.3. Genetic operator: crossover and mutation

The purpose of the genetic operator is to preserve good chromosomes into the next gene-
ration. Assuming the crossover operator is happening on the k-th gene segment of the parent
chromosome chi = {chi1, chi2, . . . , chik, . . . , chim} and chj = {ch

j
1, ch

j
2, . . . , ch

j
k, . . . , ch

j
m}, then the

real numbers of the k-th gene segment in the two new chromosome (chis, chjs) are calculated by
Eq. (7.2), where ψ is the crossover possibility and set as 80%.

chisk = ψch
i
k + (1− ψ)chjk chjsk = ψch

j
k + (1− ψ)chik (7.2)

Each gene segment is composed of 2 normalized data: the stress ratio and the ultimate stress.
Therefore, the crossover process between the parents is equivalent to calculation of two symmetric
definite proportionate inserted points in a straight line defined by (σik, R

i
k) and (σ

j
k, R

j
k), as shown

in Fig. 6.

Fig. 6. The crossover process between 2 parent chromosomes

Different from binary coding, the mutation operator of real number encoding is to add a
random bias d to the selected gene segment, denoted as: chisk = ch

i
k + d. The mutation operator

ensures diversity of population, and its probability is set as 3%.
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7.4. The training process of the GARBF model

The GA algorithm is adopted to optimize the Gaussian kernel center positions in the hidden
layer during the RBF training process, and the iteration step is shown as below.

Step 1. Randomly initialize the population (random selection of the clustering center position
in the hidden layer), and encode the chromosomes.

Step 2. Calculate the fitness of each individual in the population, and select the optimal indi-
vidual.

Step 3. If the number of generation reaches the maximum or the optimal individual satisfies
the requirements of training accuracy, go to Step4; Else, the next generation of population
will be produced by the 3 genetic operator: mutation, crossover and selection, then go to
Step 2.

Step 4. The chromosomes are anti-encoding and the initial clustering center positions
c1, c2, . . . , ch in the hidden layer are obtained.

Step 5. The parameters of the RBF model are trained by the supervised learning method, the
iteration ends.

All the experimental data are divided into two parts, 80% for training and 20% for the
verification test. There is no intersection between the training set and the test set. The training
error descent curve by the GARBF and RBF method are shown in Fig. 6. When the iteration
epoch is less than 30, the optimization effect of the GA is not obvious, just as the red circle
region shown in Fig. 7; As the iteration epoch is increasing, it is indicated that the GARBF
method is superior to simple use of the RBF method in both the convergence rate and training
error aspect. After about 430 epochs, the training error is reduced and converged to 0.0017.

Fig. 7. The training error descent curve of GARBF and RBF models

8. The combined method of CDM and GARBF

The CDM and GARBF method are combined to accurately predict the fatigue life for LY12CZ
notched plate. On the basis of the establishment of the CDM model, the trained GARBF model
is adopted to modify the theoretical result and obtain the prediction life. In the verification
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test, NF represents the theoretical result calculated by the CDM model, and NGARBF stands
for the result after being modified by the trained GARBF model, NA actual life measured in
the experiment. The relative error percent between NF and NA is denoted as eFA, and the
relative error percent between NGARBF and NA is denoted as eGARBF . eFA and eGARBF can be
calculated by Eq. (8.1). Under the two conditions of KT = 2 and KT = 4, the distributions of
eFA and eGARBF are shown in Fig. 8, in which X and Y label respectively mean the input value
of σmax and R. The red circles mean the relative error exceed 20%, while the blue ones mean
that the relative error is less than 5%. The distribution of the relative error indicates that the
prediction results modified by the trained GARBF will be closer to the actual life in the whole.
The combined method of CDM and GARBF proposed in this paper is effective and reliable

eF =
NF −NA

NF
· 100.0% eGARBF =

NGARBF −NA

NGARBF
· 100.0% (8.1)

Fig. 8. The distribution of relative error calculated by CDM and CDM + GARBF

The combination method proposed in this paper is composed of a theoretical model (CDM)
and an optimization model (GARBF). Actually, the selection of optimization model is not uni-
que. In order to compare the effects of different optimization models, Table 4 respectively presents
the optimization performances by traditional BPNN and GARBF models under the same verifi-
cation test data. The statistic results indicate the average relative error of GARBF is 6.85%, and
the average relative error calculated by BPNN is 7.2%. The two methods have a similar optimi-
zation effect of the average relative error. However, the GARBF model is much better than the
BPNN model when comparing the variance of the relative error (DBP = 6.0,DGARBF = 2.49).
Figure 9 shows the relative error optimized after BPNN and GARBF under a fixed value of KT

and R. The distribution of the relative error indicates that the optimization effect of GARBF is
more stable in the whole, while some calculations of BPNN seem to fluctuate significantly. The
GARBF method adopts Gaussian kernel as the activation function that means the response will
close to 0 when the input data is far from the cluster centers. The BPNN method uses the sigmo-
id function which has a large output region. Therefore, when the input data is a set of “strange
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data” that has not been trained, the output of the BPNN maybe seriously far from the true
one, while the GARBF model will output a relative small value and choose to believe the results
calculated by CDM theory. In a word, the optimization effect of GARBF is more reliable and
stable.

Fig. 9. The error distribution optimized by BPNN and GARBF under a fixed value of KT and R

9. Conclusions remarks

In this paper, a new method based on the CDM and GARBF neural network method is proposed
to predict the fatigue life of LY12CZ notched plate. Some important conclusions are summarized
as follows:

• The multiaxial fatigue damage evolution equation is derived and the theoretical model for
fatigue life prediction of LY12CZ notched plate is established. The predicted results based
on the CDM method tally with the fatigue experimental results.
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Table 4. Optimization effect comparisons between the BPNN and GARBF model

Stress σmax Relative error Relative error
ratio [MPa] of BPNN [%] of GARBF [%]

KT = 2

−0.2 175 14.78 9.07
−0.09 155 5.09 5.64
0.02 137 0.84 4.04
0.25 112 14.73 10.69
0.4 100 17.79 8.79
0.4 300 2.44 7.06
0.60 262 2.09 6.27
0.68 250 15.16 7.16
0.75 240 2.14 3.05
0.79 235 1.76 2.88

KT = 4

0.02 137 10.85 12.03
0.25 112 16.48 8.48
0.4 100 3.47 7.66
0.55 90 2.85 5.64
0.60 87 6.93 3.95
0.60 262 2.87 5.41
0.68 250 3.98 3.83
0.75 240 15.54 8.54
0.83 230 1.6 7.55
0.91 220 2.65 9.27

Mean relative error [%]: eBP = 7.2, eGARBF = 6.85
Variance of relative error [%2]: DBP = 6.0, DGARBF = 2.49

• The RBF method is introduced to modify the relative deviation between the theoretical
result and the actual life. The verification test indicates the combined method of CDM and
GARBF is able to reduce the average relative error of the results of fatigue life prediction
to about 7%, which shows that the new method to predict the fatigue life is more reliable.
• Compared to the traditional BPNN model, the GARBF model proposed in this paper
has a better optimization effect and the result is more stable. When the input is a set of
“strange data” that has not been trained, the output of the BPNN may be seriously far
from the true output in some local region, while the GARBF model will output a relative
small value and choose to believe the results calculated by CDM theory.
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In this paper, a new formulation based on the method of fundamental solutions for two/three-
-dimensional steady-state heat conduction problems involving internal curved line/surface
heat sources is presented. Arbitrary shapes and non-uniform intensities of the curved heat
sources can be modeled by an assemblage of several parts with quadratic variations. The
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method. Our analyses have shown that the presented mesh-free formulation is very efficient
in comparison with conventional boundary or domain solution techniques.
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1. Introduction

Heat conduction and thermoelasticity involving boundary or domain heat sources have been
subject of many studies in the last years, and they are still active areas of researches (e.g. Ro-
gowski, 2016; Hidayat et al., 2017). In real applications, it is quite often to have internal heat
sources concentrated on points, lines or curved paths due to electrical heating or some other heat
sources like laser beams. As examples, we can mention infrared heating, a method of electric he-
ating that is frequently used in the metallurgy and textile industries, laser beam heating/welding
that is used in automotive and aerospace industries, and friction heating for material processing
and joining. Despite several analytical solutions for simple problems involving concentrated heat
sources (e.g. Chao and Tan, 2000; Han and Hasebe, 2002), practical problems with complicated
conditions still need to resort to numerical tools. The accuracy analysis of the domain solution
methods such as the finite element method (FEM) depends on the mesh density especially near
the concentrated heat source. As powerful alternative approaches, the boundary methods such
as the boundary element method (BEM) and the method of fundamental solutions (MFS) only
require boundary discretization.
To date, the BEM has been effectively used to solve direct and inverse problems containing

concentrated sources of heat generation. Le Niliot (1998) proposed a boundary element formu-
lation for identification of the intensity of point heat sources in diffusive systems. In another
work, Le Niliot and Lefèvre (2001) proposed a BEM to identify the location and strength of
multiple point heat sources in a transient heat conduction problem. Karami and Hematiyan
(2000a,b) proposed a formulation based on the BEM for direct and inverse analyses of heat
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conduction problems containing concentrated sources of heat generation. They presented an
exact implementation of a source of heat generation concentrated on a point or a line in the
BEM formulation. Shiah et al. (2005) analyzed two-dimensional thermo-mechanical problems
containing point sources using the BEM. They could solve the problem with boundary-only
discretization. In another research, Shiah et al. (2006) used the direct domain mapping (DDM)
technique to analyze 2D and 3D heat conduction problems in composites consisting of multi-
ple anisotropic media with embedded point heat sources. Hematiyan et al. (2011) presented a
formulation based on the BEM for analysis of two and three dimensional thermo-elastic pro-
blems involving point, line and area heat sources. They only employed boundary discretiza-
tion in their formulation. However, their proposed formulation considered only straight line
and flat surface heat sources with a linear variation of the heat source intensity. Moham-
madi et al. (2016) used the BEM for analysis of two- and three-dimensional thermo-elastic
problems involving arbitrary curved line heat sources. They effectively solved the problem
without considering any internal points/cells; but they did not consider curved surface heat
sources.

The present work uses the MFS to analyze problems of 2D/3D heat conduction involving
internal concentrated heat sources. In this paper, the MFS, a widely applied meshless method,
is shown to be very efficient for the analysis on account of which the benefit is that no inter-
nal points/nodes are required for the modeling. Similar to the BEM, the MFS is applicable
when a fundamental solution of the problem is known. However, the important advantage of
the MFS over the BEM is that the MFS is an integration-free method and it can be easi-
ly implemented for problems especially in three-dimensional and irregular domains. The basic
idea of the MFS is to approximate the solution as a linear combination of fundamental so-
lutions. The singularities (sources) of the fundamental solutions are located outside the phy-
sical domain of the problem. The MFS solutions exactly satisfy governing equations of the
problem and approximately satisfy boundary conditions. In the study carried out by Fair-
weather and Karageorghis (1998), the development of the MFS in the past three decades was
explained.

The equation governing steady-state heat conduction in a medium with a heat source is
the standard Poisson equation. To solve Poisson’s equation using the MFS, a particular so-
lution corresponding to the heat source term in addition to a homogeneous solution of the
Laplace equation should be found. Two important methods proposed to calculate this par-
ticular solution are the Atkinson method (1985) and the dual reciprocity method (DRM)
(Partridge et al., 1992). In Atkinson’s method, the particular solution is taken to be a New-
ton potential and is obtained by evaluating a domain integral. Poullikkas et al. (1998) used
this method for solving inhomogeneous harmonic and biharmonic problems. In the DRM, the
particular solution is approximated by a series of basis solutions. As an example, Golberg
(1995) used this method to solve Poisson’s equation without a boundary or domain discre-
tization.

In this work, the MFS is formulated for 2D/3D problems of heat conduction involving in-
ternal heat sources concentrated on curved lines/surfaces. Although the MFS has been widely
used for analysis of heat conduction problems in different conditions (e.g. Ahmadabadi et al.,
2009; Kołodziej et al., 2010; Mierzwiczak and Kołodziej, 2012); however, to the authors’ know-
ledge, the MFS formulation for analysis of internal curve line/surface heat sources has not been
presented yet. The method presented here can be simply employed without considering any
internal points/nodes and, therefore, it preserves the attractiveness of the MFS as a boundary-
-type mesh-free method. Several two- and three-dimensional numerical examples are presented
at the end to show that the proposed formulation is very efficient to yield accurate results in
comparison with the BEM and FEM.
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2. MFS formulation for steady-state heat conduction in a domain including heat
sources

Consider an isotropic medium Ω with its boundary Γ (Fig. 1). In the presence of heat sources,
the governing equation of steady-state heat conduction can be expressed as follows

∇2τ(x) = −s(x)
k

x ∈ Ω (2.1)

where ∇2 represents the Laplace operator, τ is temperature, k is thermal conductivity, and
s(x) is a known function describing the heat source distribution.

Fig. 1. Domain Ω, boundary Γ and pseudo boundary Γ ′

Boundary condition in a generalized form can be written as follows

f1τ + f2
∂τ

∂n
= f3 on Γ (2.2)

where f1, f2 and f3 are given functions on the boundary and n is the normal direction.
In the MFS, the solution to Poisson equation (2.1) is approximated by a linear combination

of fundamental solutions of the Laplace equation and a particular solution

τ(x) =
N∑

j=1

ajτ
∗(x, ξj) + τp(x) (2.3)

where ξj and aj are the known location and unknown intensity of the j-th source located on
the pseudo-boundary Γ ′ (Fig. 1), respectively. x is a point in the domain or on the boundary of
the solution domain, and N is the number of sources. τ∗ represents the fundamental solution to
the Laplace operator that is given as follows

τ∗(x, ξj) =





−1
2π
ln(r(x, ξj)) for 2D
1

4πr(x, ξj)
for 3D

(2.4)

where r(x, ξj) is the distance between the field point x and the source point ξj . τp(x) is the
particular solution to equation (2.1) associated to the heat source function s(x) that can be
concentrated on a part of the domain or distributed over the entire domain. The particular
solution can be obtained by constructing the associated Newton potential in the following domain
integral form

τp(x) =
1
k

∫

Ω

s(ξ)τ∗(x, ξ) dV (ξ) (2.5)
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Efficient evaluation of this domain integral is very important in the MFS to maintain the attrac-
tiveness of the method. If one can evaluate the domain integral in Eq. (2.5) without considering
any internal cells/points, the attractiveness of the MFS is preserved.
The constants aj (with the unit m◦C in the SI system) are unknown intensities of the

sources and they have to be found. To find these unknowns, we consider N boundary points
y1,y2, . . . ,yN that are a priori located on Γ and collocate the corresponding boundary condition
at these points. From Eqs. (2.2) and (2.3), the following equation is obtained

N∑

j=1

aj
[
f1(yi)τ∗(yi, ξj) + f2(yi)

∂τ∗(yi, ξj)
∂n

]
= f3(yi)

−
[
f1(yi)τp(yi) + f2(yi)

∂τp(yi)
∂n

]
i = 1, 2, . . . , N

(2.6)

which represents a system of N linear equations with N unknowns. In general, one can write
system (2.6) as follows

AX = F (2.7)

where the components of the matrix A ∈ RN×N and the vectors F ∈ RN and X ∈ RN are
expressed as follows

Aij = f1(yi)τ∗(yi, ξj) + f2(yi)
∂τ∗(yi, ξj)

∂n

Fi = f3(yi)−
[
f1(yi)τp(yi) + f2(yi)

∂τp(yi)
∂n

]
Xi = ai

(2.8)

By selecting a suitable configuration for boundary and source points, Eq. (2.7) can be solved by
standard methods such as the Gaussian elimination method.
In the next Section, the method for computation of the particular solution τp(x) using Eq.

(2.5) for the special case of heat sources concentrated on a curved line/surface is described.

3. Formulations for heat sources concentrated on a curved line/surface

In this Section, particular solutions associated to curved line/surface heat sources in the MFS
are presented. For the 2D case, curved line sources, while for the 3D case, both curved line and
curved surface sources are considered.

3.1. Curved line heat source in 2D problems

At first, the formulation for a curved line heat source with a quadratic shape is presented.
It is also assumed that the intensity of the source has a quadratic variation along the heat
source. An arbitrary curved line heat source can be modeled by several quadratic heat sources.
A domain including a general curved line heat source and a part of the source modeled as a
quadratic line heat source is illustrated in Fig. 2. Each quadratic line heat source is discretized
by three points. The intensity per unit length of the source at the starting point (x1, y1), middle
point (x2, y2), and end point (x3, y3) are represented by g1, g2, g3, respectively.
Assuming a quadratic variation for the intensity of the heat source, s(x) can be given as

follows

s(η) = N1g1 +N2g2 +N3g3 (3.1)
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Fig. 2. An arbitrary curved line heat source modeled as several quadratic line heat sources

where the quadratic shape functions Ni are

N1 =
1
2
η(η − 1) N2 = −(η + 1)(η − 1) N3 =

1
2
η(η + 1) (3.2)

where η is a dimensionless local coordinate aligned with the quadratic segment that varies from
−1 to 1.
Domain integral (2.5) for the quadratic line heat source can be expressed as follows

τp(x) =
∫

L

s(ξ)
k
τ∗(x, ξ) dl (3.3)

where dl is an infinitesimal element along the quadratic line heat source. Substituting τ∗ in the
2D case from Eq. (2.4) into Eq. (3.3) results in

τp(x) =
−1
2πk

∫

l

s(ξ) ln[r(x, ξ)] dl (3.4)

where r(x, ξ) =
√
(x− xs)2 + (y − ys)2 is the distance between the field point x = (x, y) and

the source points ξ = (xs, ys) on the quadratic line heat source. xs and ys can be expressed in
terms of the three points of the quadratic line heat source as follows

xs = (N1x1 +N2x2 +N3x3) ys = (N1y1 +N2y2 +N3y3) (3.5)

Using Eqs. (3.5), the infinitesimal element dl in Eq. (3.4) can be expressed as

dl =
√
dx2s + dy2s = Jdη (3.6)

where J is Jacobian which can be expressed as

J =

√(
x1
dN1
dη
+ x2

dN2
dη
+ x3

dN3
dη

)2
+
(
y1
dN1
dη
+ y2

dN2
dη
+ y3

dN3
dη

)2
(3.7)

Substituting Eqs. (3.1) and (3.6) into Eq. (3.4) results in

τp(x) =
−1
2πk

1∫

−1

(N1g1 +N2g2 +N3g3) ln[r(η)]J dη (3.8)

The integral in Eq. (3.8) can be calculated using conventional numerical integration methods
such as the Gaussian quadrature method (GQM). It should be noted that if the field point
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x = (x, y) is exactly on the line source, the integral in Eq. (3.8) will be weakly singular with
a finite value. In other words, in the two-dimensional case, the temperature has a finite value
at points exactly on the curved line heat source. In this case, the integral in Eq. (3.8) can be
calculated by various methods such as the weighted Gaussian integration (Stroud and Secrest,
1996), transformation of variable (Telles, 1987) and subtraction of singularity (Aliabadi 2002)
method. In this research, the weighted Gaussian integration method is used.

3.2. Curved line heat source in three-dimensional problems

Similar to 2D, the intensity per unit length of the quadratic line heat source at the starting
point (x1, y1, z1), middle point (x2, y2, z2) and end point (x3, y3, z3) are assumed g1, g2 and g3,
respectively.
Substituting τ∗ in the 3D case from Eq. (2.4) into Eq. (3.3) results in

τp(x) =
1
4πk

∫

L

s(ξ)
r(x, ξ)

dl (3.9)

where r(x, ξ) =
√
(x− xs)2 + (y − ys)2 + (z − zs)2 is the distance between the field point

x = (x, y, z) and the source point ξ = (xs, ys, zs) on the line heat source. xs, ys, and zs can be
expressed as follows

xs = (N1x1 +N2x2 +N3x3) ys = (N1y1 +N2y2 +N3y3)

zs = (N1z1 +N2z2 +N3z3)
(3.10)

The infinitesimal element dl in Eq. (3.9) can be expressed as

dl =
√
dx2s + dy2s + dz2s = Jdη (3.11)

where

J =

√√√√√
(
3∑

j=1

xj
dNj

dη

)2
+

(
3∑

j=1

yj
dNj

dη

)2
+

(
3∑

j=1

zj
dNj

dη

)2
(3.12)

Therefore, Eq. (3.9) can be written as follows

τp(x) =
1
4πk

1∫

−1

N1g1 +N2g2 +N3g3
r(η)

J dη (3.13)

Similar to the 2D case, the integral in equation (3.13) can be evaluated using standard numerical
integration methods such as the GQM. According to the integral in equation (3.13), it is clear
that if the field point x = (x, y, z) is exactly on the curved line source, the integral in Eq. (3.13)
will be a strongly singular integral without any finite value. In other words, in the 3D case, the
temperature at points on the curved line source does not have a finite value.

3.3. Curved surface heat source in 3D problems

We consider a heat source distributed over a curved surface in a 3D domain. The shape of
the surface source and its intensity function are assumed arbitrarily and sufficiently complicated.
The surface of the heat source is discretized by several quadrilateral surfaces. Each quadrilateral
surface heat source has a quadratic shape with a quadratic variation of the intensity over it.
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Fig. 3. A quadratic surface heat source

In this part, the formulation for treatment of a quadratic surface heat source is presented. A
quadratic surface heat source, which is described by 8 points, is shown in Fig. 3.
The intensity per unit area of the quadratic surface heat source is written as follows

s(ξ1, ξ2) =
8∑

i=1

Ni(ξ1, ξ2)gi (3.14)

where g1, g2, . . . , g8 are the intensities per unit area at 8 points of the source, ξ1 and ξ2 are local
coordinates which have a variation between −1 and 1 in the source. The shape functions Ni in
terms of ξ1 and ξ2 are expressed as follows (Becker, 1992)

N1 =
−1
4
(1− ξ1)(1 − ξ2)(1 + ξ1 + ξ2) N2 =

1
2
(1− ξ21)(1 − ξ2)

N3 =
−1
4
(1 + ξ1)(1 − ξ2)(1− ξ1 + ξ2) N4 =

1
2
(1 + ξ1)(1− ξ22)

N5 =
−1
4
(1 + ξ1)(1 + ξ2)(1− ξ1 − ξ2) N6 =

1
2
(1− ξ21)(1 + ξ2)

N7 =
−1
4
(1− ξ1)(1 + ξ2)(1 + ξ1 − ξ2) N8 =

1
2
(1− ξ1)(1− ξ22)

(3.15)

The domain integral in Eq. (2.5) associated to the quadratic surface heat source is given as
follows

τp(x) =
∫

A

s(ξ)
k
τ∗(x, ξ) dA (3.16)

where dA is an infinitesimal area element on the quadratic surface heat source. Substituting τ∗

in the 3D case from Eq. (2.4) into Eq. (3.16) results in

τp(x) =
1
4πk

∫

A

s(ξ)
r(x, ξ)

dA (3.17)

where r(x, ξ) is the distance between the field point x = (x, y, z) and the source points
ξ = (xs, ys, zs) on the quadratic surface heat source. xs, ys and zs can be expressed in terms of
the 8 shape functions as follows
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xs(ξ1, ξ2) =
8∑

i=1

Ni(ξ1, ξ2)xi ys(ξ1, ξ2) =
8∑

i=1

Ni(ξ1, ξ2)yi

zs(ξ1, ξ2) =
8∑

i=1

Ni(ξ1, ξ2)zi

(3.18)

The infinitesimal area element dA can be written as follows (Becker, 1992)

dA = J(ξ1, ξ2) dξ1 dξ2 (3.19)

where

J =
√
(Jx)2 + (Jy)2 + (Jz)2 (3.20)

and

Jx =
∂ys
∂ξ1

∂zs
∂ξ2
− ∂zs
∂ξ1

∂ys
∂ξ2

Jy =
∂zs
∂ξ1

∂xs
∂ξ2
− ∂xs
∂ξ1

∂zs
∂ξ2

Jz =
∂xs
∂ξ1

∂ys
∂ξ2
− ∂ys
∂ξ1

∂xs
∂ξ2
(3.21)

Substituting Eqs. (3.19) and (3.14) into Eq. (3.17) results in

τp(x) =
1
4πk

1∫

−1

1∫

−1

∑8
i=1Ni(ξ1, ξ2)gi
r(ξ1, ξ2)

J(ξ1, ξ2) dξ1 dξ2 (3.22)

The integral in Eq. (3.22) can be calculated using standard 2D numerical integration methods
such as the GQM.
In the case that the field point x is exactly on the surface of the heat source, the integral in Eq.

(3.22) will be weakly singular with a finite value. In other words, in the three-dimensional case,
temperatures at points on a surface heat source have finite values. In this case, the integral in Eq.
(3.22), which is weakly singular, can be calculated by various methods such as the transformation
of variable and subtraction of singularity method (Aliabadi, 2002). In this research, the method
of transformation of the variable is used for these cases.

4. Numerical examples

In this Section, two 2D and two 3D examples containing different kinds of curved heat sources
are presented. In each example, the results computed by the presented MFS in comparison with
the BEM and FEM are presented. Source codes are developed in MATLAB software for analysis
of the examples using the MFS and BEM. ANSYS package is used for analysis of the examples
using the FEM. The computations are implemented on a laptop with an Intel(R) (Intel, Inc.,
Santa Clara, CA, USA) Core(TM) i7-2670QM CPU of 2.20GHz, on 64-bit Windows operating
system with 8.00 GB RAM. In all examples, the thermal conductivity is k = 60W/(m◦C).

4.1. A circular domain including a circular heat source

In this example, according to Fig. 4, a circular domain with R = 0.5 is considered. This
problem is analyzed under the Dirichlet boundary condition with τB = 10◦C. A curved heat
source which is distributed over a circle with the radius r = 0.25m is considered. The strength
of the heat source is considered to be constant over the circle and equal to s = 4000W/m. The
pseudo boundary Γ ′ is considered to be a circle with radius R′ = 2.5m (5 times of R). Only
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4 sources are considered on this pseudo-boundary. The circular heat source is modeled by only
four quadratic line heat sources. The obtained results by the proposed MFS are compared with
those of the BEM (32 linear boundary elements) and FEM (9461 quadratic elements) presented
in (Mohammadi et al., 2016). The temperature results along the vertical diameter of the circle
are shown in Fig. 5. As can be seen, the presented MFS formulation yields very accurate results.

Fig. 4. A circular domain including a circular heat source

Fig. 5. Temperature on the vertical diameter (y-axis) of the circle obtained by the FEM, BEM and MFS

4.2. A rectangular domain including a heat source with an elliptical shape and non-uniform
intensity

In this example, a heat conduction problem over a 0.15×0.3m rectangle containing a curved
heat source is considered. Figure 6a shows the geometry and thermal boundary conditions of
the problem.
An elliptical curved line heat source centered at (0.085, 0.065) is considered in the domain.

The lengths of the horizontal and vertical radii of the ellipse are r1 = 0.04m and r2 = 0.02m,
respectively. The heat source intensity is considered to be a function of β ∈ [0, 2π] as follows

s = 40000(1 + cos β)W/m (4.1)

where β is the angular coordinate on the heat source measured from a horizontal axis passing
through the center of the ellipse (Fig. 6a).
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Fig. 6. A rectangle with an elliptical heat source: (a) geometry and boundary conditions,
(b) configuration of collocation and source points

In the proposed MFS, the elliptical heat source is modeled by only eight quadratic heat
sources. 48 source points and 48 collocation points are considered for the MFS analysis. The
configuration of collocation and source points is depicted in Fig. 6b. The locations of source
points are determined according to the method suggested by Hematiyan et al. (2018). The ratio
of the distance from the source point to its corresponding collocation point to the distance
from the same source point to the neighboring collocation point is 0.85. By this configuration,
a solution without undesired oscillation is obtained (Hematiyan et al., 2018).

Fig. 7. The FEM, BEM and MFS results for temperature along the line AB of the rectangle with an
elliptical heat source

The temperature results along the line AB (Fig. 6a) are depicted in Fig. 7. In this figure,
the results based on the presented formulation are compared with those of the BEM (48 linear
boundary elements) and FEM (4356 quadratic elements) presented in (Mohammadi et al., 2016).
As it can be seen, the presented MFS and the BEM yield accurate results. The computational
times (in seconds) for solving this problem using the proposed MFS and the BEM based on
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(Mohammadi et al., 2016) have been 2.11 and 6.24, respectively. The reported results indicate
that the proposed MFS is more efficient than the BEM for analysis of this example.

4.3. A cubic domain including two circular heat sources with non-uniform intensity

In this example, as shown in Fig. 8, a cube with edges of L = 10m, including two circular
heat sources, is considered. All faces are kept at τ = 0◦C. The radius of both circular heat
sources is r = 2.5m.

Fig. 8. A cube with two circular heat sources

The first circular heat source is centered at (5, 6, 5) and the second one is centered at (5, 4, 5).
The strengths of the sources are considered to be functions of β ∈ [0, 2π] with the following forms

s1 = 10000(1 + cosβ)W/m s2 = 20000(1 + cos β)W/m (4.2)

where β is the angular coordinate on the heat sources as shown in Fig. 8.
In the proposed MFS, each circular heat source is modeled by only four quadratic line heat

sources. 100 collocation points are considered on each face of the cube. Therefore, 600 colloca-
tion points with 600 corresponding source points which are located on the cube with edges of
L′ = 14m are considered. The configuration of the collocation points and their corresponding
source points on a face of the cube is shown in Fig. 9.

Fig. 9. The configuration of collocation and source points on a face of the cube

The temperature results along the line x = z = 5 and the line x = y = 5 are shown in
Fig. 10. In this figure, the obtained results by the proposed MFS are compared with those
of the BEM (600 constant elements) and FEM (56669 3D quadratic elements) presented in
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(Mohammadi et al., 2016). As it can be seen, the presented MFS and the BEM formulation
yield very accurate results. However, the running CPU time for the BEM is almost 1.8 times the
MFS. The computations take 48.1 s for the presented MFS while they take 87.0 s for the BEM.

Fig. 10. Temperature on the line (a) x = z = 5 and (b) x = y = 5 of the cube with circular heat sources
obtained by the FEM, BEM and MFS

4.4. A spherical domain including a cylindrical heat source with a non-uniform intensity

In the last example, a spherical domain with the radius R = 1m, centered at (0, 0, 0) is
considered. The surface of the sphere is kept at τ = 0◦C. A surface heat source with a cylindrical
shape is included in the domain. The radius, center of the base, and the height of the cylindrical
heat source are 0.2m, (0, 0, 0), and 0.8m, respectively. A cut-out part of the spherical domain
and the cylindrical heat source is shown in Fig. 11a. The intensity per unit area of the source
is considered to be a function of β ∈ [0, 2π] (angular coordinate on the heat source, measured
from the x-axis) and the y-coordinate with the following form

s = 20000y(1 + cos β)W/m2 (4.3)

In the proposed MFS, the cylindrical heat source is modeled by only eight quadrilateral quadratic
heat sources. The pseudo boundary Γ ′ is considered to be a sphere with the radius R′ = 1.4m.
98 collocation points and 98 sources are considered for the MFS analysis of the problem. The
configuration of collocation and source points are shown in Fig. 11b.

Fig. 11. The spherical domain including a cylindrical heat source: (a) a cut-out part of the domain,
(b) the configuration of collocation and source points

So far, this kind of problem has not been solved by the BEM. The obtained results by the
presented MFS are compared with those of the FEM. The commercial software package, ANSYS,
is employed for the FE analysis. In the FE analysis, the heat source which is concentrated over
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a cylindrical surface should be modeled as a cylindrical volume with a small thickness. The
inner and outer radius of this cylindrical volume are considered as ri = 0.18m and r0 = 0.22m,
respectively. The finite element discretization of the domain with 3D quadratic elements is shown
in Fig. 12. The whole domain is discretized with 48 178 elements and 64 869 nodes. In order to
visualize the position of the curved surface heat source inside the domain, only a cut-out part of
the FE mesh is shown in Fig. 12a. The nodal arrangement of the mesh is depicted in Fig. 12b.

Fig. 12. The finite element discretization of the sphere with a cylindrical heat source:
(a) 48 178 elements, (b) 64 869 nodes

The temperature results on the y- and z-axes are depicted in Fig. 13. As it can be observed,
the MFS results are in an excellent agreement with the FEM solutions. noteworthy is the fact
that the modeling of the problem in the proposed MFS is much simpler than in the FEM.

Fig. 13. The FEM, and MFS results for temperature along (a) the y-axis and (b) the z-axis in the
sphere with a cylindrical heat source

5. Conclusions

A formulation based on the MFS for analysis of 2D and 3D heat conduction problems in iso-
tropic media containing heat sources concentrated on arbitrary curved lines/surfaces has been
presented. The shape and the variation of the intensity of the sources can be arbitrarily and
sufficiently complicated.
For 2D problems, curved line heat sources while for 3D problems, curved surface heat sour-

ces have been considered. The equations derived for 2D curved line heat sources showed that
temperature at points exactly on the source had a finite value. The formulation for 3D curved
line heat sources showed that the temperature at points exactly on those sources had an infinite
value but the temperature had a finite value at points on the curved surface heat source.
For reliable modeling of a concentrated heat source in the FEM, the source should be modeled

as a separated region with a small thickness. Moreover, a large number of internal elements and
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nodes should also be considered for the modeling of the source. However, these sources can be
effectively modeled in the BEM as well as the proposed MFS without considering any internal
cells or points. To show the performance of the presented MFS formulation, four numerical
examples have been given. It was observed that the proposed method gave accurate results
even with a small number of source points and it was found that the computational cost of the
presented method was much smaller than the BEM.
Some modified/improved versions of the MFS such as the singular boundary method (Gu et

al., 2012) have been presented too. The proposed formulation for the implementation of curved
heat sources can be employed for these methods too.
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Series of experiments and a detailed computational analysis has been performed to investi-
gate the high strain rate behaviour of homostacked Al 6063-T6 and IS 1570 alloys. Split
Hopkinson pressure bar technique was utilized to study the effect of high rate loading on the
stress strain relationship of single, double, tri and quad layered/stacked specimens. Three
different specimen aspect ratios 1, 0.75 and 0.5 were also evaluated for different strain rates.
A 2mm thick pulse shaper was employed in achieving dynamic stress equilibrium, a near
constant strain rate and a high rise time as per requirements. After analyzing the results
from the experiments it was observed that single and halved specimens showed a close match
in both the elastic and plastic regions for aluminium alloy as well as for steel. In the case of
Al 6063-T6, a nearly bi-linear nature of the constitutive curve was observed for single and
halved specimens, which transformed into near tri-linear nature for tri and quad stacked
specimens. The dynamic numerical analysis showed a good agreement between the nume-
rical and experimental results for a single and halved specimen in the case of Al alloy. For
steel, a close correlation was observed for all the four cases.

Keywords: dynamic stress strain behaviour, multilayering, pulse shaper, finite element simu-
lation

1. Introduction

Safety of a structure and its economics plays an important role in its designing process. Multilayer
stacking and sandwiched structures are commonly used in structural applications where the
required strength and material properties can be achieved at low financial cost. Such multi-
-layered structures can be commonly classified in two categories: First is homo-stacking where
all constituent layers are made up of the same material of the same or different thickness. In
the second category, constituent layers are made up of two or more different materials of the
same or different thickness and can be called as hetro-stacked structures. Both these categories
provides an important economical option of replacing a damaged layer instead of replacing the
whole structure.
Some of the applications of multilayered stacking includes, but not limited to, thin walled

compound cylinders, air-frames and layered armors. Such structures are commonly utilized in
defence and space industries where they can be subjected to high rate loading applications, as in
the case of vehicle crash or projectile impact/shock loading. Thus, it is warranted that dynamic
mechanical response of such structures should be correctly evaluated and the effect of multi-
-layering is clearly understood. In the related research literature many specialized experimental
setups are reported to test materials under such high rate loading conditions. One such an
important technique is the Split Hopkinson Pressure Bar (SHPB) or the Kolsky bar which is
also used in this work for the stated purpose.
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The split Hopkinson bar technique was initially developed by Kolsky (1949) to evaluate
the material response at high strain rates. Since then SHPB and different numerical models
have been utilized in dynamic characterization of a wide range of materials like metals, alloys,
composites, ceramics etc. In one such an attempt, Jeng and Sheu (1994) investigated the dynamic
response of Al 6061-O using SHPB and numerical modelling. They found that dynamic yield
stress can be nearly 45% greater when compared with quasi-static conditions. In another study,
Khan and Huang (1992) evaluated the dynamic response of Al 1100 alloy for a strain rate range
of 102-104 s−1. It was suggested that dislocation movements was the main reason behind the
plastic flow of metals and was primarily responsible for the strain rate sensitivity.
With the advancements in technology, it is getting easier to conduct SHPB experiments.

However, in most of the SHPB related studies researchers have expressed that maintaining the
mandatory condition of force/stress equilibrium is a difficult task and needs to be verified. Wu
and Gorham (1997) studied these requirements in detail and found factors that can adversely
affect this equilibrium. Their results showed that inertia and wave propagation effects can cause
a significant force difference between the two ends of the specimen.
In order to achieve force equilibrium and a near constant strain rate in the specimen, a

technique called pulse shaping is commonly utilized. It requires a thin disc of metal to be placed
at the impact end of the incident bar. Ellwood et al. (1982) modified the conventional SHPB
setup by using a pre-loading bar and a dummy specimen as the pulse shaper. They suggested that
the actual test specimen would be the best material to use as the pulse shaper. A substantially
less variation in the strain rate was observed in the pulse shaped experiment.
Another important aspect that has been studied quite frequently is the geometrical effect or

the effect of specimen dimensions on its dynamic response. In one such a study, graphite/epoxy
composite specimens with varying l/d ratios having square and rectangular cross sections were
tested at high strain rates by Woldesenbet and Vinson (1999). They did not find any significant
effect of either the aspect ratio or the specimen geometry on the stress-strain response of the
material. However, in another similar study by Pankow et al. (2009) on the effect of specimen
aspect ratio (L/D ratio) and shape (cylindrical and square) on the stress-strain response of a
material, it was observed that for some softer materials like aluminium, a smaller aspect ratio is
advantageous. The study on the specimen cross section revealed that the stress-strain response
did not differ much, although the plastic deformation in the case of cylindrical specimen was
higher. Apart from the aspect ratio, interfacial friction between the specimen bar interfaces also
influences the stress-strain response. Jankowiak et al. (2011) studied the effects of parameters
like friction, inertia and elastic wave dispersion in many quasi-static and dynamic compression
experiments. They used a friction correction and suggested that prior knowledge of the limiting
value of friction was necessary for a correct numerical prediction. Li et al. (2009) observed that
for Al 2024 alloys the effect of specimen geometry and lubrication was in the same order of
magnitude as strain rate sensitivity. The specimen aspect ratio can also trigger the formation of
adiabatic shear bands in materials which show little or no effect of geometry on the stress strain
response (Walley et al., 2006).
Highlighting the application of homolayered structures as protective barriers, many resear-

chers (Corran et al., 1983; Radin and Goldsmith, 1988; Nia and Hoseini, 2011; Flores-Johnson
et al., 2011) have conducted a series of investigations on different aluminium and steel alloys.
They have evaluated the ballistic performance of a monolithic layer viz. different sequence of the
homostacked configurations. These articles provide valuable insight into failure mechanisms and
applicability of such structures. However, studies related to dynamic response characterization
of such homostacked configurations are rare to find. In this article, an effort has been made to
investigate the effect of high strain rate loading on homo-stacked specimens for two different
materials, namely Al 6063-T6 and IS 5170 (mild steel). The specimens are evaluated at three
different strain rates, and their true stress versus strain curves are analyzed and discussed. It
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should be noted that all experiments have been repeated at least three times for validating
the repeatability of the specimen response. Numerical simulations using non-linear finite ele-
ment software ABAQUS have also been carried out and their results are compared with the
corresponding experiments.

2. Experimental procedure

2.1. Split Hopkinson pressure bar

The dynamic compressive experiments were performed on the split Hopkinson pressure bar
apparatus based on the design provided by Engineers and Builders (2015). A schematic of the
experimental setup is shown in Fig. 1.

Fig. 1. Schematic of the split Hopkinson bar setup

Fig. 2. A typical voltage signal obtained in SHPB experiment

The length of the striker bar and that of the incident and transmission bar was kept at 0.3m
and 2m respectively. All bars were made of prismatic stainless steel rods of 20mm diameter. Two
diametrically opposite strain gauges (120Ω) were mounted in a half bridge configuration at two
positions (quarter and mid-length) on the incident bar and at the mid-length of the transmission
bar. Two gauges were bonded on the incident bar to ascertain that there was no attenuation
in the incident or reflected wave. Figure 2 shows typical voltage signals obtained in one of
the experiments. Strain data from the gauges is later processed to determine the constitutive
behaviour of the material. As the strain rate in the specimen is directly proportional to the
reflected strain pulse εR, the average specimen strain rate is given as

ε̇ =
2CbεR
h

(2.1)

where Cb is the elastic wave speed in the bar and h is the specimen length. Since the initial and
final volume of the specimen remain constant, the average engineering stress σS and strain εS
in the specimen is given by the following relation
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σS(t) =
Ab
As
EbεT (t) εS(t) = 2

Cb
h

t∫

0

εR(t) dt (2.2)

where Ab is the cross sectional area of the bars and As is the cross sectional area of the specimen.
Eb is the elastic modulus of the bar material and εT is the transmitted strain pulse.

3. Specimen preparation and nomenclature

Three sets of cylindrical disc specimens of varying aspect ratios of aluminium (Al 6063-T6)
and mild steel (IS 1570) were fabricated from a single 11 mm diameter rods for both metals.
This helped in avoiding slight property variations that might exist between different production
batches. The chemical composition analysis of Al 6063-T6 and IS 1570 used in this study is
given in Table 1.

Table 1. Chemical composition of Al 6063-T6 and IS 1570

Al 6063-T6
Element Fe Si Cu Mn Al Zn Ni Mg Ti

%wt. 0.3982 0.431 0.0069 0.014 98.55 0.0153 0.0058 0.5431 0.0056
IS 1570 (mild steel)

Element Fe Si Cu Mn Al Cr Mo Ni C

%wt. 99.02 0.1349 0.1001 0.4073 0.0113 0.0556 0.0083 0.0613 0.111

To avoid stress localization at the interfaces, it was ensured that specimen surface was flat
and perpendicular to the sides. The machined specimens were first polished on a paper of
grit designation 500, and then a progressively finer grit paper was used till a smooth surface
was achieved with a grit paper of 800. Both the contact surfaces of the specimen as well as
the incident and reflected bars were lubricated for each experiment with a thin layer special
Molybdenum Disulphide grease to reduce frictional effects. In case of layered specimens, the
specimen-to-specimen interfaces along with the specimen-bar interfaces were also lubricated for
each experiment. The specimen diameter utilized in this study was 11mm and their thicknesses
were 11, 8.75 and 5.5mm.
The stacking sequences for the specimens used in this study are shown in Table 2. The

stacking scheme is divided into three specimen overall aspect ratios viz. 1, 0.75 and 0.5 which
are further divided into smaller thicknesses of equal proportions as shown in Table 2. Specimens
have been denoted with names according to their aspect ratio and the number of parts in which
they are divided. For example, the specimen with 0.75 aspect ratio which is divided into 3 equal
parts is named as 11-R-0.75-1/3, where 11 represents the specimen diameter, R−x is the aspect
ratio term and 1/3 denotes the number of partitions.

Table 2. Specimen stacking sequence utilized in this study

L/D ratio Specimen stacking scheme

R = L/D = 1
11R-1-1 11R-1-1/2 11R-1-1/3 11R-1-1/4

R = L/D = 0.75
11R-0.75-1 11R-0.75-1/2 11R-0.75-1/3 11R-0.75-1/4
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3.1. Pulse shaping and dynamic force equilibrium

When the pulse shaper deforms plastically on impact, it filters out the high frequency com-
ponents of the incident pulse which are responsible for the dispersive nature of the incident
wave. Different stages of the pulse shaper deformation for a typical case can be seen in Fig. 3
(Naghdabadi et al., 2012).

Fig. 3. A typical stress pulse obtained using a pulse shaper showing four stages of pulse shaper
deformation

The initial stage of the process is dominated by elastic deformation of the pulse shaper on
impact. Stage 2 represents plastic deformation of the pulse shaper. Stage 3 is the rigid mode
and stage 4 is the elastic deformation during unloading of the pulse shaper (Naghdabadi et al.,
2012). Early literature (Ellwood et al., 1982) shows that in order to obtain a constant strain
rate deformation in the specimen it is beneficial to have an incident pulse with a nature similar
to the anticipated stress-strain response of the specimen. This ensures that the stresses on both
the faces of the specimen represent the average stress within the specimen which is an essential
condition for any SHPB experiment. For the present study, a pulse shaper made of 2mm thick
discs of Al 6063 and IS 1570 were used. For each experiment in this study, it was verified that
these conditions were satisfied so that governing equations (2.1) and (2.2) could be applied to
determine the stress-strain history in the specimen. Experimental validation indicating that for
all the four stacking sequences of the Al 6063 specimens force equilibrium is presented in Fig. 4.

Fig. 4. Comparison of forces at the specimen interfaces, Incident Bar end (IB end) and Transmission
Bar end (TB end) for all four stacking sequences
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The influence of the pulse shaper on the strain pulses and force ratio can be clearly seen in
Fig. 5. It shows (Fig. 5a) voltage signals, variation of forces and force ratio (Fig. 5b) respectively
for a typical experiment without the pulse shaper. Here, although the pulse is trapezoidal in
shape, the forces on the two specimen bar interfaces do not match, which is also evident by the
variation of the force ratio. In comparison, when a pulse shaper was used (Figs. 5c and 5d) it
could be observed that there was a marked reduction in loading magnitude as compared to the
experiment without the pulse shaper, but the loading time (pulse width) increased remarkably.
This seems to ensure that the forces on the specimen faces are in dynamic equilibrium, as can
been seen from Fig. 5d. Also, a significant increase in the rise time and the loading time of
the pulse was observed, thus ensuring that the mandatory SHPB conditions of constant strain
rate and dynamic stress equilibrium were satisfied. Similar results were also obtained for the
IS 1570.

Fig. 5. (a) Voltage signals obtained without using a pulse shaper; (b) forces at specimen ends and the
force ratio; (c) voltage signals obtained using the pulse shaper; (d) forces at specimen ends and the

force ratio
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4. Finite element simulations

Non-linear 3D finite element simulations have been performed on ABAQUS/Explicit to numeri-
cally study the effect of specimen stacking on its stress-strain response in an SHPB experiment.
The physical dimensions of the incident bar, transmission bar and specimen were kept same for
all cases as those of the actual SHPB setup. The model had a bar diameter of 20mm and a
length of 2000mm. Since for a valid SHPB experiment the bars should remain elastic, a linear
elastic model developed for isotropic elastic behaviour was used for the bars. The strain rate
dependent behaviour of the specimen was modelled using the well-known Johnson-Cook model
to evaluate its dynamic compressive response (Johnson and Cook, 1983)

σfl = (A+Bεnpl)
[
1 + C ln

(dεpl/dt
ε̇0

)][
1−

( T − Tt
Tm − Tt

)m]
(4.1)

where A, B, n, C and m are material parameters. The J-C strength parameters used for alumi-
nium and steel alloys are given in Table 3. The parameters A, B, n and C were evaluated from a
series of experiments performed. The value of thermal softening exponent (m = 0.89) was taken
from the literature (Ye et al., 2016).

Table 3. Johnson-Cook parameters for Al 6063-T6 and IS 1570

J-C Parameters A [MPa] B [MPa] n C

Al 6063-T6 156.3 284.55 0.12 0.0146
IS 1570 (MS) 225 352.65 0.4073 0.022

To further improve the predictions of this numerical model, thermo-mechanical coupling
effects were also incorporated. For this purpose, the increase in temperature ∆T was obtained
from the following relation (Ye et al., 2016)

∆T =
β

ρCp

∫
σ dεpl (4.2)

here β is the inelastic heat fraction, ρ and Cp are density and specific heat coefficients of the
material. For simulations these parameters Cp = 851 J/kgK and β = 0.9 were incorporated from
the literature (Sato et al., 1999).

Fig. 6. Incident bar, specimen and transmission bar – experimental setup and FE model

The bars were meshed using 8 noded hexahedral brick elements (C3D8R), and the nodes
along the axis of the bars were constrained radially. The total number of mesh elements generated
on the incident and transmission bar were 29348 each, and the specimen with a much finer mesh
(11R-1-1/3) had 23316 elements (Fig. 6). The interface between the specimen and bars was
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modelled as surface-to-surface contact. A penalty contact algorithm which allowed for treatment
of more general types of contact and to enforce interfacial friction was utilized in the numerical
simulations. A coefficient of friction of 0.05 was given to the interface between the bars and
the specimen (Hartley et al., 2007). In the case of layered specimens, the specimen-to-specimen
interface was given a coefficient of friction 0.03 (Hartley et al., 2007; Zhong et al., 2015).
The load was introduced in the form of the incident stress pulse at the free end of the incident

bar. The strain data was measured on the nodes at the mid-points on the bar surfaces mimicking
the actual experimental conditions. The SHPB equations were then employed to evaluate the
true stress and strain data of the specimen under consideration.

5. Results and discussion

Dynamic compression tests were performed using the split Hopkinson pressure bar on stacked
sequences of two selected materials viz. Al 6063-T6 and IS 1570 (mild steel) at different sets
of strain rates. A single specimen of the aspect ratio 1 was sub-divided into 2, 3 and 4 equal
parts, such that their individual aspect ratios l/d were 0.5, 0.33 and 0.25. On the same lines
the specimens with the aspect ratio 0.75 and 0.5 were equally partitioned in 4 and 2 parts,
respectively (Table 2). These specimens were then systematically evaluated under different sets
of high strain loading conditions. Figures 7a-7c represent the true stress-true strain behaviour of
Al 6063-T6 specimens with the aspect ratio 1, which are then further sub-divided into 2,3 and 4
layers of equal thickness, and evaluated under three different strain rates. The highest post yield
stress is observed for the non-partitioned specimen at 500 s−1 and 1000 s−1 strain rates.

Fig. 7. (a), (b), (c) True stress versus true strain curves for different stacking sequences for Al 6063-T6
(11R-1-XX) at approximate strain rates of 500 s−1, 800 s−1 and 1000 s−1

However, at the strain rate of 800 s−1, the specimen with 4 sub-divisions is observed to have
the highest post yield stress. Figure 7 also reveals that there is a greater degree of similarity
between the non-partitioned specimen and the specimen partitioned into half. Quantitatively,
the peak stresses differ by 3% for 11R-1-1 and 11R-1-1/2 specimens and 9% for 11R-1-1/3 and
11R-1-1/4 specimens. With a further increase in the number of sub-divisions, this similarity
reduces. When the aspect ratio was reduced to 0.75, it can be seen from Fig. 8 that the stress
strain behaviour of the partitioned specimens was qualitatively closer to each other than that
of the single specimen. This effect was found to be more pronounced at higher strain rates.
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However, at a lower aspect ratio of 0.5, the plastic post yield stresses were both quantitatively
and qualitatively closely matched, as can be seen in Fig. 9.

Fig. 8. True stress versus true strain curves for different stacking sequences for Al 6063-T6
(11R-0.75-XX) at approximate strain rates of (a) 700 s−1, (b) 900 s−1 and (c) 1300 s−1

Fig. 9. True stress versus true strain curves for different stacking sequences for Al 6063-T6
(11R-0.5-XX) at approximate strain rates of (a) 1000 s−1 and (b) 1500 s−1

It can be observed that the difference in peak post yield stresses were 0.2% and 0.9% at
1000 s−1 and 1500 s−1, respectively. Experiments on the mild steel specimens were also performed
at two different strain rates, 500 s−1 and 900 s−1. It was also observed that non-partitioned single
specimens showed a characteristic upper and lower yield points as is generally seen in the quasi-
-static tests of mild steel (Fig. 10). However, this behaviour was not observed when the specimen
was sub-divided in two, three and four layers. The highest post yield stress was observed for the
specimen partitioned in two halves. The magnitudes of peak post yield stresses obtained were
662MPa and 725MPa at 500 s−1 and 900 s−1, respectively. The lowest peak post yield stress
magnitudes were obtained for the specimen with three partitions as 602MPa and 687MPa. If
the slope of the individual curves in the plastic region are carefully observed in Fig. 10a, it
is revealed that for non-partitioned and half partitioned specimens, the slopes match closely,
both qualitatively as well as quantitatively. The maximum difference is about 2%. Similarly,
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the difference in the magnitude of slope for one-third partitioned and one-fourth partitioned
specimens is nearly 1.5%. At higher strain rates, these magnitudes are found to be around 1.8%
for single and halved specimens and 7% for one-third and one-fourth specimens, respectively. It
is also observed that with an increase in the number of specimen partitions, the variation in the
effective stiffness is more predominant in Al 6063 in comparison to IS 1570.

Fig. 10. True stress versus true strain curves for different stacking sequences for IS 1570 (mild steel)
(MS-11R-0.5-XX) at approximate strain rates of (a) 500 s−1 and (b) 900 s−1

Along with the experiments, finite element simulations were also performed for a different
set of strain rates for Al 6063-T6 and IS 1570. Some of the results obtained are shown in
Figs. 11 and 12 for Al 6063 and IS 1570, respectively. For Al 6063 it, is observed that FE
model incorporating the rate dependent Johnson-Cook model is able to correctly predict the
true stress-strain response of the specimens for upto bi-partitions. However, when the same
specimen is partitioned into tri and quad configurations, the J-C model and the experiments
exhibit poor correlation.

Fig. 11. (a)-(d) Comparison of experimental and FE simulation curves obtained for Al 6063-T6
(11R-1-XX) at an approximate strain rate of 800 s−1
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Fig. 12. (a)-(d) Comparison of experimental and FE simulation curves obtained for IS 1570
(MS-11R-1-XX) at an approximate strain rate of 500 s−1

In Figs. 11c and 11d, it can be clearly seen that the Johnson-Cook model is not able to correc-
tly capture the response observed in the experiments for tri and quad partitioned specimens. In
the case of mild steel, it can be observed from Fig. 12 that the J-C based FE model show a good
agreement with the experimental results for all one, two, three and four partition configurations
of the specimen. However, in Fig. 12a, it is also visible that J-C model could not completely cap-
ture the specimen response around the yield point region. It should be also noted that the authors
observed no meaningful difference between the model predictions, with and without thermo-
-mechanical coupling. One such a result from FE simulation using thermomechanical coupling
can be observed in Fig. 13 which shows the transient cross sectional view of the quad configu-
ration (11R-1-1/4) of aluminium specimen at a strain rate of 500 s−1. Using FE simulations of
Eq. (3.2), the maximum temperature gradient is found to be within 10K.

Fig. 13. Evolution of temperature in Al 6063-T6 specimen (11R-1-1/4) at a strain rate of 500 s−1

In the authors’ opinion, even though the overall specimen response can be measured accu-
rately, it is extremely difficult to predict the interlayer dynamic coefficient of friction for the
stacked specimens. The difference between the experimental results and the numerical predic-
tions can be attributed to so hard to quantify, complex and evolving boundary conditions at
the interfaces. From the results, it is clearly evident that the mild steel specimens showed a
comparatively higher strain rate sensitivity than the aluminium alloy at different strain rates.
All the different layered mild steel specimens show a response that is relatively similar in nature
to each other for the given strain rate. A single specimen when tested in dynamic compression
showed an upper and lower yield point which is characteristic of mild steel when tested under
the quasi-static condition. However, this behaviour was only limited to the non-partitioned spe-
cimens only. The finite element analysis, in the case of aluminium alloy, shows a good agreement
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with the experiments for specimens with zero and one partition. For the other two remaining
cases, a clear difference in the slope, magnitude and the behaviour of the stress-strain curve is
observed. In the case of FE simulations for IS 1570 mild steel specimens, a good correlation is
achieved with the same material model for all the four cases. However, our simulations do not
match the characteristic hump as can be seen in Fig. 13a.
The difference in the experimental and numerical predictions can be attributed to various

factors like; (a) reliability of the value of dynamic coefficient of friction between the specimen-
-specimen and bar-specimen interfaces, (b) in experiments, even with the utmost care, it is
impossible to create perfectly parallel surfaces of the specimen. While in the numerical model,
perfectly parallel surfaces can be easily defined.

6. Conclusions

The present study involves experimental and numerical investigation of the behaviour of homo-
layered metallic media subjected to dynamic compressive loading. Two metallic alloys Al 6063-T6
and IS 1570 steel have been tested at different strain rates. The Al alloy under consideration
exhibited a near tri-linear nature of the true stress-true strain curve when the specimen was
partitioned into three and four parts. The above work can be concluded in the following points:

• This study has clearly shown that the dynamic response of homo layer stacking can be
quite different than the monolithic layer specimen of the equivalent thickness.
• Design and selection of the pulse shaper is an important factor in evaluating the dynamic
response of homostacked specimens. It is shown that by using a pulse shaper it is possible
to apply the established technique like SHPB to characterize the stacked specimens.
• The current material model (Johnson-Cook) gives reasonably satisfactory match betwe-
en numerical and experimental results for non-partitioned and bi-partitioned specimens.
With an increase in the number of partitions, the similarity between the results decreases.
Incorporating thermo-mechanical coupling does not yield any significant change in the
model predictions. A better model capable of incorporating transient frictional boundary
conditions and multiple wave reflections at the interfaces is required for evaluating further
partitions.
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This paper is concerned with the mechanical response of a single-walled carbon nanotube.
Euler-Bernoulli’s beam theory and Hamilton’s principle are employed to derive the set of
governing differential equations. An efficient variational method is used to determine the
solution of the problem and Legendre’s polynomials are used to define basis functions. Si-
gnificance of using these polynomials is their orthonormal property as these shape functions
convert mass and stiffness matrices either to zero or one. The impact of various parameters
such as length, temperature and elastic medium on the buckling load is observed and the
results are furnished in a uniform manner. The degree of accuracy of the obtained results
is verified with the available literature, hence illustrates the validity of the applied method.
Current findings show the usage of nanostructures in vast range of engineering applications.
It is worth mentioning that completely new results are obtained that are in validation with
the existing results reported in literature.

Keywords: Euler-Bernoulli’s beam theory, nonlocal elasticity theory, Legendre’s polynomial,
aspect ratio, critical buckling load, Winkler and Pasternak elastic constants

1. Introduction

Nanotechnology has been continuously booming in the world wide research community for the
last two decades as it offers numerous applications in the diversified field of biomaterials, com-
munications, medicines and designing of efficient devices. Nanotubes, nanowires, nanotube re-
sonators and nanoparticles are some nanomaterials in which beams and plates are widely used
as main components at nano or micro length scale. One of the most fascinating elements in the
periodic table is carbon that has several allotropes (diamond, fullerene, graphite, carbon nano-
tubes and graphene) according to its hybridization states. Carbon nanotubes were discovered
by Iijima (1991) and formed by curling a graphitic sheet in a way which produced a class of
materials that possess extraordinary mechanical and electrical properties (Dai et al., 1996) and
(Kim and Lieber, 1999). These nanotubes are used as nanobeams in microelectromechanical and
nanoelectromechanical systems (Li et al., 2003). These nanotubes are stronger and stiffer than
any other materials because of high elastic modulus of graphite sheets. Minuscule size plays a
considerable role in the analysis of mechanical nature of these nanotubes and, thus, it is hard
to ignore.
Atomistic modeling, nanoscale continuum mechanics and continuum mechanics are three

main methods used to define mechanical properties of carbon nanotubes. In atomistic modeling,
the position of atoms are computed based on their interactive forces and end conditions (Lu and
Bhattacharya, 2005). Atomistic modeling is very costly and time consuming. However, nano-
-scale continuum mechanics approach replaces the C-C bond by a continuum element and can be



1154 P. Tiwari, P. Nagar

used at nano-scale (Rafiee and Moghadam, 2014). Continuum mechanics states that the stress
at each point of the body is a function of strain at the same point only. At nanoscale, size effects
play a vital role in investigating the mechanical behavior as compared to that in macroscopic
scale. But it is a well known fact that continuum beam theories are scale free, that is why these
theories are not suitable for predicting small-scale effects of single walled carbon nanotubes.
Therefore, to study the buckling behavior of carbon nanotubes the need for nonlocal continuum
mechanics (Eringen, 1972, 1983) takes place. Non-classical (Nonlocal) elasticity theory has more
information on forces between atoms than the classical elasticity theory. Thus it has been widely
used for accurate and fast analysis of carbon nanotubes.
Initially, Peddieson et al. (2003) implemented nonlocal theory to nanotechnology. To inve-

stigate buckling behavior of carbon nanotubes, nonlocal continuum models were developed and
used for general edge conditions by Wang Q. et al. (2006). Murmu and Pradhan (2009) employed
a differential quadrature method alongwith the nonlocal Timoshenko beam theory. Challamel
(2011) applied higher-order shear beam theories for buckling of nanobeams. Differential model
of Eringen’s theory is applied to formulate elastic beam theories by Reddy and El-Borgi (2014).
Pradhan and Reddy (2011) used a differential transform technique to determine the buckling
load of CNTs using different boundary conditions. Nagar and Tiwari (2017) applied successive
differentiation approach to study characteristics of carbon nanobeams. Ansari et al. (2011) re-
ported thermal buckling analysis of embedded single-walled carbon nanotube modeled through
the Timoshenko beam model. Chirality effect was studied by Semmah et al. (2015) for zig-zag
single walled carbon nanotubes. Chakraverty and Behera (2015) proposed a numerical technique
to study vibration and buckling behavior of nanobeams using two types of elastic medium. Nejad
and Hadi (2016) used theory of nonlocal elasticity to analyse bending behavior of bi-directional
functionally graded beams. Norouzzadeh and Ansari (2017) predict the mechanical nature of
nanobeams using the integral model of Eringen’s theory. A review has been done for the mo-
deling of carbon nanotubes using different models by Sakharova et al. (2017). Although several
methods are used in literature to analyse the buckling behavior, authors find the importance of
using the Rayleigh-Ritz method with Legendre’s polynomials.
In the present paper, the buckling characteristics of single walled carbon nanotubes resting on

a two-parameter elastic medium are analyzed using the Rayleigh-Ritz method, and Legendre’s
polynomials are used as shape functions. Nonlocal elasticity theory in conjunction with the
Euler-Bernoulli beam theory (EBT) is used to obtain the governing equation of motion. A
solution to the governing equation is obtained in the form of an eigen value problem for which a
simple code is generated. Outputs of the problem are plotted graphically, and the interpretation
of results is validated with those reported in literature (Wang C.M. et al., 2006). The effect of
change in temperature is also observed for different room environments. The impact of distinct
parameters on the lowest buckling load is examined and graphs are used to draw conclusions.

2. Problem formulation

According to nonlocal elasticity theory (Eringen, 2002), the stress at a specific point in the system
is considered as a function of the strain state at all points of the system. The nonclassical stress
tensor σ at a point x over the volume V is determined by the following relation

σ(x) =
∫

V

K(D, ξ)τ dV (x∗) (2.1)

where τ is the local stress tensor, K is a nonclassical modulus of two parameters D and ξ.
The nonlocal parameter is ξ = (e0a)2 in which e0 is the material specific constant, a is internal
length parameter, l is length of the tube and D is Euclidean distance given as |x∗− x|. To solve
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integral constitutive relation (2.1), its simplified differential form is given by Eringen (1972) in
the following form

(1− ξl2∇2)σ(x) = τ (x) (2.2)

where ∇2 is the Laplace operator and τ (x) is the local stress tensor defined by Hooke’s law as
follows

τ (x) = C(x) : ε(x) (2.3)

where C(x) and ε(x) is the elasticity tensor of the order four and the local strain tensor,
respectively, and “:” denotes the double dot product. It is to be noted that in absence of a,
equation (2.2) reduces to the constitutive equation of classical elasticity. Governing equations
are formulated using the Eringen (1972, 1983) theory and EBT nonlocal theory of elasticity. For
the exceptional strength and stiffness of carbon nanotubes, they are constructed with a very
high length to diameter ratio, approximately 1, 32 000 000 : 1.
Hamilton’s principle is expressed by the following relation

t∫

0

[(δUs + δUp)− δUk] dt = 0 (2.4)

where δUs, δUp and δUk are the variations in strain, potential energy and kinetic energy, respec-
tively.
The displacement components as stated in the Euler-Bernoulli beam theory are such that

the transverse shear stress at the boundaries of the surface of the beam is zero and nonzero at
other places. The displacement field is defined as

ux(x, z, t) = −z
∂u

∂x
uy(x, z, t) = 0 uz(x, z, t) = u(x, t) (2.5)

where u is the transverse deflection of a point of the beam in the mid plane. The non-zero strain
displacement or bending strain is defined as

εxx = −z
∂2u

∂x2
(2.6)

and the strain energy is

Us =
1
2

l∫

0

∫

A

σxxεxx dAdx (2.7)

where σxx is the normal stress, l is the size of the beam and A is the cross-sectional area.
Using (2.6) into (2.7), the strain energy is given as

Us = −
1
2

l∫

0

∫

A

zσxx
∂2u

∂x2
dAdx = −1

2

l∫

0

M
∂2u

∂x2
dx (2.8)

whereM =
∫
A zσxx dA is defined as the bending moment. For free harmonic motion, the natural

frequency ω of vibration is given by u = u0(x) sin(ωt).
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Therefore, the strain and kinetic energy of the beam are expressed as

Us = −
1
2

l∫

0

M
d2u0
dx2

dx Uk =
1
2

l∫

0

ρAu2u20 dx (2.9)

where ρ is mass density of the beam.
The work done by external forces (potential energy) is defined as

Up =
1
2

[ l∫

0

F
(du0
dx

)2
dx+

l∫

0

ρeu0 dx
]

(2.10)

where F = Fm + Fθ is the compressive force applied to the beam. Here, Fm and Fθ both are
axial forces due to change in mechanical load and temperature, respectively, and Fθ is related
with temperature θ as

Fθ = −
EAγxθ

1− 2ν (2.11)

where ρe = k1u0 − k2(d2u0/dx2) is the elastic medium density and EA is tensile rigidity. He-
re, k1 and k2 are Winkler elastic modulus and Pasternak shear elastic modulus, respectively.
According to the Winkler elastic modulus, the force on the foundation is directly proportional
to deflection while the Pasternak model assumes the existence of shear interaction between the
spring elements.
Using equations (2.9) and (2.10) in (2.4) and equating the coefficient of δu0 to zero, equation

(2.4) reduces to

d2M

dx2
+
(
F
d2

dx2
− k1 + k2

d2

dx2
+ ρAω2

)
u0 = 0 (2.12)

The constitutive equations of the nonclassical Euler-Bernoulli beam is given as

−EI d
2u0
dx2
=M − ξ d

2M

dx2
(2.13)

where EI is defined as bending rigidity.
Using (2.12) and (2.13), the bending moment for nonlocal elasticity theory is written as

M = −EI d
2u0
dx2
+ ξ

(
−ρAω2u0 − F

d2u0
dx2
+ k1u0 − k2

d2u0
dx2

)
(2.14)

Equating the maximum kinetic and potential energy, the dimensionless equation of motion for
nonlocal EBT nanobeams is expressed as

EI

l2
(1 + F̂ β2 +K2β2)

( d2U
dX2

)2
+
EI

l2
(−K1β2U −K2U + α2β2U)

d2U

dX2

+
EI

l2
F̂
( d2U
dX2

)2
+
EI

l2
(K1 − α2)U2 = 0

(2.15)

The dimensionless form of parameters is as follows

X =
x

l
U =

u0
l

β =
e0a

l
K1 =

k1l
4

EI
K2 =

k2l
2

EI

F̂ =
Fl2

EI
F̂m =

Fml
2

EI
F̂θ =

Fθl
2

EI
α2 =

ρAω2l4

EI

(2.16)
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3. Solution procedure

To solve equation (2.15), Rayleigh-Ritz method (R-R) is employed with a Legendre’s polynomial
as a shape function. This method is generally used for finding an approximate solution for
different types of mechanical engineering problems and is often used to determine first eigen
frequencies and eigenfunctions of continuous linear elastic systems. The approximate solution of
eigenvalues and eigenfunctions of the continuous system is improved by using a large number
of terms in the Ritz expansion and the error in the approximation of the eigenfunction being
measured in a certain norm. The boundary function is chosen in such a way so that it satisfies
the essential end conditions of the beam.
According to R-R method, the displacement function can be written as a sum of polynomials

as

U(X) =
N∑

n=1

bnψn (3.1)

where bn are unknowns to be determined, ψn are orthonormal polynomials and N is the number
of terms needed to find the results up to desired level of accuracy. Here we used a Legendre’s
polynomial as an orthonormal polynomial.
The Legendre polynomials are chosen in such a way that they bijectively map the interval

[0, 1] to [1,−1]. This is to show that the polynomials are orthogonal on [0, 1] to satisfy the end
conditions ψn(0) = ψn(1) = 0, n  1. To fulfill the conditions of orthogonality in the interval
[0, 1], modified form of the Legendre polynomial is used and is defined as

ψn(X) =
[ 1
n!

dn

dXn
(X2 −X)n − (−1)n

]
(X − 1) (3.2)

Some of the modified Legendre polynomials over the interval [0, 1] are as follows

ψ1(X) = −2X + 2X2 ψ2(X) = 6X − 12X2 + 6X3

ψ3(X) = −12X + 42X2 − 50X3 + 20X4

ψ4(X) = 20X − 110X2 + 230X3 − 210X4 + 70X5

ψ5(X) = −30X + 240X2 − 770X3 + 1190X4 − 882X5 + 252X6

These modified Legendre polynomials can be used as a set of basis functions and satisfy the
special properties ψn(0) = ψn(1) = 0, n  1 at the boundaries. Putting F̂m = −P and the
inertia term α2 to zero in equation (2.15), the following governing equations are obtained to
analyze the critical buckling load

(
1−K2β2+

F̂θl
2

EI
+
Fθl
2

EI
β2
)( d2U
dX2

)2
−(K1β2U+K2U)

d2U

dX2
K1U

2 = P̂
[( dU
dX

)2
+β2

( d2U
dX2

)2]

(3.3)

where P̂ = Pl2/(EI).
Incorporating equation (3.1) into equation (3.2), solution of equation (3.3) is obtained by

minimizing the buckling load with respect to unknown coefficients bj , j = 1, 2, . . . , n. Thus, by
putting ∂P̂ /∂bj = 0, the solution of equation (3.3) in matrix form is

SY = P̂BY (3.4)
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where Y = [b1, b2, . . . , bn]T is the transpose matrix of the unknown coefficients bj, j = 1, 2, . . . , n
and the stiffness and buckling matrices are given by

S(i, j) =
1∫

0

[
(1 + 2K2β2 + 2F̂ β2)ψ̈iψ̈j + 2F̂ β2ψ̇iψ̇j

+ 2K1ψiψj − (K2 +K1)ψ̈iψj − (K2 +K1)ψiψ̈j
]
dX

B(i, j) =
1∫

0

(2ψ̇iψ̇j + 2β2ψ̈iψ̈j) dX

(3.5)

where i, j = 1, . . . , n, ψ̇i and ψ̈i represents derivatives of the first and second order of ψi(X) with
respect to X for all i and j. Equation (3.4) is an eigen value problem in which the smallest eigen
value will provide the critical buckling load which is to be obtained by equating the determinant
of the coefficient matrix to zero. Corresponding eigenvectors are used as shape functions and for
finding the critical buckling loads and post buckling behavior of beams and columns.

4. Results and discussions

To obtain the numerical results, values of different parameters for a single-walled carbon nano-
tube according to (Benzair et al., 2008) and (Murmu and Pradhan, 2009) are given in Table 1.

Table 1. Values of different parameters to determine buckling load (Benzair et al., 2008) and
(Murmu and Pradhan, 2009)

Parameter Value

Modulus of elasticity 1TPa
Thermal expansion −1.4 · 10−6 for low temperature environment
coefficient 1.0 · 10−6 for high temperature environment
Poisson’s ratio 0.19

Values in Table 2 show the critical buckling load for clamped-clamped end conditions for
varying values of the aspect ratio and nonlocal scale parameter.

Table 2. Critical buckling load using the present approach and (Pradhan and Reddy, 2011) for
the clamped-clamped (C-C) case

Aspect Nonlocal parameter [nm2] Nonlocal parameter [nm2]
ratio Pradhan and Reddy (2011) Present approach
(l/d) ξ = 0 ξ = 1.0 ξ = 1.5 ξ = 2.0 ξ = 0 ξ = 1.0 ξ = 1.5 ξ = 2.0

10 9.6311 8.2298 6.3549 3.2367 9.6318 8.2314 6.3512 3.2369
12 5.3601 4.3316 3.3686 2.1855 5.3617 4.3325 3.3698 2.1865
14 3.1114 2.6010 2.1238 1.6296 3.1134 2.6025 2.1230 1.6362
16 2.1183 1.7992 1.5629 1.2102 2.1193 1.8001 1.5632 1.2050
18 1.7741 1.5201 1.2251 1.0135 1.7721 1.5124 1.2253 1.0090
20 1.6125 1.3459 1.1248 0.9905 1.6134 1.3462 1.1253 0.9963

It is observed from the numerical results that the critical buckling load decreases as the
length to diameter ratio increases, and this effect is more significant for higher values of the
nonclassical scale parameter. Figure 1a shows variation in the critical buckling strain (or load)
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with the length-to-diameter ratio for C-C end conditions. Multiple graphs are plotted for different
nonclassical parameter values.
It is to be noted that if the nonclassical parameter is neglected, the obtained results corre-

spond to those that are obtained from the local theory. It is also observed from the graph that
in order to set a lower buckling load, the value of the scale coefficient is to be increased. These
observations are verified with (Pradhan and Reddy, 2011).

Fig. 1. (a) Variation in the critical buckling load with different values of the aspect ratio. (b) Impact of
the aspect ratio on the critical buckling load

Figure 1b illustrates the impact of the length-to-diameter ratio on the lowest (critical) buc-
kling load for various boundary conditions. The load value decreases for all boundary conditions
as the aspect ratio increases. Moreover, clamped-simply supported end conditions provide a hi-
gher buckling load as compared to simply supported and cantilever beams. The graph shows
that buckling solutions are highly influenced by the small scale coefficient. Buckling strain is
high for a lower aspect ratio. The obtained results are in agreement with (Wang C.M. et al.,
2006).

Fig. 2. (a) Distribution of the critical buckling load for different Winkler elastic moduli. (b) Impact of
the Pasternak shear elastic modulus on the critical buckling load

Figure 2a represents the impact of the Winkler elastic constant. To study this effect, different
physical values are taken as θ = 20, l/d = 15 and K2 = 0. Variations in the buckling load are
shown for different scale coefficients, and the Winkler modulus is taken between 0-250. It is
shown in the graph that the critical buckling load increases with the increment in the Winkler
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modulus. For higher values of the scale coefficient, nonlinear behavior of the lowest buckling
load for different values of the Winkler elastic medium is observed. The reason behind this effect
is that the nanotube becomes rigid after increasing the value of the Winkler elastic medium
constant.
Figure 2b demonstrates the change in the critical buckling load parameter with respect to

the Pasternak shear modulus parameter for various values of nonlocal parameters. Different
parameters are taken as θ = 20, l/d = 15 and K1 = 0 to study the effect of the elastic medium
on buckling solutions. It is noticed that the increasing of the Pasternak elastic modulus increases
the critical buckling load, and this increment is linear in nature due to the commanding nature of
this foundation. It can be easily seen that the critical buckling loads in the Pasternak model are
larger than in the Winkler model. The critical buckling loads of single walled carbon nanotubes
for higher values of small scale coefficients are small compared to lower values of the scale
coefficient. The obtained results are in validation with (Murmu and Pradhan, 2009).
Figure 3 shows the effect of temperature on the critical buckling load for two different

environments (Murmu and Pradhan, 2010) and K2 = 3. It is observed from the graph that if
the nanobeam is placed in low temperature environment, the critical buckling strain increases as
temperature increases. However, in high temperature environment, the critical buckling strain
decreases with an increase in temperature. This is due to the fact that rigidity of the nanobeam
in low temperature environment increases as temperature increases, and in high temperature
environment the rigidity of a single walled carbon nanotube decreases as temperature increases.
Similar interpretations were also presented in (Murmu and Pradhan, 2010) and (Chakraverty
and Behera, 2015).

Fig. 3. Variation in the critical buckling load due to different temperature environments

5. Conclusion

In the present paper, considering the effect of temperature in conjunction with two foundation
models, the mechanical analysis of single walled carbon nanotubes is studied. Legendre’s poly-
nomial is used as a characteristic polynomial along with the Rayleigh-Ritz method playing a
significant contribution to this study. The orthogonality of these polynomials ensures the results
to be found valid with a reasonable accuracy. For two-parameter models, the influence of phy-
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sical parameters like the elastic coefficients, nonlocal parameter, aspect ratio and temperature
is discussed graphically. Conclusions are drawn with the help of the obtained numerical results
and are in fair agreement with those reported in literature. It is found that the critical buckling
load increases as the nonlocal parameter increases. Moreover, it is also observed that in the case
of the Pasternak foundation, the critical buckling load behaves linearly while for the Winkler
foundation this behavior is nonlinear. Critical buckling loads behave nonlinearly for the Winkler
elastic modulus because single walled carbon nanotubes become stiffer after an increment in the
Winkler elastic modulus. The reason for linearity may be due to the commanding nature of the
Pasternak type elastic foundation.
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The subject of the paper is a beam with unsymmetrically varying mechanical properties in
the depth direction. The nonlinear hypothesis of plane cross section deformation is assumed.
Based on Hamilton’s principle, two differential equations of motion are obtained. The system
of equations is analytically solved with a view to analyse the bending, buckling and free
vibration problems of the beam. Moreover, the FEM model of the beam is developed and
deflections, critical axial forces and natural frequencies of the beam are calculated. The
results of these two methods are compared.
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1. Introduction

Elements with varying mechanical properties are applied in modern constructions. Kubiak (2005)
presented dynamic buckling problems of thin-walled composite plates with varying width-wise
material properties. Zhang et al. (2006) presented free vibration analysis of rectangular com-
posite laminated plates. Zenkour (2006) analysed bending problems of rectangular functionally
graded plates under a transverse uniform load. Birman and Byrd (2007) presented a review of
the papers published since 2000 related to the modelling and analysis of functionally graded
materials and structures. Kapuria et al. (2008) described the theoretical model of bending and
free vibration of layered functionally graded beams and its experimental validation. Debowski et
al. (2010) studied the dynamic stability problem of a metal foam rectangular plate under com-
pression in the middle plane. Magnucka-Blandzi (2011) presented bending and dynamic stability
results of studies of the sandwich beam with a metal foam core. Kubiak (2011) described an
estimation problem of dynamic buckling for composite columns with open cross-sections. Thai
and Vo (2012, 2013) presented bending, buckling, and vibration of functionally graded beams
and plates with the use of nonlinear shear deformation theories. Mahi et al. (2015) presented
bending and free vibration analysis of isotropic, functionally graded sandwich and laminated
composite plates with the use of a new hyperbolic deformation theory. Kolakowski and Mania
(2015) presented the dynamic response of thin functionally graded plates with a static unsym-
metrical stable postbuckling path. Chen et al. (2015, 2016a,b) analysed static bending, elastic
buckling and free vibrations problems of shear deformable functionally graded porous beams
and sandwich beams with a functionally graded porous core. Jun et al. (2016) studied the free
vibration problem of axially loaded laminated composite beams using a unified higher-order
shear deformation theory and a dynamic stiffness method. Mojahedin et al. (2016) presented
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the buckling problem of functionally graded circular plates with symmetrically and unsymme-
trically varying mechanical properties based on a higher order shear deformation theory. Li and
Hu (2016) analysed nonlinear bending and free vibration problems of nonlocal strain gradient
beams made of a functionally graded material. Feyzi and Khorshidvand (2017) presented the
axisymmetric post-buckling behaviour problem of saturated porous circular plates. Song et al.
(2017) described vibration problems of functionally graded polymer composite plates reinforced
with graphene nanoplatelets. Smyczynski and Magnucka-Blandzi (2018) presented a comparison
of the study results of three-point bending of a sandwich beam with two binding layers with
the use of two nonlinear hypotheses. Sayyad and Ghugal (2017) presented an extensive review
of the papers devoted to bending, buckling and free vibration problems with special attention
paid to the shear effects.
The subject of the study is a beam with unsymmetrically varying mechanical properties.

A nonlinear hypothesis of deformation of the plane cross section of the beam is developed.
Particular attention is paid to location of the neutral axis with consideration of the shear effect.
Variability of the elastic modulus – Young’s modulus in the depth direction of the beam is shown
in Fig. 1.

Fig. 1. Scheme of the elastic modulus variability in the depth direction of the beam

The values of elasticity moduli and mass density of the beam vary as follows

E(y) =
1
2
E11 + e2 − (1− e2) sin(πη)] G(y) =

1
2
G1[1 + g2 − (1− g2) sin(πη)]

ρ(y) =
1
2
ρ1[1 + ρ̃2 − (1− ρ̃2) sin(πη)]

(1.1)

where: e2 = E2/E1, g2 = G2/G1 = (1 + ν1)/(1 + ν2)e2, ρ̃2 = ρ2/ρ1 are dimensionless relative
parameters, E1, E2 – Young’s moduli, ν1, ν2 – Poisson’s ratios, ρ1, ρ2 – mass densities, η = y/h
– dimensionless coordinate (−0.5 ¬ η ¬ 0.5), h – depth of the beam.
The relationship between the relative density and Young’s moduli ratio ρ̃2 =

√
e2 is assumed

based on the papers by Chen et al. (2015, 2016b).

2. Analytical model of the beam

The nonlinear hypothesis is assumed for the purpose of modelling of the beam. A plane cross
section before bending is no longer plane after bending of the beam (Fig. 2). This hypothesis is
a generalization of the shear deformation theory for functionally graded structures.
Two coordinate systems are adopted – x, y and x1, y1 (Fig. 2). The x1 axis is the neutral

axis, therefore, the displacement v(x1, t) is equivalent with v(x, t). The coordinate y1 = h(η+η0),
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Fig. 2. Deformation of the plane cross section of the beam – the nonlinear hypothesis

where η0 = y0/h, therefore, based on the above hypothesis, the displacement is in the following
form

u(x, y, t) = −h
{
(η + η0)

∂v

∂x
− [sin(πη) + sin(πη0)]ψ(x, t)

}
(2.1)

where: v(x, t) – deflection, ψ(x, t) – dimensionless function of the shear effect.
The shear effect displacements of upper and lower surfaces of the beam are as follows

u1(x, t) = −h[1− sin(πη0)]ψ(x, t) u2(x, t) = h[1 + sin(πη0)]ψ(x, t) (2.2)

Then, the longitudinal strain

εx(x, y, t) =
∂u

∂x
= −h

{
(η + η0)

∂2v

∂x2
− [sin(πη) + sin(πη0)]

∂ψ

∂x

}
(2.3)

and the shear strain

γxy(x, y, t) =
∂u

∂y
+
∂v

∂x
= π cos(πη)ψ(x, t) (2.4)

The stresses – Hooke’s law

σx(x, y, t) = E(y)εx(x, y, t) τxy(x, y, t) = G(y)γxy(x, y, t) (2.5)

The simply supported beam with unsymmetrically varying mechanical properties of length L,
depth h and width b is subjected to a uniformly distributed transverse load of intensity q or to
axial compression force F0 (Fig. 3).
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Fig. 3. Scheme of the beam and loads

The Hamilton principle

t2∫

t1

[T − (Uε −W )] dt = 0 (2.6)

where: T is the kinetic energy, Uε – elastic strain energy, W – work of the load

T =
1
2
bhρb

L∫

0

(∂v
∂t

)2
dx Uε =

1
2
b

L∫

0

h/2∫

−h/2

[E(y)ε2x +G(y)γ
2
xy] dx dy

W =
L∫

0

[
qv(x) +

1
2
F0
(∂v
∂x

)2]
dx

(2.7)

and the equivalent – mean mass density of the beam

ρb =
1
h

h/2∫

−h/2

ρ(y) dy =
1
2
(ρ1 + ρ2) =

1
2
ρ1(1 +

√
e2) (2.8)

Substitution of expressions (1.1)1 and (1.1)2 for the elasticity moduli and expressions (2.3) and
(2.4) for strains into expression (2.7)2, after integration along depth of the beam, gives elastic
strain energy as a functional of the two unknown functions

Uε =
1
4
E1bh

3

L∫

0

[
Cvv

(∂2v
∂x2

)2
− 2Cvψ

∂2v

∂x2
∂ψ

∂x
+ Cψψ

(∂ψ
∂x

)2
+ Cψ0

ψ2(x, t)
h2

]
dx (2.9)

where

Cvv =
1
12

[
1− 48

π2
η0 + 12η20 +

(
1 +
48
π2
η0 + 12η20

)
e2
]

Cψ0 =
π2

4(1 + ν1)
(1 + g2)

Cvψ =
1
2π2
{(4 − π2η0)[1− sin(πη0)] + (4 + π2η0)[1 + sin(πη0)]e2}

Cψψ =
1
2
− sin(πη0) + sin2(πη0) +

[1
2
+ sin(πη0) + sin2(πη0)

]
e2

Based on Hamilton’s principle (2.6) with consideration of expressions (2.7)1, (2.7)3 and (2.9),
two differential equations of motion are obtained in the following form

bhρb
∂2v

∂t2
+
1
2
E1bh

3
(
Cvv

∂4v

∂x4
− Cvψ

∂3ψ

∂x3

)
+ F0

∂2v

∂x2
= q

Cvψ
∂3v

∂x3
− Cψψ

∂2ψ

∂x2
+ Cψ0

ψ(x, t)
h2

= 0
(2.10)
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The bending moment

Mb(x) = b

h/2∫

−h/2

yσx(x, y) dy (2.11)

Substituting expression (2.5) for the normal stress, after integration along depth of the beam,
one obtains the following equation

Cvv
d2v

dx2
− Cvψ

dψ

dx
= −2Mb(x)

E1bh3
(2.12)

It may be noticed that for static problems this equation is equivalent to equation (2.10)1.
The position of the neutral axis is determined on the basis of the following condition – total

axial force at the cross section

h/2∫

−h/2

σx(x, y) dy = 0 (2.13)

Substituting expression (2.5) for the normal stress, after integration along depth of the beam,
one obtains the following equation

CNv
d2v

dx2
− CNψ

dψ

dx
= 0 (2.14)

where

CNv = (1 + e2)η0 −
2
π2
(1 − e2) CNψ =

1
2
(1− e2)− (1 + e2) sin(πη0)

Based on this condition, the position of the neutral axis η0 = y0/h is obtained (Fig. 2).

3. Analytical solution of two differential equations of motion of the beam

The system of two differential equations (2.10) for the beam is approximately solved with the
use of two assumed functions

v(x, t) = va(t) sin
(
π
x

L

)
ψ(x, t) = ψa(t) cos

(
π
x

L

)
(3.1)

where: va(t), ψa(t) are functions of time t, which in the case of static problems become parame-
ters. These functions satisfy the conditions of a simply supported beam.
Substitution of functions (3.1) into equations (2.10) gives the following equations

{
bhρb

d2va
dt2
+
1
2

(π
L

)4
E1bh

3
[
Cvvva(t)−

L

π
Cvψψa(t)

]
−
(π
L

)2
F0va(t)

}
sin
(
π
x

L

)
= q

(π
L

)3
Cvψva(t)−

(π
L

)2[
Cψψ +

(λ
π

)2
Cψ0

]
ψa(t) = 0

(3.2)

where λ = L/h is relative length of the beam.
From equation (3.2)2, the function of time related to the shear effect is

ψa(t) =
π

L
kseva(t) (3.3)
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where the dimensionless coefficient of the shear effect is

kse =
Cvψ

Cψψ +
(
λ
π

)2
Cψ0

(3.4)

It may be noticed that the value of this coefficient decreases with increasing relative length of
the beam.
Equation (3.2)1 with consideration of expression (3.3) is in the following form

[
bhρb

d2va
dt2
+
1
2

(π
L

)4
E1bh

3(Cvv − kseCvψ)va(t)−
(π
L

)2
F0va(t)

]
sin
(
π
x

L

)
= q (3.5)

and after application of Galerkin’s method is as follows

bhρb
d2va
dt2
+
1
2

(π
L

)4
E1bh

3(Cvv − kseCvψ)va(t)−
(π
L

)2
F0va(t) =

4
π
q (3.6)

This equation is the base for detailed studies of the bending, buckling and free vibration of the
simply supported beam with unsymmetrically varying mechanical properties.
Condition (2.14) for calculation of the position of the neutral axis of the beam (Fig. 2) with

consideration of functions (3.1) and (3.2)1 and expression (3.3) takes form of a transcendental
equation

η0 − kse sin(πη0)−
( 2
π2
− 1
2
kse
)1− e2
1 + e2

= 0 (3.7)

It may be noticed that for large relative length of the beam (λ → ∞, kse = 0), the position of
the neutral axis is determined as

η
(lim)
0 = ηkse=00 =

2
π2
1− e2
1 + e2

(3.8)

Example. The following data of the beam are assumed: Poisson’s ratios: ν1 = ν2 = 0.33,
e2 = 0.010, 0.025, 0.050, and relative length λ = 4, 6, . . . , 14,∞. The dimensionless valu-
es η0 (3.7) and η

(lim)
0 (3.8) of the position of the neutral axis of the beam are specified in

Table 1.

Table 1. The dimensionless values η0 of the position of the neutral axis

e2
λ

4 6 8 10 12 14 ∞
0.010 0.2019 0.2001 0.1995 0.1992 0.1990 0.1989 0.1986
0.025 0.1962 0.1943 0.1936 0.1933 0.1931 0.1930 0.1928
0.050 0.1870 0.1850 0.1843 0.1839 0.1838 0.1836 0.1833

The graph of the dimensionless values η0 and η
(lim)
0 of the position of the neutral axis of the

beam is shown in Fig. 4.
For the homogeneous beam (e2 = 1), the neutral axis is located in the middle depth of the

beam (η0 = 0).
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Fig. 4. The graph of dimensionless values η0 for the position of the neutral axis of the beam

4. Bending of the beam, static problem – analytical solution

The simply supported beam with unsymmetrically varying mechanical properties is subjected
to a uniformly distributed transverse load of intensity q (Fig. 3). On the basis of equation (3.6)
for the static problem (d2va/dt2 = 0) and F0 = 0, the relative maximum deflection is obtained

ṽmax =
vmax
L
= kv max

qλ3

E1b
(4.1)

where the dimensionless coefficient of the maximal deflection is

kv max =
8

π5(Cvv + kseCvψ)
(4.2)

In the case of large relative length of the beam (λ→∞, kse = 0), this coefficient of the maximun
deflection is

k(lim)v max =
8

π5Cvv
(4.3)

Example. The following data of the beam are assumed: Poisson’s ratios: ν1 = ν2 = 0.33,
e2 = 0.010, 0.050, . . . , 0.50, 1.0, and relative length λ = 5, 10, 15, 20,∞. The values of the
dimensionless coefficient of the maximum deflection kv max and k

(lim)
vmax are specified in

Table 2.

The graph of the values of the dimensionless coefficient of the maximum deflection kv max
and k(lim)vmax is shown in Fig. 5.
For the homogeneous beam (e2 = 1) of large relative length, the dimensionless coefficient of

the maximum deflection k(lim)v max = 48/π5.
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Table 2. The dimensionless coefficient kv max of the maximum deflection

e2
λ

5 10 15 20 ∞
0.01 0.6215 0.5978 0.5934 0.5919 0.5899
0.05 0.5314 0.5084 0.5042 0.5027 0.5008
0.10 0.4550 0.4329 0.4288 0.4274 0.4256
0.25 0.3312 0.3116 0.3080 0.3067 0.3051
0.50 0.2431 0.2267 0.2237 0.2226 0.2213
1.0 0.1733 0.1610 0.1587 0.1579 0.1569

Fig. 5. The graph of the values of the dimensionless coefficient of the maximum deflection

5. Buckling of the beam, static problem – analytical solution

The simply supported beam with unsymmetrically varying mechanical properties is subjected
to axial compression with the force F0 (Fig. 3). On the basis of equation (3.6) for static problem
(d2va/dt2 = 0) and q = 0, the critical force is obtained

F0,CR =
(π
λ

)2
kFCRE1bh (5.1)

where the dimensionless coefficient of the critical force is

kFCR =
1
2
(Cvv − kseCvψ) (5.2)

In the case of large relative length of the beam (λ→∞, kse = 0), this coefficient of the critical
force is

k
(lim)
FCR =

1
2
Cvv (5.3)
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Example. The following data of the beam are assumed: Poisson’s ratios: ν1 = ν2 = 0.33,
e2 = 0.010, 0.050, . . . , 0.50, 1.0, and relative length λ = 25, 30, 35, 40,∞. The values of the
dimensionless coefficient of the critical force kFCR and k

(lim)
FCR are specified in Table 3. The

λ values in the buckling problem are larger than those for bending, since the critical loads
for short beams would be very high and, therefore, elastic-plastic buckling would arise.

Table 3. The values of the dimensionless coefficient kFCR and k
(lim)
FCR of the critical force

e2
λ

25 30 35 40 ∞
0.01 0.022112 0.022126 0.022135 0.022141 0.022159
0.05 0.026038 0.026058 0.026070 0.026077 0.026102
0.10 0.030629 0.030655 0.030671 0.030681 0.030714
0.25 0.042698 0.042742 0.042769 0.042787 0.042844
0.50 0.058845 0.058916 0.058959 0.058987 0.059078
1.0 0.082985 0.083091 0.083155 0.083197 0.083333

The graph of the values of the dimensionless coefficient of the critical force kFCR and k
(lim)
FCR

is shown in Fig. 6.

Fig. 6. The graph of the values of the dimensionless coefficient of the critical force

For the homogeneous beam (e2 = 1) of large relative length, the dimensionless coefficient of
the critical force k(lim)FCR = 1/12.

6. Free vibration of the beam, dynamic problem – analytical solution

The simply supported beam with unsymmetrically varying mechanical properties is not loaded
(q = 0, F0 = 0) (Fig. 3). Equation (3.6) for the dynamic problem is as follows

ρb
d2va
dt2
+
1
2

(π
L

)4
E1h

2(Cvv − kseCvψ)va(t) = 0 (6.1)
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The equation is solved with the use of the assumed function

va(t) = va sin(ωt) (6.2)

where: va is the amplitude of flexural vibration, ω – fundamental natural frequency.
Substituting this function into equation (6.1), after simple transformation, one obtains the

fundamental natural frequency

ω =
(π
λ

)2
kω

√
E1
ρbh2

(6.3)

where the dimensionless coefficient of the fundamental natural frequency is

kω =

√
1
2
(Cvv − kseCvψ) =

√
kFCR (6.4)

Taking into account expression (5.3), one formulates k(lim)ω =
√
k
(lim)
FCR.

Example. The following data of the beam are assumed: Poisson’s ratios: ν1 = ν2 = 0.33,
e2 = 0.010, 0.050, . . . , 0.80, 1.0, and relative length λ = 5, 10, 15, 25,∞. The values of the
dimensionless coefficient of the fundamental natural frequency kω and k

(lim)
ω are specified

in Table 4.

Table 4. The values of the dimensionless coefficient kω and k
(lim)
ω of the natural frequency

e2
λ

5 10 15 25 ∞
0.01 0.14502 0.14787 0.14842 0.14870 0.14886
0.05 0.15683 0.16034 0.16101 0.16136 0.16156
0.10 0.16949 0.17376 0.17458 0.17501 0.17526
0.25 0.19866 0.20481 0.20601 0.20663 0.20699
0.50 0.23187 0.24011 0.24173 0.24258 0.24306
0.80 0.25984 0.26954 0.27146 0.27246 0.27303
1.0 0.27465 0.28497 0.28701 0.28807 0.28868

The graph of the values of the dimensionless coefficient of the fundamental natural frequency
kω and k

(lim)
ω is shown in Fig. 7.

In the case of the homogeneous beam (e2 = 1) of large relative length, the dimensionless
coefficient of the critical force k(lim)FCR =

√
3/6.

7. Numerical calculations – FEM study

7.1. Numerical FEM model

The numerical analysis of the beam with unsymmetrically varying mechanical properties is
carried out with the help of the SolidWorks software. The simulation assumed the same geometry
parameters and mechanical properties as those used in the analytical calculations.
The beam is modelled using 3D finite elements in 20 layers, each with different mechanical

properties satisfying expressions (1.1). Taking into account symmetry of the structure, a half of
the beam is considered (Fig. 8).
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Fig. 7. The graph of the values of the dimensionless coefficient of the fundamental natural frequency

Fig. 8. Boundary conditions and load for the bending problem in the FEM study

Therefore, the following boundary conditions are adopted:

• for x = 0 – the simple support – v(0) displacements in the y direction are zero;
• for x = L/2 – the middle of the beam – u(L/2) displacements in the x direction are zero.

The numerical study of bending, buckling and free vibration is restrained to the xy-plane,
similarly as in the case of the analytical approach.
SolidWorks calculations have been carried out for beams with a rectangular cross-section of

depth h = 80mm, width b = 20mm, and length values L = λh (400mm¬ L ¬ 3200 mm).

7.2. Bending of the beam, static problem – numerical FEM solution

The beam is subjected to a uniformly distributed load of intensity q. A view to the bent
half-beam is shown in Fig. 9.
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Fig. 9. Deflection of the beam (SolidWorks simulation)

Results of the study are maximum deflections vmax [mm]. Based on expressions (4.1) and
(4.2), values of the dimensionless coefficient kv max are calculated. These values are specified in
Table 5.

Table 5. The values of the dimensionless coefficient kvmax of the maximum deflection (FEM
study)

e2
λ

5 10 15 20

0.01 0.6136 0.5950 0.5886 0.5875
0.05 0.5248 0.5050 0.5007 0.5000
0.10 0.4496 0.4295 0.4257 0.4250
0.25 0.3272 0.3090 0.3062 0.3050
0.50 0.2400 0.2250 0.2222 0.2216
1.0 0.1696 0.1595 0.1580 0.1569

Values of the relative difference between analytical and FEM solutions are below 2.2%. The
highest difference occurs for small relative length values λ. For greater λ values, the difference
decreases.

7.3. Buckling of the beam, static problem – numerical FEM solution

The half-beam under compression is shown in Fig. 10. Cross-sections and variation of me-
chanical properties of the beam are the same as in the case of bending. Therefore, the buckling
is analysed only in the xy-plane, similarly as for bending and free vibration. In order to avoid
lateral buckling the z-displacements in the whole xy-plane are zeroed.

Fig. 10. Boundary conditions and load for the buckling problem in the FEM study

Buckling shape of the beam resulting from the numerical study is shown in Fig. 11.
Results of the study are critical force values F0,CR [N]. Based on expressions (5.1) and (5.2),

values of the dimensionless coefficient kFCR are calculated. These values are specified in Table 6.
Values of the relative difference between analytical and FEM solutions are below 4.6%.
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Fig. 11. Buckling shape of the beam (SolidWorks simulation)

Table 6. The values of the dimensionless coefficient kFCR of the critical force (FEM study)

e2
λ

25 30 35 40

0.01 0.0211 0.0213 0.0215 0.0216
0.05 0.0252 0.0255 0.0256 0.0258
0.10 0.0300 0.0302 0.0304 0.0306
0.25 0.0424 0.0429 0.0431 0.0435
0.50 0.0591 0.0598 0.0602 0.0607
1.0 0.0806 0.0811 0.0815 0.0817

7.4. Free vibration of the beam, dynamic problem – numerical FEM solution

Free vibrations are computed with the SolidWorks software for the FEM model composed of
10 layers of varying mechanical properties. A half-beam is adopted with the boundary conditions
shown in Fig. 12.

Fig. 12. Half-beam model used in the free-vibration calculation

The middle of the beam is placed in the left-hand side of the illustration. Hence, the x and
z displacements are zeroed there. The right-hand part of the beam is simply supported and,
therefore, the displacement y is blocked.
The SolidWorks simulation tool used to compute the free-vibration frequencies provides

angular frequencies ω of particular vibration modes. Nevertheless, in order to compare the
analytical and numerical results, the dimensionless coefficient of the natural frequencies should
be calculated for each case specified in Table 4. Taking into account expressions (2.8) and (6.3),
one obtains
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kω = ωh
(λ
π

)2
√
ρ1(1 +

√
e2)

2E1
(7.1)

In the case of the example presented in Fig. 13, the following data are assumed: e2 = 0.01,
b = 20mm, h = 80mm, L = 400mm. Such a data set corresponds to the upper row and left-
-hand column of Table 4. The angular frequency in this case is equal to ω = 5093 rad/s, which
gives kω = 0.14240.

Fig. 13. An example result for e2 = 0.01 and λ = 5

The results kω of all the considered cases are presented in Table 7.

Table 7. Values of the dimensionless coefficient kω of the natural frequency computed numeri-
cally

e2
λ

5 10 15 25

0.01 0.14240 0.14609 0.14680 0.14714
0.05 0.15530 0.15987 0.16075 0.16119
0.10 0.16775 0.17326 0.17434 0.17489
0.25 0.19658 0.20426 0.20578 0.20655
0.50 0.22962 0.23955 0.24153 0.24254
0.80 0.25743 0.26893 0.27125 0.27243
1.0 0.27214 0.28435 0.28681 0.28805

They perfectly comply with the results of Table 4 obtained analytically. The relative dif-
ference values between analytical and FEM solutions are below 2%. The highest difference,
equal to 1.8%, occurs for the example case mentioned above, whereas for the others they are
significantly smaller.

8. Conclusions

The neutral axis of the studied beam deviates from the geometric centre of the rectangular cross
section as a result of unsymmetrical properties of the material. The location of the neutral axis
is affected by the shear effect (Fig. 4). This effect is meaningful in the case of short beams and
disappears for longer ones. The values of deflection, critical load and free-vibration frequencies
depend on the position of the neutral axis. Therefore, in the case of the analytical approach, the
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position of the axis should be determined first of all. The values of deflection, critical load and
free-vibration frequencies obtained analytically have been compared to those computed with the
SolidWorks software. It may be noticed that the difference between both sets of the results does
not exceed 5%.
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The purpose of this paper is to present a novel mechatronic system for gait re-education
which consists of a body weight support system (BWS system) and a treadmill. This pu-
blication covers mainly issues related to the design and optimization process of a control
algorithm dedicated for the unloading system. The proposed control system is based on
a fuzzy logic controller coupled with a PID regulator. The optimization of parameters for
regulators has been conducted based on numerical simulations in which a hybrid optimiza-
tion method combining a genetic algorithm with a gradient algorithm has been used. The
developed control system has been tested experimentally.

Keywords: gait reeducation, control system, optimization, fuzzy logic

1. Introduction

Half of all deaths are caused by cardiovascular diseases in the modern world. It is estimated that
the number of deaths due to stroke can reach 7.69mln people to 2030, and it will constitute one of
more important medical problems. Strokes constitute the main reason for permanent disability
in the adult population, particularly after turning 60. They are one of the main reasons for
remaining in the condition of disability for a longer period of time. The restoration of possibility
to move or keep balance in the upright position is significant for patient’s proper functioning.
The deficit connected with the lack of ability to walk pertains to almost 70% of patients who
have experienced a stroke. Kinesiotherapy is the most common and obvious way of treatment
after a stroke that should be started as soon as possible. The simplest form of exercises is walking
in company of a physiotherapist using simple devices for support such as walkers or banisters.
Mechatronic devices which support the process of kinesiotherapy after a stroke are in some sense
“packed with the latest technological solutions”. They affect training efficiency and, especially,
improve the speed of walking, endurance and balance. Such devices support physiotherapists
relieving them from hard physical work of supporting a patient and allowing them to concentrate
on the essence of the exercises carried out to a greater degree (Koceska and Koceski, 2013; Kot
and Nawrocka, 2012). These devices both implement the rehabilitation process and verify the
progress of treatment. When analyzing rehabilitation devices for kinesiotherapy within a dozen
years, it is possible to notice that unloading a patient is the most significant element subject
to continuous modifications. It is possible to find in the market devices with a simple design
that make it possible to unload a patient in a passive way as well as technologically advanced
solutions with active body weight support systems. In the case of passive systems (unloading
force regulated by a crank, counterweight, spring, etc.), the difference between the unloading
force that is set and the one that is measured during exercises is much bigger (Frey et al., 2006).
Therefore, the exercises with devices equipped in body weight support systems with active
control of the unloading force are more beneficial for patients. When comparing rehabilitation
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devices equipped with active body weight support systems with one another, it is possible to
notice that the unloading mechanism is an element connected with a still supporting structure
(it does not keep up with a patient’s movement) in most cases; and the patient’s walk forces the
manipulator (mechanic orthosis) or treadmill movement (Chen et al., 2013; Pajor and Herbin,
2015). In the second case, training is recommended for people who have regained the ability to
walk in a degree that makes it possible to move independently, but they still require support
and improvement of the technique, speed and stamina (Mehrholz et al., 2014; Cao et al., 2014;
Querry et al., 2008). The technologies of biofeedback and virtual reality are also used in the
devices of this type (Koenig et al., 2011; Lünenburger et al., 2007, Jurkojć et al., 2017).
A device in which the movement of a training person is limited only by the space of a

supporting frame, on which a BWS system moves, has been created as a result of research at the
Institute of Theoretical and Applied Mechanics financed by the National Centre for Research
and Development (Duda et al., 2016). The possibility of free side movements of a patient’s pelvis
plays a significant role in rehabilitation exercises that restore the proper pattern of walking, as
research shows (Dragunas and Gordon, 2016; Mignardot et al., 2017).
A new form of a mechatronic device for the re-education of walking has been currently

developed.
It is a combination of a movable body weight support system with a treadmill. The thing that

differentiates the proposed solution from those existing on the market results from coupling the
movement of an exercising person with the movement of a treadmill tape. It is not the treadmill
movement that forces patient’s movement. It is the patient that forces treadmill movement. It
is implemented by using a sensor measuring the inclination angle of a sling rope. Moreover,
the device allows free side movements that are so important for proper rehabilitation. It is
achieved thanks to drive in a direction that is transverse to the direction of walking. The invented
mechatronic system for gait re-education includes four drives:
• two independently working drives of the body weight support system,
• the drive of a winch trolley making it possible for training a person to move in the direction
that is perpendicular to the plane of the patient’s movement,
• the drive of the treadmill tape.

This publication involves an attempt at developing and optimizing a control system of the
body weight support system with a fuzzy logic controller. No such solutions have been found
in literature. Systems used for unloading a patient with an automatically regulated force are
usually described in a very general way. Most of all, there are no descriptions of systems steering
winches equipped with two drives cooperating with each other. The minimization of mass and
size constitutes an important construction condition in the case of unloading systems with mobile
BWS systems that have been suspended to the ceiling in the current solutions (Hidler et al., 2011;
Duda et al., 2016). However, it is connected with the limitation of a linear drive movement range.
The right synchronization of the work of a winding drum with a linear actuator is necessary
if one wants to make it possible for patients to do exercises with significant movements. Due
to limited movement of such a linear actuator, the development of an optimal steering system
constitutes an interesting engineering problem. This is why the problem of optimization of a
system controlling the BWS system has been tackled in this article.
The most detailed description of a similar system was presented by Frey et al. (2006) descri-

bing the Lokolift device. A winding drum cooperates with a rope (passive) drive in that solution.
In order to steer this winding drum, switches have been used which are activated at the moment
when the movement of the linear actuator (instantaneous or mean) goes beyond the admissible
range. Thus, the engine that propels the rope drum works only with the nominal speed or it
does not work at all.
The Lokolift system is meant mainly for the cooperation with a patient training on the

treadmill, and its whole construction is placed on the floor. Therefore, this device does not have
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to meet restrictive criteria connected with the minimization of mass and dimensions, so the
range of the linear actuator is not limited by any restrictive conditions. Taking into account the
way devices for the re-education of walking develop and the beneficial influence of mobile body
weight support systems on the stability of a patient’s walk when training in reduced weight
conditions, it is possible to expect further development of similar devices (Reinkensmeyer and
Dietz, 2016; Riener et al., 2010).

2. Description of the device

The device used for the re-education of walking presented in this paper is a mechatronic system
in which the body weight support system, the system of compensating side inclinations and the
training treadmill have been integrated (Fig. 1).

Fig. 1. Mechatronic device for gait re-education

A training person is pinned up in a special orthopaedic harness fastened to the rope of a
winching device. The coupling between the mentioned subsystems and the patient is implemented
through measurement systems, one measuring the unloading force and the other measuring linear
movements resulting from the deflection of the line from the vertical axis (sensors) and particular
mechanism drives (actuators). The encoders of servo drives are additional servers that the device
is equipped with.
The transmission of measurement and control signals of the device takes place in the real

time mode (Miądlicki and Pajor, 2015; Sapiński et al., 2016) with the use of a computer equipped
with 2 RT-DAC4/PCI cards and MATLAB/Simulink software. The calculation step of the real
time is T0 = 0.01 s. The servo drives of the winching device and compensation of side inclinations
work in the speed control mode. Then, the generated steering signals retain the set rotational
speed in a precise way.
Steering the treadmill, described in details in (Duda et al., 2017), takes place by a modified

original control panel. It has been achieved by parallel connection of an additional controller
whose task involves simulation of the work of buttons placed on the panel that steers the
treadmill. The electronic system has been built with the use of optocouplers steered with digital
signals generated by the steering system in a PC Computer. The change of a signal from a high
status to a low one and back to the high status has been obtained after 0.1 s. It is equivalent
to the change of the treadmill speed obtained after pressing the button (faster or slowly) on
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the control panel of the treadmill. This is also the reason for a relatively low sensitivity of the
steering system to changes of walking parameters.
A tracking system with a PD controller has been implemented for controlling the movement

of the BWS system trolley (servodrive Y ) along a girder. Descriptions of such a system were
presented in (Duda et al., 2016; Raczka et al., 2013). Controlling a BWS system requires the use
of a more advanced active control system which is presented in Section 5.

3. Modelling the body weight support system

The processes of optimization of complex steering algorithms in which several or dozen parame-
ters should be specified are usually carried out with offline methods. These methods are basically
necessary in the case of tuning steering systems with devices meant for cooperation with people;
for rehabilitation in particular. In order to carry out the optimization of a system controlling
a BWS system it is necessary to develop a numerical model taking into account the coupling
between the electric part, the mechanical one, and the patient. A model of a synchronous motor
with permanent PMSM magnets (Permanent Magnet Synchronous Motor) described in (Mężyk
et al., 2016; Xu, 2012) has been used for building the numerical model of the device.
The body weight support system that is responsible for unloading the patient with the set

force is the most important subsystem of the device presented in the article. In contrast to classic
hoist devices, its driving system has been equipped with two independently working engines.
The first one that is marked as Z1 is responsible for propelling the rope drum; the second
one (Z2 linear actuator) is connected with the system of dynamic compensation. This system
works on the drive basis of a Series Elastic Actuator type (SEA) (Pratt and Williamson, 1995;
Robinson et al., 1999). Figure 2 presents a detailed construction of the driving system. The

Fig. 2. The structure of the driving system of the body weight support system

construction of the BWS system has been developed on the basis of aluminium profiles creating
supporting frame (1) to which the following have been fixed: track guides (2), compression
springs (3), driving engine of the Z2 axis, winding drum with an engine (5), and a system of
pulleys. The construction of the presented system makes it possible to change rope length (6)
through a change of the location of the pulley (7). This pulley is fixed to the first steel trolley
out of two (8) that move along tracking guides (2) and are separated with springs (3). This
diminishes the consequences of impact loads appearing during operation. The movement of the
second trolley (9) is implemented with a linear drive with ball screw (10) of a 5mm pitch whose
rotation causes movement of a nut that is fastened to this trolley (9). The maximum range of
the Z2 linear actuator movement is ca. 110mm.
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The developed physical model of the BWS system is shown in Fig. 3a, after including sim-
plifying assumptions.

Fig. 3. (a) The physical model of the BWS system. (b) The forces which act on the actuator Z2

Three generalized coordinates connected with the rotation angles of rotators in the engines
and the shift of the patient’s centre of gravity have been accepted in the mathematical model
of the presented system

q = [ϕZ1, ϕZ2, zp] (3.1)

If one takes into account the fact that the resistance to movement and the trolley weight whose
movement is marked with the xc coordinate are negligibly small, then one can estimate the value
of the unloading force influencing the patient (rope tension force) FUNL, when considering the
forces influencing this trolley (Fig. 3b)

FUNL ≈
Fs
2

Fs = ks
(
ϕZ2

h

2π
− xc

)
+ bs

(
ϕ̇Z2

h

2
− ẋc

)
(3.2)

where

xc =
zp − ϕZ1iZ1rZ1

2
(3.3)

In the equation above, iZ1 specifies the planetary gear ratio between the rope drum and the Z1
engine. In the mathematical model of the BWS system, the mass of the propelling screw and
the trolley propelled by it have been reduced to the moment of inertia of the Z2 engine shaft.
The inertia of other pulleys, the winding drum, and the planetary gear has been reduced to the
moment of inertia of the Z1 engine shaft. In such a case, the searched equations of motion have
the following form

ϕ̈Z1 =
1
IZ1
(MZ1 − bZ1ϕ̇Z1 − FUNLiZ1rZ1)

ϕ̈Z2 =
1
IZ2

(
MZ2 − bZ2ϕ̇Z2 − 2FUNL

h

2π

)

z̈p =
1
mp
(FUNL −mpg)

(3.4)

The coupling between the electric and mechanical part is implemented in such a way that the
driving moment determined from the numerical model of the PMSM motor (MZ1 andMZ2) has
been implemented in the model of the mechanical part (3.4). The calculated angular acceleration
(ϕ̈Z1 and ϕ̈Z2) has been, in turn, used in the engine model for calculating the rotation speed
and the rotor rotation angle.
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Fig. 4. A functional scheme of a mechatronic treadmill for locomotive training

Figure 4 shows a functional plan of the device in a block form in which the servo drives,
the mechanical part (BWS system and treadmill), patient’s movement, and the steering system
have been included.
Parameters of the mathematical model have been determined on the basis of catalog data,

experimental tests on the universal testing machine and in the estimation process. The estimation
of parameters in the models of Z1 and Z2 servo drives has been carried out on the basis
of catalogue data and experimental data in which the rotational speed of the engine in various
strain conditions has been registered. The validation of the model developed for the BWS system
(Fig. 3a) has been carried out with the use of a weight of 20 kg hung at the end of the rope.
During the experiment, the rotational speed of 1000 (rotations/per minute) has been set on the
Z1 engine; and the value of the unloading force has been measured at the same time. Analogical
tests have been carried out with the use of the Z2 drive. The correlation coefficient has been
calculated with R-Pearson’s method (Gniłka and Mężyk, 2015), and it equals 0.87.

4. Modelling the patient’s gait

A kinematic input has been used in further numerical research for simulation of the patient’s
movements. Thus, the third equation has been reduced in the system of equations of the BWS
system movement, see Eq. (3.4).
The equations describing patient’s movements zp [m] (used to calculate the force F in accor-

dance with equations (3.2) and (3.3)) have been described with mathematical functions whose
formulas have been formulated on the basis of parameter measurements of walking of the disa-
bled person. The results of the research of walk kinematics with participation of people after
a stroke with paresis of the right side have been used in the model. The analysis of the walk
kinematics has been carried out with the use of APAS software. Taking into account the fact
that the BWS system should also guarantee a reliable work during doing other exercises in
which vertical movements have a wide range (e.g. squats, climbing stairs), this input has been
described by the system of equations

zp =





0 for t < 2

0.016[sin(2π(t− 2)) − sin(4π(t− 2))] for 2 ¬ t < 5.166
0.2(t − 5.166) for 5.166 ¬ t < 6.166
0.2 for t  6.166

(4.1)
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5. Optimization of the control system

The results of a preliminary experimental study of the control systems of the presented body
weight support system has shown that the use of the Z2 drive only is sufficient for ordinary
walking on a treadmill (Duda and Gembalczyk, 2016). In the case when a rehabilitated person
is supposed to do a different exercise which involves a significant change of the trunk (e.g. squats,
standing up from a chair, climbing obstacles), it is necessary to start a winding drum- the Z1
drive.
In order to take advantage of the device potential fully and to guarantee a patient the biggest

comfort of exercises done possible, one should develop and tune steering systems designated
separately for every performed exercise or several main modes of the device operation.
From the point of view of physiotherapists, a simple system with few options is desired.

Therefore, a universal steering system that will be able to steer a device independently of the
patient’s behaviour is an optimal solution for them. An attempt at developing a universal steering
system of the BWS system has been made to meet these expectations taking into account
economic aspects at the same time (energy efficiency). On the basis of earlier experience, the
proposed steering system has been based on a PID controller coordinating with a fuzzy controller
(Zhao et al., 2007). The Z2 drive is steered in a feedback loop with the sensor of the unloading
force, whereas the Z1 drive controller additionally uses movement measurement of the Z2 drive
actuator. This solution is presented in the form of a scheme in Fig. 5.

Fig. 5. Block diagram of the proposed control system

The basis of rules of the fuzzy controller has been prepared in such as way so that the Z1
drive is started only in the situation when the Z2 actuator moves away from the admissible
working range or when the deviation of the reliving force is bigger than the accepted admissible
deviation. The accepted set of rules is presented in the table. Seven membership functions have
been defined for every input and output signal of the fuzzy controller. The symbol of Z2 disp
means movement of the actuator in the Z2 drive, whereas ∆UNL is the value of the unloading
force error

∆UNL(t) = Fref − FUNL(t) (5.1)

The signs from “− − −” to “+ + +” represent the value from the lowest to the highest one.
The “nom” index means that the variable value is placed within the accepted admissible range,
where the operation of Z1 is not required. The assumed admissible range for moving the Z2
actuator is 10mm (Z2Dnom = ±10mm), and the admissible deviation of the unloading force 20N
(∆UNLnom = ±20N). Moreover, the following ranges of the input signals have been accepted

∆UNL ∈ 〈−100; 100〉 [N] Z2disp ∈ 〈−50; 50〉 [mm] (5.2)
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Table 1. The basis of fuzzy logic controller rules

Displacement of the Z2 actuator (Z2disp)
−−− −− − nom + ++ +++

U
nl
oa
di
ng
fo
rc
e ∆UNL−−− 0 0 Z1+ Z1 + + Z1 + ++ Z1 + ++ Z1 + ++

∆UNL−− 0 0 0 Z1+ Z1 + + Z1 + ++ Z1 + ++
∆UNL− 0 0 0 0 Z1+ Z1 + + Z1 + ++
∆UNLnom Z1−− Z1−− Z1− 0 Z+ Z1 + + Z1 + +
∆UNL+ Z1−−− Z1−− Z1− 0 0 0 0
∆UNL++ Z1−−− Z1−−− Z1−− Z1− 0 0 0
∆UNL+++ Z1−−− Z1−−− Z1−−− Z1−− Z1− 0 0

The optimal values of the PID controller settings and the range of the accepted member-
ship functions of input signals in the fuzzy controller have been searched for in the process of
optimization. Both controllers have been optimized separately due to the accepted assumptions.
The input has been limited only to simulation of walking itself during the selection of the PID
controller settings. The simulation time has been limited to t < 5.166 in Eq. (4.1). The settings
of the PID controller have been the optimized variables, whereas the goal function has been
connected with the minimization of the unloading force error

FCPID =
5.166∫

0

|∆UNL(t)| dt→ min (5.3)

The optimization of the fuzzy controller has been started with the acceptance of the rele-
vant convention of generating membership functions. The coordinates of four additional points
P1-P4 are calculated for each input in the proposed approach. The relevant membership func-
tions are created in the next step on their basis. The values of these points are calculated with
the use of the factors of proportionality included in the vector of the decision variables x(n),
and their detailed description is included in equations (5.4). The decision variables describe the
proportion of the section division between the final value of the range and the previous section
point. They can assume values in the range from 0 to 1. The maximum values of Pmax and the
admissible Pnom result from the accepted assumptions

P1 = x(1)(Pmax − Pnom) P2 = x(2)(Pmax − Pnom)
P3 = x(3)(Pmax − P2) P4 = x(4)(Pmax − P3)

(5.4)

Two types of the membership functions have been used in the fuzzy controller, the triangular
and trapezoid ones. The visualisation of the developed convention is pictured in Fig. 6.
The presented solution has been used for description of the membership functions for both

inputs so values of 8 variables have been looked for in the process of optimization.
The ranges of the membership functions of the output signal (values of the set rotational

speed of the Z1 engine) have been accepted as constants in accordance with Fig. 7.
Both the unloading force and movement of the Z1 drive should be taken into account during

fuzzy controller optimization in the goal function. Due to the limit switches that are used in the
device, the most important criterion connected with the position of the Z2 actuator is that none
of the trolleys goes beyond the working range. This criterion is included in the form of a penalty
function. Moreover, it is important to ensure fluent regulation of the unloading force in order
to ensure the biggest patient’s comfort. It is achieved by limiting the second derivative of this
value in terms of time. The minimization of such a component also affects the energy efficiency
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Fig. 6. Visualization of the developed method of describing the input membership functions

Fig. 7. Output membership function for rotational speed of the servomotor Z1

of the device. The inclusion of all the aspects discussed above has allowed for formulating a
multi-objective goal function with the internal penalty function

FCfuzzy = (1− w1 − w2)
T∫

0

|∆UNL(t)| dt+ w1
T∫

0

d2|∆UNL(t)|
dt2

dt

+ w2

T∫

0

|ωZ1(t)| dt+
T∫

0

|∆UNL(t)|P (t) dt→ min

(5.5)

where

P (t) =

{
0 if Z2disp < 40mm

104 if Z2disp > 40mm
(5.6)

The optimization of both controllers has been carried out with the use of the Optimization Tool-
box module that is implemented in the MATLAB software making use of a hybrid optimization
method combining a genetic algorithm with a gradient algorithm for continuous optimization
with limitations (fmincon function). The best individual created in the genetic algorithm con-
stitutes the starting point for calculations with the gradient method in the calculations carried
out. The research carried out has shown that it is most advantageous to use the PD controller
for steering the Z2 drive with the following settings:

P = 57, 13 I = 0 D = 0.755

The case in which the weight factor w1 = 0.005, w2 = 0.02 has been considered the best one
after analysis of the set of paretooptimal solutions obtained during the optimization of the fuzzy
controller. The obtained distribution of the membership functions and a graphic interpretation
of the output signal (as a surface) are shown in the three consecutive figures.
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Fig. 8. Input membership function for unloading the force error

Fig. 9. Input membership function for displacement of the Z2 actuator

Fig. 10. Surface of the fuzzy logic controller output signal

6. Results of experimental research

In order to verify the developed algorithm controlling the drives of the unloading system, a series
of experiments has been conducted. In the presented results, the operation of the BWS drive
systems has been tested during walking on a treadmill with a constant speed 2 km/h, but the
set value of the unloading force has been changed and equaled to 50, 120, 180, 300 and 180N,
respectively.

The charts show the registered value of the unloading force (Fig. 11), rotational speed of the
servomotor Z2 (Fig. 12), displacement of the actuator in the Z2 drive system (Fig. 13) and the
rotational speed of the servomotor Z1 (Fig. 14).
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Fig. 11. Registered value of the unloading force as a function of time

Fig. 12. Registered value of the Z2 servomotor rotational speed as a function of time

Fig. 13. Registered linear displacement of the Z2 actuator as a function of time

Fig. 14. Registered value of the Z1 servomotor rotational speed as a function of time

7. Conclusions

The paper presents a mechatronic device supporting the process of walking re-education in which
the body weight support system cooperates with the training treadmill, and has the possibility
of making follow-up movements with side movements of the patient.
The use of a fuzzy controller makes it possible to develop a universal steering system that

ensures the maintenance of a constant unloading force value and synchronizes the operation of



1190 G. Gembalczyk et al.

the winding drum with the SEA drive type independently of the exercise done. The proposed
solution is particularly beneficial for physiotherapists supervising a patient because it requires
introduction of the unloading force value only. It is a particularly important advantage as the
simplicity of handling is expected.
As the charts show, the drive of the Z1 winding drum is started only in the situation when

the Z2 actuator is close to the limit switches; it is not, however, used during normal walking
on the treadmill. It is an advantage in economic terms. Testing the device by a healthy person
only is a certain limitation of the conducted research; however, it is a beneficial situation for
the verification of the steering system operation as the exercising person can move in a more
dynamic way.
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This paper presents a novel approach to the problem of controlling mechanical objects of
unspecified description, considering variable operating conditions. The controlled object is a
mobile robot with mecanum wheels (MRK M). To solve the control task, taking into account
compensation for nonlinearity and the object variable operating conditions, the Lyapunov
stability theory is applied, including the Hamilton-Jacobi (HJ) inequality. A neural network
with basic sigmoid functions is used to compensate for the nonlinearity and variable ope-
rating conditions of the robot. A simulation example is provided in order to evaluate the
analytical considerations. The simulation results obtained confirmed high accuracy of the
predicted robot motion in variable operating conditions.

Keywords: mechatronics, mobile robot, mecanum wheels, Hamilton-Jacobi inequality

1. Introduction

The motivation for analytical considerations of the behaviour of a mobile robot with Swedish
wheels (Canudas de Wit et al., 1996), referred to in the literature as mecanum wheels (Becker et
al., 2014; Abdelrahman et al., 2014; Hendzel and Rykała, 2015) comes from the fact that there
is a relatively small amount of literature in this area, especially with regards to the impact of
resistance to motion and variable operating conditions on the quality of motion and its control
in real time. Most often, control synthesis for these objects is carried out based on kinematics
equations (Siegwart et al., 2011; Tai et al., 2011). Kinematics control does not take into account
nonlinearity of the robot and variable operating conditions. The literature offers solutions which
take into consideration dynamic equations of motion (Han et al., 2009; Park et al., 2010; Tsai
et al., 2010) typically in a simplified form not including, for example, resistance to motion.
The work of (Lin and Shih, 2013) includes control synthesis for a mobile robot with mecanum
wheels based on the Lagrange equations using an adaptive control algorithm. The current paper
presents a new approach to the problem of controlling a mobile robot with mecanum wheels
as a mechanical object of unspecified description, considering variable operating conditions. To
solve the mobile robot control task, the Lyapunov stability theory is applied, including the HJ
inequality. The method of synthesis of robust neural networks control proposed in this paper
aims at extending the existing solutions with a particular emphasis on its application in the field
of control methods for intelligent mobile wheeled robots. In Section 2, kinematic and dynamic
equations for MRK Mmotion are formulated. Section 3 provides a theoretical basis of dissipation
of nonlinear systems and L2 stability. In Section 4, the assumed structure of the neural network
is discussed, and its description is given. The synthesis of robust neural networks control of
MRK M, including the HJ inequality, is provided in Section 5. Section 6 contains a simulation
example and simulation results of the adopted solution.
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2. Mobile wheeled robot

When describing motion of mobile wheeled robots, we are interested in the issues of kinematics
and dynamics of such systems (Żylski, 1996). From the perspective of controlling these objects
in the areas of both kinematics and dynamics, we solve reverse tasks. To describe kinematics
of a mobile robot with mecanum wheels, the model shown in Fig. 1 is adopted. In this figure,
x, y and z are the axes of the fixed system. The basic units of this model are: frame 5 and the
driving units. The driving unit consists of wheels 1, 2, 3, 4, which are mounted on semi-axles and
set in motion by a drive module associated with a given wheel. The points A1, A2, A3, A4 lie
in their centres of symmetry. These wheels rotate around their own axes which do not change
their position relative to the frame. The rollers are placed on the periphery of the wheels, and
they are set at an angle of α = π/4 radians, relative to the axis of the driving wheel. Figure 1c
shows appropriate geometric dimensions and characteristic points of the system. Point S is the
centre of mass of the frame, point H is the point lying on the axis A1A2 halfway between these
points. Point B, like point H, is the point belonging to the frame. The angle β is the angle of
temporary rotation of the frame. Figures 1a and 1b exemplify the angular velocity vectors of
wheel 2, ω2 and roller ωr2, respectively. To describe kinematics of any point in the system, it
is useful to give the kinematics equation. Knowing the geometry of the system and applying
classical methods used in mechanics, the description of the kinematics of the analysed system is
as follows

ẋs cos(β − α) + ẏs sin(β − α)− β̇(l cosα+ l1 sinα) = ω1(R + r) cosα
ẋs cos(β + α) + ẏs sin(β + α) + β̇(l cosα+ l1 sinα) = ω2(R + r) cosα

ẋs cos(β + α) + ẏs sin(β + α)− β̇(l cosα+ l1 sinα) = ω3(R + r) cosα
ẋs cos(β − α) + ẏs sin(β − α) + β̇(l cosα+ l1 sinα) = ω4(R + r) cosα

(2.1)

The adopted description will enable determination of the reverse kinematics task, which will be
the set motion trajectory for the S point of the robot in the control system.
When describing the dynamics of complex systems such as mobile wheeled robots, especially

robots with mecanum wheels, Lagrange’s equations with multipliers or Maggi’s equations can
be used (Giergiel et al., 2002). To determine the dynamic equations of MRK M motion, Maggi’s
equations are used (Żylski, 1996) with an additional disturbance element, which are convenient
for synthesis of control. In the analysed case, take the general form

M(q)q̈+C(q, q̇)q̇+ F(ω) + τ d(t) = u (2.2)

where the vector of disturbances meets the restriction ‖τ d(t)‖ < b, b = const > 0, matrices
M, C and vectors F, u take the following form

M(q) =




a1 sinβ + a2 cos(β − α) a2 sin(β − α)− a1 cos β −a3
a2 cos(β + α)− a8 sin(β − α) a2 sin(β + α)− a8 cos(β − α) −a4
a1 cos β + a2 cos(β − α) a2 sin(β − α) + a1 sin(β − α) a3




C(q, q̇) =



−a2 sin(β − α)β̇ a2 cos(β − α)β̇ 0
−a2 sin(β + α)β̇ a2 cos(β + α)β̇ 0
−a2 sin(β − α)β̇ a2 sin(β − α)β̇ 0




F(ω) =



a5 sgnω1
a6 sgnω3
a7 sgnω4


 q =



xs
ys
β


 u =



M1
M3
M4


 τ d(t) =



τ d1
τ d3
τ d4




(2.3)
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Fig. 1. MRK M model

Since the analysed robot has 3 degrees of freedom and four drive modules, it is an object
of an “over actuated” type, the missing moment M2 is determined on the basis of the power
balance of the drive systems

M2 =M3 +M4 −M1 (2.4)

The vector a = [a1, . . . , a8]T contains parameters resulting from the geometry, mass distribution
and the robot resistance to motion. We further assume that the trajectory of the robot motion
qd(t) ∈ R

3 and its derivatives are known. Equation (2.2) allows solving the direct and inverse
dynamics tasks. The direct task will be used in simulation of the controlled object, and the
inverse task in the feedback system will be used to determine the values of the driving moments
of the mobile robot wheels, i.e. the control vector.

3. Continuous dissipative systems and L2 gain

From the perspective of control theory, the dissipation and L2 gain properties of dynamic non-
linear systems are important in the control synthesis of these systems in the context of the
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input-output relationship. Further considerations will focus on finite energy signals. This ap-
proach to control synthesis is important when considering the effects of disturbances in closed
control systems.

Definition 2.1 (Abu-Khalaf and Lewis, 2006; van der Schaft, 1992, 2000). For a given continuous
function f(t) : [0,∞)→ R

n, its norm Lp, ‖f(t)‖Lp is defined as

‖f(t)‖Lp =
( ∞∫

0

‖f(t)‖pp dt
)1/p

(3.1)

and for p = 2 we have

‖f(t)‖L2 =
( ∞∫

0

‖f(t)‖2 dt
)1/2

(3.2)

In order to define dissipation of the system, let us consider the description of the dynamic system
in the form

ẋo = fx(xo) + b(xo)d(t) z(t) = g(xo) (3.3)

where xo(t) ∈ R
n is the state vector, fx(xo) ∈ R

n, b(xo) ∈ R
n×m, g(xo) ∈ R

p and d(t) ∈ R
m is

the disturbances signal, and z(t) ∈ R
p is the system output signal, which can be interpreted as

a tracking control error, additionally fx(0) = 0 and xo = 0 is the system equilibrium point.

Definition 2.2 (Abu-Khalaf, Lewis, 2006; Fariwata et al., 2000; Nash, 1951; Slotine and Li,
1991; van der Schaft, 1992). The dynamic system described by equation (3.3) with the supplied
rate w(d, z) is dissipative if there exists a function V (xo)  0 which is interpreted as a storage
function, such that there is a dissipation inequality

V (xo(t1))− V (xo(t0)) ¬
t1∫

t0

w(d(t), z(t)) dt (3.4)

Generally, it can be stated that the dynamic system is dissipative if it loses cumulative energy
during operation until the state of the system reaches the equilibrium point.

Definition 2.3 (Abu-Khalaf and Lewis, 2006; Basar and Bernard, 1995; Lewis et al., 2012).
Dynamic system (3.3) has L2 gain less than or equal to γ, for γ  0, if the following inequality
is true

‖z(t)‖L2 ¬ γ‖d(t)‖L2 (3.5)

This means that the analysed system has L2 < γ gain if there exists 0 ¬ γ̂ < γ such that
equation (3.5) is true for γ̂. As has been demonstrated (van der Schaft, 2000), if the level of
energy supplied to the system is defined as w(d(t), z(t)) = γ2‖d(t)‖2 − ‖z(t)‖2 and the system
is dissipative, then the dynamic system has gain L2, i.e. it is stable. The determination of
dissipativity of the system and, hence, the stability of the analysed nonlinear L2 system requires
demonstrating that the function V (xo) is bounded from below. Demonstrating this condition
requires solving the optimization problem, which comes down to solving the HJ equation or HJ
inequality (Basar and Bernard, 1995), written as

V̇ (xo) =
∂V (xo)
∂xo

[fx(xo) + b(xo)d(t)] ¬
1
2
(γ2‖d(t)‖2 − ‖z(t)‖2) (3.6)
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Satisfying this inequality leads to the solution V (xo)  0 for every d(t) ∈ R
m and z(t) = g(xo).

Determining the system gain L2 as

J = sup
d6=0

‖z(t)‖L2
‖d(t)‖L2

(3.7)

this equation can be interpreted as an indicator of the system resistance to interference. The
smaller it is, the more the designed control system is robust to disturbance, provided that
inequality (3.6) is satisfied, i.e. for

V̇ (xo) ¬
1
2
(γ2‖d(t)‖2 − ‖z(t)‖2) (3.8)

J ¬ γ occurs. To solve the robust neural network control of MRK M motion, we will apply HJ
inequality (3.8) with the evaluation of the control by (3.7).

4. Neural network structure

Due to nonlinearity as well as complexity of the structure of dynamic equations of motion of
mobile wheeled robots and the need to include a mathematical model in motion control algo-
rithms for these objects, the application of artificial neural networks theory is an alternative and
attractive approach to solve these tasks. From the perspective of control theory, the possibilities
of approximation of nonlinear mappings are the most important properties of neural networks.
These properties will be used in synthesis of neural networks control for the implementation of
MRK M tracking motion (Hendzel, 2007). In the real-time control, linear networks are used due
to weights, with the structure shown in Fig. 2.

Fig. 2. Neural network structure

The input layer weight matrix Vs is a constant matrix generated randomly. The network
input-output mapping from Fig. 2 has the form (Lewis et al., 1999)

yi =
m∑

j=1

[
wijS

(
h∑

k=1

vjkxk + vj0

)
+ wi0

]
i = 1, 2, . . . , N (4.1)

Assuming the element of the input vector to be x0 ≡ 1 and the vector of threshold values
[v10, v20, . . . , vm0]T as the first column of the matrix VTs , we get

y =WTS(VTs x) =W
Tϕx(x) (4.2)
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where x = VTs x, S = [1, S1(·), S2(·), . . . , Sm(·)]T is a vector describing neuron functions, whose
first element is equal to 1, and the vector [w10, w20, . . . , wN0]T is the first column of the ma-
trix WT in order to account for the threshold value of linear neurons in the network output
layer.

5. Synthesis of robust neural networks control of MRK M motion

The purpose of the synthesis of the control algorithm is to determine the control rule and the
rule for adaptation of network weights, for which the trajectory of the selected point S of the
robot, Fig. 1, will coincide with the set trajectory (Hendzel and Szuster, 2012, 2015; Szuster
and Hendzel, 2018), despite the occurrence of variable operating conditions of the robot. To this
end, the tracking error e ∈ R

3, the generalized error s and the auxiliary vector v are defined as

e = qd − q s = ė+Λe v = q̇d +Λe (5.1)

where Λ is a diagonal matrix, positively defined. Then equation (2.2) can be transformed into

M(q)ṡ = −u−C(q, q̇)s+Mv̇ +C(q, q̇)v + F(ω) + τ d(t) (5.2)

If we define the nonlinear function

f(xr) =M(q)v̇ +C(q, q̇)v + F(ω) (5.3)

where xr = [vT, v̇T, q̇T, qT,ωT]T, then equation (5.2) will be written as

M(q)ṡ = −u−C(q, q̇)s+ f(xr) + τ d(t) (5.4)

In practice, an approximation of the control compensating for the robot nonlinearity f(xr) is
applied. For the approximation of the nonlinearity, the neural network described in Section 4 is
used, assuming x = xr, y = f(xr). The nonlinear function f(xr) is written as

f(xr) =WTϕx(x) + ε (5.5)

where ε is the approximation error. The estimate the function f(xr) is written as

f̂(xr) = ŴTϕx(x) (5.6)

where Ŵ is an estimate of weight of the ideal neural network. In addition, it is assumed that
ideal network weights are fixed,W = const . Using equation (5.6), we adopt the control rule in
the following form

u = ŴTϕx(x) +
1
2

(
1 +
1
γ2

)
s (5.7)

It should be noted that the second component of equation (5.7) has an interpretation of the PD
type controller since the second component of (5.7) can be written as

KDs = KDė+KDΛe (5.8)

where KD = 0.5(1 + 1/γ2). Substituting (5.7) and (5.5) for (5.4), we obtain

M(q)ṡ+C(q, q̇)s+
1
2

(
1 +
1
γ2

)
s = f̃(xr) + τ d(t) (5.9)
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where f̃(xr) is a function of the approximation error f(xr), which is

f̃(xr) = f(xr)− f̂(xr) =WTϕx(x)− ŴTϕx(x) + ε = W̃Tϕx(x) + ε (5.10)

where W̃ =W−Ŵ is the error of estimation of neural network weights. Using equation (5.10),
equation (5.9) is written as follows

M(q)ṡ +C(q, q̇)s+
1
2

(
1 +
1
γ2

)
s = W̃Tϕx(x) + ε+ τ d(t) (5.11)

In order to apply the considerations described in Section 3, the designations in equation (3.3)
are interpreted as

ẋo = ṡ xo = s b(xo) =M(q)−1)

g(xo) = s d(t) = ε+ τ d(t)

fx(xo) =M(q)−1
[
−1
2

(
1 +
1
γ2

)
s−C(q, q̇)s+ W̃Tϕx(x)

]

In order to synthesize the neural network control of MRK M motion, the Lyapunov stability
theory is used. As a candidate for the Lyapunov function, the following function has been selected

V (s) =
1
2
sTM(q)s +

1
2
tr (W̃TP−1W̃) (5.12)

where P = PT > 0 is a design matrix. The derivative of the function V (s) relative to time along
the trajectory of system (5.11) is

V̇ (s) = sTM(q)ṡ+
1
2
sTṀ(q, q̇)s+ tr (W̃TP−1 ˙̃W) (5.13)

Substituting from equation (5.11) the expression M(q)ṡ and taking advantage of the fact that
0.5[Ṁ(q, q̇)− 2C(q, q̇)] is a zero matrix (for β(t) = 0), the following is obtained

V̇ (s) = −sT 1
2

(
1 +
1
γ2

)
s+ tr{W̃T[P−1 ˙̃W +ϕx(x)sT]}+ sT[ε+ τ d(t)] (5.14)

Selecting the following as the rule for adaptation of neural network weights
˙̃
W = −Pϕx(x)sT (5.15)

equation (5.14) will be transformed into

V̇ (s) = − 1
2γ2
sTs− 1

2
sTs+ sT[ε+ τ d(t)] (5.16)

Let D denote transformed equation (3.8)

D = V̇ (s) − 1
2
γ2‖ε+ τ d(t)‖2 +

1
2
‖s‖2 (5.17)

and then, on the basis of (5.16), equation (5.17) will be transformed into

D = − 1
2γ2
sTs− 1

2
sTs+ sT[ε+ τ d(t)]−

1
2
γ2‖ε+ τ d(t)‖2 +

1
2
‖s‖2 (5.18)

Because −0.5sTs+ 0.5‖s‖2 = 0, equation (5.18) will take the form

sT[ε+ τ d(t)]−
1
2γ2
sTs− 1

2
γ2‖ε+ τ d(t)‖2 = −

1
2

∥∥∥
1
γ
s+ γ[ε+ τ d(t)]

∥∥∥
2
¬ 0 (5.19)

From inequality (5.19) it follows that D ¬ 0 and, based on equation (5.17), we get

V̇ (s) ¬ 1
2
γ2‖ε+ τ d(t)‖2 −

1
2
‖s‖2 (5.20)

Determining z(t) = s(t), d(t) = ε+ τ d(t), we have thus shown that condition (3.8) is satisfied,
i.e. inequality J ¬ γ is satisfied for the structure adopted as control rule (5.7) and, furthermore,
that the analysed system is stable according to the definition in (2.3).
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5.1. Caution

In the proposed control synthesis, based on the Lyapunov stability theory, there is a compo-
nent of the form sT0.5[Ṁ(q, q̇)−2C(q, q̇)]s which takes a value of zero if the matrix in brackets
is an obliquely symmetrical matrix. This situation takes place in the analysed case only for the
configuration of the robot frame β(t) = 0. In the case where β̇(t) 6= 0, the indicated equation
does not take place. Then, when determining the expression ε1 = 0.5[Ṁ(q, q̇)− 2C(q, q̇)]s, the
last component of equation (5.14) needs to be modified to the form sT[ε+ τ d(t) + ε1] and, con-
sequently, equation (5.20) will be V̇ (s) ¬ 0.5γ2‖ε+τ d(t)+ ε1‖2−0.5‖s‖2, and the expression ε1
needs to be interpreted as a structural interference.
The next Section presents a simulation example, the purpose of which is to confirm the

solutions arrived at in the analytical considerations and to obtain quantitative solutions.

6. Simulation example

In the example, simulation of the suggested solution has been carried out for the movement of
the selected point S of the mobile robot on the trajectory set in the form of a loop, consisting
of five characteristic stages of motion: moving on a rectilinear track, starting, moving at a fixed
speed when, V ∗s = 0.4m/s, moving on a circular path with the radius R = 0.7m, exit from
the curve taking into account a transitional period, then moving on the rectilinear track at a
fixed speed and braking. For the assumed stages of motion, Figure 3 shows the trajectory set
for the point S with the assumed orientation angle of the robot, assuming the initial conditions
of motion: xs(0) = 1m, ys(0) = 5m, β(0) = 0.

Fig. 3. The trajectory set for motion of the point S and the robot orientation

During motion, there is no change in the orientation angle of the robot frame β(t). Figure 4
presents a solution to the task of inverse kinematics. For the time t  7.5 s, there is a movement
of the point S of the robot on a circular trajectory with the radius R = 0.7m.

Table 1. Values of ai parameters of a mobile robot

a1 a2 a3 a4 a5 a6 a7 a8

0.044 11.5708 2.4558 2.4545 3.001 3.001 3.001 0.0622

Then, the self-rotation angle of wheel 2 increases and the self-rotation angle of wheel 1
decreases resulting from the structure of the robot, as shown in Fig. 4a. The change of these
values is shifted in time. The change in motion is confirmed by a change in the angular velocity
of the wheels, see Fig. 4b, and the course of angular accelerations of the wheels, see Fig. 4c.
When the point S turns an angle π/2 rad then the angular velocities and angular accelerations
have the same values, which is followed by a change in the values and turns of vectors of these
kinematics parameters. The obtained parameters of motion of the driving wheels constitute the
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Fig. 4. The parameters set for the movement of the robot wheel and the path of the point S:
(a) values of self-rotation angles of the driving wheels, ϕ1, ϕ4 and ϕ2, ϕ3, (b) angular velocity of
self-rotation of the driving wheels ω1, ω4 and ω2, ω3, (c) angular accelerations ω̇1, ω̇4,ω̇2, ω̇3,

(d) set trajectory for the point S

set trajectory of motion for the control system. For simulation of the control system, values of
the robot parameters have been adopted as specified in Table 1 and the remaining data are:
Λ = diag [2, 2, 2], KD = 0.5(1+1/γ), P = diag [100, . . . , 100], γ = 0.2, τ d = 0. In order to check
the robustness of the proposed solution, it has been also assumed that for the time t  15 s there
is a parametric disturbance a+∆awhere∆a = [0, 0, 0, 0, 1, 1, 1, 0]T , associated with the change of
the rolling friction of the robot wheels. The neural network adopted in simulation to compensate
for the robot nonlinearity and the variable operating conditions consist of 6 sigmoidal bipolar
neurons whose first layer weights are generated by a random number generator from the range
[−0.1, 0.1]. A separate neural network for each element is used for approximation of the nonlinear
function f(xr) ∈ R

3. The calculations are made by adopting the Euler method of integration with
the time discretization step 0.01 s. In the process of initializing the neural network, zero initial
values of the output layer weights are assumed. In order to evaluate quality of the generated
robust control and implementation of tracking motion, the following quality indicators have been
adopted, restricted to the assessment of motion only for wheels 1 and 2:

• maximum value of the angle of rotation error e1 = (ϕ1d −ϕ1) [rad], e2 = (ϕ2d − ϕ2) [rad],
emax(·) = max |e(·)| [rad], ϕ1d, ϕ2d are the set angles of wheel rotation, Fig. 4a,
• maximum value of the angular velocity error ėmax(·) = max |ė(·)| [rad/s],
• root-mean-squared error for wheel rotation angles, ε1 =

√
(1/n)

∑n
k=1 e

2
1k, ε2 =√

(1/n)
∑n
k=1 e

2
2k [rad], where k is the number of subsequent discrete measurements,

n = 3001 – total number of discrete measurements,

• root-mean-squared error for tracking the given angular velocity ε̇1 =
√
(1/n)

∑n
k=1 ė

2
1k,

ε̇2 =
√
(1/n)

∑n
k=1 ė

2
2k [rad/s],

• generalised root-mean-squared error: s1 = ė1 + λe1, s2 = ė2 + λe2, ν1 =
√
(1/n)

∑n
k=1 s

2
1k,

ν2 =
√
(1/n)

∑n
k=1 s

2
2k [rad/s], mean-squared error of distance dk, ρ =

√
(1/n)

∑n
k=1 d

2
k [m],

where dk =
√
(xSk − xdSk)2 + (ySk − ydSk)2 [m], k = n is the distance between the set
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(xdS , ydS), Fig. 4d and implemented (xS , yS) locations of the selected point S of the mobile
robot in the xy plane during motion,
• maximum distance dmax = max(dk) [m].
Implementing adopted control algorithm (5.7), patterns of control errors have been obtained

as shown in Fig. 5.

Fig. 5. Results for the obtained errors: (a) patterns of errors of tracking the rotation angles of
wheels 1 and 2, (b) patterns of errors of tracking the angular velocity of wheels 1 and 2,

(c) pattern of error in the phase plane for the generalized error s1, (d) implementation of the set
trajectory for the point S

The quantitative assessment of the solution is given in Tables 2 and 3.

Table 2. Values of the quality indicators for the robust neural networks control

Indicator eimax [rad] εi [rad] ėimax [rad/s] ε̇i [rad/s] νi [rad/s]

wheel 1, i = 1 0.05139 0.007379 0.1087 0.01529 0.02125
wheel 2, i = 2 0.05184 0.007703 0.1097 0.01578 0.02205

Table 3. Values of the indicators dmax, ρ for the robust neural networks control

Indicator dmax [m] ρ [m]

Value 0.002839 0.0004151

Having analysed the changes in the individual indicators of the quality of motion implemen-
tation in the presence of variable operating conditions, it can be concluded that a high accuracy
in the implementation of the adopted method of solution has been obtained. However, Fig. 6
presents patterns of control signals in the presence of variable operating conditions of the object,
resulting from the assumed resistance to motion in the form of a change in the rolling friction.
The neural networks compensation of the robot nonlinearity plays a predominant role in the
control structure, as shown in Fig. 6b, in comparison with the PD control, Fig. 6c. The observed
parametric disturbance is particularly visible for driving wheel 2.



Robust neural networks control of omni-mecanum wheeled robot... 1203

Fig. 6. Results of simulation of the neural networks control system: (a) total control, (b) NN(·) neural
networks control, (c) PD control (γ), (d) evaluation of the system robustness γ̂ ¬ γ

The limitation of the signals shown in Fig. 6 confirms stability of the adopted solution in
accordance with Lyapunov’s interpretation of stability. Figure 6d presents the results of the
solution for the robust neural networks control of MRK M motion which changes over time,
with equation (3.7) constituting the evaluation of this control method. As indicated by the
patters shown in Fig. 6d, the analysed system has gain L2 < γ, for γ = 0.2, and the condition
0 ¬ γ̂ < γ is met, thus equation (3.5) is satisfied.

7. Summary

This paper presents a novel approach to the problem of controlling mechanical objects of unspe-
cified description considering variable operating conditions. In order to solve the task of control-
ling a mobile robot with mecanum wheels taking into account the compensation for nonlinearity
and variable operating conditions of the object, Lyapunov’s stability theory has been applied
including the HJ inequality. A neural network with basic sigmoid functions has been used to
compensate for the nonlinearity and variable operating conditions of the robot. Additionally,
there is a PD(γ) controller in the control structure, i.e. the structure of moments driving the
wheels. The gain values of the PD(γ) controller have been determined based on the HJ inequali-
ty, thus formulating an algorithm which is stable and interference-resistant from the perspective
of input-output signals.
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This study investigates the effects of inertia on the hydroelastic instability of a pressure-
-driven Herschel-Bulkley fluid passing through a two-dimensional channel lined with a po-
lymeric coating. The no-viscous hyperelastic polymeric coating is assumed to follow the
two-constant Mooney-Rivlin model. In this work, analytical basic solutions are determined
for both the polymeric gel and the fluid at very low Reynolds numbers. Next, the basic so-
lutions are subjected to infinitesimally-small, normal-mode perturbations. After eliminating
the nonlinear terms, two 4-th order differential equations are obtained. The equations with
appropriate boundary conditions are then numerically solved using the shooting method.
The results of the solution show that the inertia terms in the perturbed equations destabili-
ze the pressure-driven Herschel-Bulkley fluid flow. The investigation reveals that the elastic
parameter has a stabilizing effect on the flow. Also, based on the obtained results, the yield
stress, depending on the power-law index, has a stabilizing or destabilizing effect on the
flow. Since in this work the inertia terms are included in the pertinent governing equations,
therefore, the results of this study are much more realistic and reliable than previous works
in which inertia terms were absent. In addition, unlike the previous works, the present study
considers both the shear-thinning and shear-thickening types of fluids. Hence, the results of
this work embrace all the fluids which obey the Herschel-Bulkley model.

Keywords: inertia, instability, Herschel-Bulkley fluid, Mooney-Rivlin solid

1. Introduction

In general, most fluids flowing at very low Reynolds numbers, like creep flow, when passing
through deformed channels sustain a type of instability called hydroelastic instability. This type
of instability is much more intense when dealing with a non-Newtonian fluid passing through a
channel coated with a highly-compliant material. In some industries, this instability phenomenon
is of potential importance for enhancement of mixing in microfluidic devices. That is, due to
vanishingly-small Reynolds numbers in such devices, they suffer from a very weak mixing because
of the laminar nature of the creeping flow. To improve this poor mixing, the channel inner surface
can be covered with a layer of a soft polymeric gel. By this way, when the fluid flows through
the channel, certain waves may become unstable at the fluid-solid interface which eventually
cause flow turbulence leading to a great improvement of the mixing performance which, in turn,
advances the flow heat and mass transfer. The degree in improvement of the mixing, however,
highly depends on the theological properties of both the solid gel and fluid. Basically, most of
what is available in the literature with regard to the hydroelastic instability assumes Newtonian
fluids, which is not realistic, at least, when dealing with mixing enhancement in microfluidic
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devices. In the previous years, the fluid viscous effects on hydroelastic instability in the creeping
planar Poiseuille flow have been investigated by a few researchers in the field.
Kramer (1960) concentrated on advancing the concept of boundary layer stabilization, in

particular, hydroelastic instability for many non-Newtonian fluids flowing through channels.
In his works, he drew a conclusion that the stability of boundary layers could be affected by
compliant coatings. In that sense, he was able to experience a considerable drag reduction for
underwater moving bodies which were covered with some types of compliant coatings.
Gad-el-Hak (2002), Babenko and Kozlov (1972) and Fu and Joseph (1970) reported that al-

though compliant materials can stabilize different types of instabilities, they might cause other
types of instabilities such as hydro-and aero-elastic instabilities. In fact, it was noticed by rese-
archers that stable fluid flows inside rigid channels became unstable in deformable channels.
Regarding fluid flows in microchannels, fluid mixing in such channels, in practice, is hardly

possible according reports of Jensen (1999), Franjione and Ottino (1992) and Chien et al. (1986).
In laminar flow domains, microscale dimensions lead to very low Reynolds numbers. Therefore,
the concept of instability for such tiny devices becomes a prime concern when one is to advance
the mixing effect in order to enhance the transfer of heat and mass as demonstrated by Kandlikar
et al. (2005) and Ottino (1989).
Today, it is realized that rheological properties of both Newtonian and non-Newtonian fluids

and coating materials used are very important for design purposes to reach fluid stability (Jafar-
gholinejad, 2015; Muralikrishnan and Kumaran, 2002; Davies and Carpenter, 1997). Recently,
Pourjafar et al. (2015) studied stability of power-law fluids in the creeping plane Poiseuille flow
and analysed the effect of wall compliance on the stability of such fluids. In a study by Jafar-
gholinejad et al. (2015), linear instability of viscoplastic fluids in the plane Poiseuille flow was
investigated in the absence of inertia. Based on their results, the yield stress was found to have
a stabilizing or a destabilizing effect on the pressure-driven flow of Herschel-Bulkley fluids, de-
pending on the power-law exponent. However, Jafargholinejad et al. (2015) did not include the
inertia terms and did not consider both the shear-thinning and shear-thickening fluids in their
work.
Based on the above literature survey, to the best of the authors’ knowledge, there is no

published work on hydroelastic instability which takes into account the effects of inertia terms
on both the shear-thinning and shear-thickening fluids.
The current study investigates the effect of inertia terms on the hydroelastic instability of

pressure-driven Herschel-Buckley fluids flowing at very low Reynolds numbers through a two-
-dimensional channel lined with a polymeric solid gel. The no-viscous polymeric gel is assumed
to follow the hyperelastic Mooney-Rivlin model since its solid model fits the rheological data for
soft polymeric gels and provides more realistic results. In this study, very low laminar Reynolds
numbers (creeping flow condition) are considered to simulate microfluidic fields industrial appli-
cations. Also, by varying the value of n, the power-law index, from n < 1.0 to n > 1.0, this study,
unlike the previous works, considers the hydroelastic instability for both the shear-thinning as
well as the shear-thickening fluids obeying the Herschel-Buckley non-Newtonian model.

2. Physical description of the problem and governing equations

Figure 1 illustrates a pressure-driven laminar, isothermal and viscoplastic fluid flowing (with no
gravity effect) between two rigid parallel plates of 2R height and HR thickness coated with a
compliant polymeric material. Both, the fluid and solid are assumed to have the same density
and they are incompressible. The dashed curves in the figure illustrate a typical sinusoidal
perturbation imposed on the fluid-solid interface. The origin of both the Lagrangian axes (X,Y )
and the Eulerian axes (x, y) is set at the fluid-solid interface (Fig. 1).
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Fig. 1. Schematic of a channel lined with a compliant coating

The equations of motion for the solid are (Lai 2010)

det(F) = 1 ρs
∂2w

∂t2

∣∣∣∣∣
X

= ∇X ·P (2.1)

In Eq. (2.1)2, the subscript X denotes the differentiation in the Lagrangian frame of reference,
ρs denotes density of the solid, F – deformation gradient tensor, w – current position of solid
particles, and P is the Piola-Kirchhof stress tensor which is defined by

P = σ(F−1)T (2.2)

where σ = −pδ + τ is the Cauchy stress tensor with τ being the deviatoric part of the stress
tensor. In dimensionless form, the stress tensor for the Mooney-Rivlin solid can be written as

σ = −psδ +B+
C2
C1
B−1 (2.3)

where p is pressure, δ – identity tensor, B = FFT is the Cauchy Green strain tensor, and C1
and C2 are material constants (also known as the Mooney-Rivlin constants). Here, C2/C1 = β,
where β is the elastic parameter. It needs to be mentioned that in this work C1 (Mooney-Rivlin
1st parameter) is used for making all the stress terms dimensionless. Now, the momentum
equation, in dimensionless form, for the solid side becomes

Res
∂2w

∂t2

∣∣∣∣∣
X

= ∇X ·P (2.4)

where Res = ρs(C1R2/η2) is referred to as the solid fictitious Reynolds number. Here, η is the
apparent viscosity of the fluid. It is noted here that η/C1 is used to make ‘time’ dimensionless
and R is used for scaling the length.
For the fluid side, the conservation of mass equation is incorporated into the Cauchy equ-

ations of motion, and the resulting equations become (Lai et al., 2010)

ρf
Dv

Dt
= −∇p+∇ · τ ∇ · v = 0 (2.5)

where ρf is the fluid density and D/Dt is the material substantial derivative. Here, v denotes
the velocity vector, p is the isotropic pressure, and τ denotes the deviatoric stress tensor. In this
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study, it is assumed that the working fluid follows the Herschel Bulkley model; that is (Bird,
1987)

τ f =

(
Ty|Π2D|

−1
2 +m

∣∣∣
1
2
Π2D

∣∣∣
n−1
2

)
2D (2.6)

where Ty denotes the yield stress, Π2D denotes the second invariant of the rate-of-deformation
tensor,m denotes the consistency index, n is the power-law exponent, 2D = ∇vT+∇v – rate-of-
-deformation tensor, and the superscript T denotes the velocity-gradient tensor (∇v) transpose.
In dimensionless form, continuity equation (2.5)2 remains unchanged, but the momentum

equation (2.5)1 becomes

Ref
Dv

Dt
= −∇p+∇ · τ (2.7)

where Ref denotes the fluid Reynolds number which is defined as Ref = ρf (C1R2/η2).
Now, to find the base-state solution for the solid (assuming that both the velocity and shear

stress are continuous at the fluid-solid interface), the following basic deformation and stress
tensors in Lagrangian form are employed

wX(X,Y ) = X +
1
1− β

[1
2
G(Y 2 −H2) + (τy −G)(Y +H)

]
wY (Y ) = Y (2.8)

where G and H are the pressure gradient and the coating thickness in dimensionless form,
respectively. Therefore, the basic stress tensor for the solid becomes (Jafargholinejad et al.,
2015)

σ =



−ps + 1 +

(
∂wX
∂Y

)2
+ β ∂wX

∂Y (1− β)
∂wX
∂Y (1− β) −ps + 1 + β

(
1 +

(
∂wX
∂Y

)2)


 (2.9)

Assuming that the fluid-solid interface is flat, then, in dimensionless form, the basic stress and
basic velocity equations can be written as (Jafargholinejad et al., 2015)

σ =




−pf τy + µ
(
∂vx
∂y

)n

τy + µ
(
∂vx
∂y

)n
−pf


 vx = −

n

n+ 1

(
−G
µ

) 1
n [(1− y)n+1n − 1] (2.10)

3. Stability analysis

Knowing the base-state solutions, they are now subjected to infinitesimally-small, time depen-
dent, normal-mode perturbations in order to make linear stability analysis. Through the normal-
mode concepts (Drazin and Reid, 2004), the flow variables are expressed in terms of the sum of
infinitesimal perturbation and the base-state solution, therefore

f(x, y, t) = f + f ′ = f + f̂(y)eikx+αt (3.1)

where (•′) denotes perturbation to the base-state, (•̂) is the perturbation amplitude, (•) denotes
the basic flow, k is the wave number of perturbation (a real number), α – the growth rate (a
complex number), and t – time.
To come up with a set of relations in terms of the perturbation variables, the perturbed varia-

bles are incorporated into the governing equations. After determining the appropriate boundary
conditions and linearizing them, the intended set of equations are obtained.
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Now, based on what is described above, the solid and fluid side stability equations are derived.
For the solid side, Eq. (3.1) is substituted into the appropriate governing equations for each field
variable, and the resulting equations are linearized to obtain the following ordinary differential
equation

Res{α2[1 + 2k − ik2(1 +Q2) + kdQ]}+ S0wY (Y ) + S1d2wY (Y )
+ S2d2wY (Y ) + S3d3wY (Y ) + S4d4wY (Y ) = 0

(3.2)

where

S0 =
(
k2 + ik2

∂ps
∂Y

)
dQ+ ik4Q2 + ik2Q(dQ)− ik4 − ik2∂

2ps
∂Y 2

− k(d3Q) + β[ik4(1 +Q2)− k3(dQ) + 2ik2(dQ)2 + ik2Q(d2Q) + k(d3Q)]

S1 = (2k3 + 2ik2dQ)Q+ k
∂2ps
∂X∂Y

− 3k(dQ) + β[3k(d2Q)− 2ik2Q(dQ)− 2k3Q]

S2 = −3kdQ+ 2ik2 + ik2Q2 + β[−ik2Q2 + 3k(dQ)− 2ik2]
S3 = 2kQ(β + 1) S4 = i(β − 1)

(3.3)

where Q = (1− β)−1(GY + τy −G).
It is noted here that, in the special case when Res = 0, Eqs. (3.3) reduce to the analogous

equation reported earlier by Jafargholinejad et al. (2015).
Now, for the fluid side, the linearized form of the second invariant of the rate-of-deformation

tensor in the perturbed state can be written as

(Π2D)
n−1
2 = λn−1

[
1 +

(
(n− 1)dv̂x

λ
+ i(n − 1)k v̂y

λ

)
eikx+αt

]
(3.4)

where λ = dvx/dy. The equations governing the perturbations for the fluid side can be shown
as

ikv̂x + dv̂y = 0 (3.5)

and

Ref
[( 1
ik
d2v̂y
dy2
+ ikv̂y

)
vx(y)−

1
ik
dλ+ α

(
v̂y −

1
k2

)]
+ F0v̂y + F1dv̂y

+ F2d2v̂y + F3d3v̂y + F4d4v̂y = 0
(3.6)

where

F0 = λn−1(3k2µn2 − 2k2µn− k2µn3)(dλ)2 + λn(k2µn− k2µn2)d2λ+ λn+1(−k4µn)
F1 = λn−1[−µnk2(n− 1)(n− 2)(dλ)2] + λn[−µnk2(n− 1)(dλ)2] + λn+1(−µnk4)
F2 = −4k2Tydλ+ λn(−2k2µn2 + 6k2µn− 4k2µ)dλ
F3 = −4k2Tydλ+ λn[−2µk2(n− 1)(n − 2)dλ]
F4 = λ(4k2Ty) + λn−1(3µn2 − 2µn− µn3)(dλ)2 + λn(µn2 + µn)d2λ+ λn+1(4k2µ− 2k2µn)

(3.7)

In the above equations, d stands for the conventional total derivative d/dy. For Newtonian
fluids (i.e., for n = 1), this equation (Eqs. (3.7)) reduces to the Orr-Sommerfeld equation, as
it should. In the special case of n 6= 1 and Ref = 0, Eq. (3.7) reduces to the form reported by
Jafargholinejad et al. (2015).
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4. Boundary conditions

To come up with right boundary conditions, the method of solution must be identified. In the
present work, the Eulerian-Lagrangian type of framework is employed. That is, the Eulerian
framework is used for the Herschel-Bulkley fluid variables, and the Lagrangian approach is used
for the Mooney-Rivlin hyperelastic coating. Regarding the hyperelastic solid side, the no-slip
condition is assumed at the channel inside walls. For the fluid side, however, the varicose mode
perturbation is considered at the channel centreline. That is, the oscillation of the upper and
lower fluid-solid interface goes out of phase, hence, based on Fig. 1, an even function of y is
assumed. Therefore, at the channel centreline the following boundary conditions can be used

v̂y
∣∣∣
y=1
= 0 dv̂x

∣∣∣
y=1
= 0 ⇒ d2v̂y

∣∣∣
y=1
= 0 (4.1)

with the assumption of no deformation for the outer side of the channel rigid wall

ŵY
∣∣∣
Y=−H

= 0 ŵX
∣∣∣
Y=−H

= 0 ⇒ dŵY
∣∣∣
Y=−H

= 0 (4.2)

For the Eulerian variables, keeping the first-order terms of the Taylor series expansion, the
following conditions can be written

Φ
∣∣∣
perturbed interface

= Ψ
∣∣∣
perturbed interface

Φ
∣∣∣
y=0
+ ŵX

∂Φ

∂x

∣∣∣∣∣
y=0

+ ŵY
∂Φ

∂y

∣∣∣∣∣
y=0

) = Ψ
∣∣∣
perturbed interface

(4.3)

where Φ and Ψ refer to arbitrary variables at the interface for the fluid and solid sides, respec-
tively.
At y = Y = 0, the linearized form of the boundary conditions becomes

v̂y
∣∣∣
y=0
= αŵY

∣∣∣
Y=0

v̂x
∣∣∣
y=0
+ λ0ŵY

∣∣∣
Y=0
= αŵX

∣∣∣
Y=0

(4.4)

and

nµ
(du0
dy

)n−1[dv̂x
dy
+ ikv̂y

]
+ ŵYG+ ikŵY

(df
dy

)2
− ikŵY −

df

dy

dŵY
dY
− dŵX

dY

+ β
(
2ikŵY +

df

dy

dŵY
dY
+
dŵX
dY

)
= 0

(4.5)

and

− p̂f + p̂s − ikŵY
[
µ
(du0
dy

)n
+ τy

]
+ 2µ

(du0
dy

)n−1dv̂y
dy
+ 2τy

(du0
dy

)−1dv̂y
dy

+ ikŵY
df

dy
− 2dŵY

dY
− k2T ŵY + β

(
−2ikŵY − 2

df

dy

dŵX
dY
− ikŵY

df

dy

)
= 0

(4.6)

where λ0 = (dvx/dy)|y=0 and T = γ/(C1R), and where T is dimensionless interfacial tension
and γ is interfacial tension.

5. Numerical method and results

To make the stability analysis, Eqs. (3.3) for the solid side and Eqs. (3.7) for the fluid side and
their pertinent boundary conditions are to be solved. To do so, a computer code is developed
which uses the shooting method. A similar method like the one utilized in the present study, was
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used by Lee and Finlayson (1986) as well as Gkanis and Kumar (2005). It has also been used
in the author’s earlier works and produced reliable results even for the Mooney-Rivlin solids.
The proposed code takes Eqs. (3.3) and (3.7) for the solid and fluid sides respectively together
with the pertinent boundary conditions (Eqs. (4.1)-(4.7) as the input. The code begins solution
at one end of the proposed boundary and shoots to the other end using an initial value solver
iteratively to the point that the boundary condition at the other end is converged to its precise
value. It has to be mentioned here that the developed code is verified for Newtonian data for
a channel lined with a neo-Hookean gel under creeping flow conditions, see Gkanis and Kumar
(2005) for details.
To solve Eqs. (3.3) and (3.7) simultaneously, two 4th-order boundary-value problems (Eqs.

(3.3) and (3.7)) are treated like initial-value problems since the fluid and solid boundary con-
ditions are coupled at the interface. Next, each 4th-order differential equation is transformed
to a system of four 1st-order, linear and homogenous ordinary differential equations having a
total of four unknown coefficients. To solve these ordinary differential equations, four boundary
conditions are required for each, the fluid and the solid. Noting that there are only two explicit
boundary conditions available (two for the fluid, Eqs. (4.1), and two for the solid, Eqs. (4.2)),
the other two orthogonal boundary conditions have to be guessed for the fluid side and for the
solid side to solve the problem. These unknown constants can be determined by constructing a
matrix which contains the interfacial boundary conditions (Eqs. (4.5)-(4.7)). The computer code
uses the developed shooting technique, takes the above mentioned matrix and other inputs like
the Reynolds numbers, power-law index, surface tension, elastic parameter, and wall thickness,
and by varying the channel pressure gradient, it calculates the real value of α and the growth
rate of perturbations. Now, at the critical pressure gradient real (α) = 0 , the flow is stable for
real (α) < 0 and unstable flow is experienced for real (α) > 0. Regarding the shooting technique,
it actually uses the methods developed for solving initial value problems. The idea is to write the
boundary value problem in vector from and to begin solution at one end of the boundary value
problem and shoot to the other end with an initial value solver until the boundary condition at
the other end converges to its precise value.

Fig. 2. Comparison between the present results for Newtonian fluids (solid line) and the numerical data
reported by Gkanis and Kumar (2005), (symbols) at Re = 0 for: (a) the critical pressure gradient, and

(b) the critical wave number

Figures 2a and 2b illustrate the effects of the yield stress on the critical wave number and
the critical pressure gradient at different compliant coating thicknesses, respectively. The figures
also compare the plots of the present work obtained from the developed code for when the fluid
becomes Newtonian (i.e. n = 1 and Ty = 0 in Eq. (2.6)) with the Newtonian data of Gkanis
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and Kumar (2005). This comparison actually verifies the present results as they coincide with
the data of Gkanis and Kumar (2005) in both Figs. 2a and 2b. In Fig. 2a, as it can be seen, at
any given coating thickness the critical wave number is increased as the yield stress increases,
meaning that the fluid when at short wavelengths extracts energy from the flow and becomes
unstable. Based on this figure, as the yield stress increases, the peak of the plot disappears,
meaning that, unlike Newtonian fluids, for viscoplastic fluids, as the coating thickness increases,
a monotonic drop in the critical wave number takes place. Again, unlike Newtonian fluids, at
very small coating thicknesses, large wave numbers become unstable. Based on what can be seen
in Fig. 2b, the yield stress actually destabilizes the flow. That is, the critical pressure gradient
decreases as the fluid yield stress increases.
Figure 3 shows the variation of the critical pressure gradient versus the power-law index

for very small Reynolds numbers. As it can be seen in this figure, an increase in the Reynolds
number causes the fluid flow to be more unstable. In other words, the inertia terms have a
destabilizing effect on the fluid flow under the creeping condition. Based on this figure, as the
Reynolds number increases, the critical pressure gradient in the flow decreases which means
the fluids become more and more unstable. Therefore, a better mixing process takes place in
microchannels lined with flexible gels. However, at a given Reynolds number, this instability
effect diminishes as a shear-thinning fluid approaches Newtonian behaviour.

Fig. 3. Effect of the Reynolds number on the critical pressure gradient vs. the power-law index n for
different small Reynolds numbers for Ty = 0.2, β = 1, H = 40, and T = 0.5

Figure 4 shows the variation of the critical pressure gradient versus the yield stress for
four Reynolds numbers. As it can be seen in this figure, increasing the Reynolds number has
a destabilizing effect on the flow. This figure also shows that at a given Reynolds number,
increasing the yield stress decreases the critical pressure gradient, meaning that the flow becomes
unstable with an increase in the yield stress. Based on this figure, at any given Reynolds number,
as the yield stress increases, the fluid becomes more and more unstable, which is a positive effect
regarding the mixing process. Figure 4 also shows that, as the yield stress decreases, higher
Reynolds numbers show higher instability.
Figure 5 shows the critical pressure gradient variation versus the Reynolds number for diffe-

rent power-law indices including both the shear-thinning and shear-thickening fluids. It can be
seen in this figure that the inertia terms have a destabilizing effect on both the shear-thinning
and shear-thickening fluids. From this figure, it can be concluded that for the Reynolds numbers
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Fig. 4. Critical pressure gradient variation vs. the yield stress for different small Reynolds numbers for
H = 40, T = 0.5, β = 1, and n = 0.9

Fig. 5. Critical pressure gradient variation vs. the Reynolds number for H = 40, Ty = 0.5, T = 0.5,
and β = 1

considered here, the shear-thinning fluids are the most stable ones as they need the largest critical
pressure gradient to become unstable. Based on this figure, for both the shear-thinning (n < 1)
and shear-thickening (n > 1) fluids, instability increases as the Reynolds number increases. This
result is actually in line with the other results shown in the previous figures.
Figure 6 shows the effect of the yield stress on the critical pressure gradient for a coating

obeying the Mooney-Rivlin model. The elastic parameter is unity and Re = 5. Based on the
trend of the plots in Fig. 6, in the presence of inertia, the increase of the yield stress has a
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destabilizing effect on the non-zero Reynolds numbers flow. The figure also shows that as the
power-law index increases, the fluid becomes more and more stable up to n ≃ 0.75, after which
the fluid becomes unstable with a very low slope. This figure actually shows how the power-
law exponent plays the key role in the hydroelastic instability phenomenon. To see the effect
of this key role here, note that a decrease of the fluid viscosity is due to an increase of the
shear rate, and noting that the fluid viscosity is actually controlled by the power-law index,
then, the shear stress at the fluid-solid interface is also controlled by the index n. Therefore, the
diffusive transfer of energy from the basic flow to the imposed perturbations is increased when
the power-law index is decreased.

Fig. 6. Critical pressure gradient variation vs. the power-law index n for H = 40, β = 1, T = 0.5,
and Re = 5

Figure 7 shows the critical pressure gradient variation vs. the power-law index for different
elastic parameters β. This figure shows that the neo-Hookean solid (β = 0) is the least stable
model regardless of the magnitude of the index n. Moreover, based on the figure, with an increase
in the elastic parameter, the curves are shifted to more stable states. It is also noticed in this
figure that in the presence of the inertia terms, for any given elastic parameter, the fluid shear-
thinning can have a stabilizing or destabilizing effect on the flow depending on the magnitude
of the index n. An important effect of β is that this parameter controls the first-normal-stress-
difference at the fluid-solid interface. This parameter also affects the pressure discontinuity at
the interface. Both effects, however, compete with the fluid shear stress (which initiates the
instability) in affecting the hydroelastic instability, thereby, influencing the overall instability
trend, as it can be seen in Fig. 7.

6. Conclusions

The aim of the present study has been to investigate the effects of inertia on the stability of
the Poiseuille flow of the Herschel-Bulkley fluids passing through a two-dimensional channel.
The channel is assumed to be coated with a hyperelastic polymeric material which obeys the
two-constant Mooney-Rivlin model. This study is actually an extension of the authors’ previous
work in which the inertia terms were excluded from the governing equations, hence the effect of
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Fig. 7. Critical pressure gradient variation vs. the power-law index for H = 40, Ty = 0.5, T = 0.5,
and Re = 1

inertia on the fluid flow stability was never determined. In addition, here, unlike the previous
works, the effect of the power-law index n on both the shear-thinning and shear-thickening fluids
flow are investigated. The above two new contributions in this work enable the results of this
study not only to embrace a larger group of fluids, but also to be more realistic and reliable
than ever before.

After determining appropriate governing equations for both the polymeric coating and the
non-Newtonian fluid used, the base-state solutions have been obtained. Next, the solutions were
subjected to infinitesimally-small disturbances after which the non-linear terms were elimina-
ted. The equations after being reduced to two forth-order ordinary differential equations were
solved numerically. A shooting technique numerical code was developed to solve (after some
lengthy mathematical manupulations) the two fourth-order ordinary differential equations with
appropriate boundary conditions. Having solved these equations numerically, the effects of the
Reynolds number, yield stress and the elastic parameter on the growth rate of the unstable
modes were investigated.

Based on the obtained results, it has been found that the inertia, in general, played a desta-
bilizing role in the flowing fluids. It was determined that by increasing the Reynolds number, the
flow became more unstable regardless of the yield stress values. It was also found that conside-
ring inertia in the governing equations did not affect the yield stress. Also, as the results showed,
for extremely shear-thinning fluids, the yield stress was slightly stabilizing the flow, and for a
wide range of power-law indices (close to unity), the yield stress was predicted to have a desta-
bilizing effect on the pressure-driven flow in channels lined with the compliant coating. Based
on the numerical results obtained in this work, it was noted that the elastic parameter strongly
affected the hydroelastic stability. That is, Mooney-Rivlin coating became more stable than the
neo-Hookean coating regardless of the values of the Reynolds number and the yield stress. The
above findings of this study now help the investigators in the field to determine how to optimi-
ze the mixing efficiency when dealing with the hydroelastic instability of non-Newtonian fluids
flowing in channels lined with polymeric gels. The more realistic and meaningful results of this
work will definitely affect the microfluidic field research activities.
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Results of numerical analysis of the influence of pulse shaper geometry on wave signals in
the split Hopkinson pressure bar experiment are presented. Five pulse shapers, i.e. square,
ring, cross, star and disk ones have been analysed. It has been assumed that the disc pulse
shaper is the reference geometry to assess the remaining types of pulse shapers. The results
of numerical analyses have shown that pulse shapers with shapes different than disk are hi-
ghly capable of minimizing high-frequency Pochhammer-Chree oscillations and, thus, reduce
dispersion of waves propagating in the bar. The greatest damping ability has been observed
while using the ring pulse shaper at both low and high impact velocities of the striker.
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1. Introduction

The Split Hopkinson Pressure Bar (SHPB) technique requires satisfying some fundamental con-
ditions, i.e., one-dimensional wave propagation in bars, no friction between the specimen and
the bars, negligibly low influence of inertia and nearly uniformly specimen deformation at a con-
stant strain rate under dynamically equilibrated stresses (Chen and Song, 2011). The condition
regarding the nearly uniformly specimen deformation under dynamically equilibrated stresses is
satisfied when stresses on external contact surfaces of the specimen are equal.
The waveform of the phenomenon results in the fact that at the initial moment of loading

the sample through the incident bar, the condition regarding the uniform deformation of the
specimen under dynamically equilibrated stresses cannot be satisfied. This condition is satisfied
after some time, depending on the shape of the incident pulse and on the pulse rising time as
well as geometrical parameters of the specimen and its properties (Frantz and Follansbee, 1984;
Follansbee, 1985; Gorham, 1991). Currently, the pulse shaper technique is widely used to shape
the incident pulse. The technique is based on placing a small coaxial disk (pulse shaper) between
the strike and the incident bar. This disk is made of a soft material compared to the striker and
bars material, and deforms plastically when the striker hits it.
Frantz and Follansbee (1984) and Follansbee (1985) showed that with an increase in the

shaper thickness, the pulse rise time increases and the amplitude of Pochhammer-Chree high-
-frequency oscillations (Pochhammer, 1876; Chree, 1886) decreases. As a result, the dispersion
is reduced and the dynamic equilibrium in the specimen is achieved much faster.
In most cases, during experimental tests, different thickness and diameter of shapers made

of copper were used to increase the rise time of the incident pulse to reduce dispersion as well
as to achieve the state of dynamic equilibrium faster, see e.g. (Chen et al., 2003; Naghdabadi et
al., 2012).
In SHPB, thin disks are used for wave shapers. This is due to, among others, the fact that

it is easy to produce them with the use of machining methods or by punching them from metal
sheets. For this reason, elements with more complex geometry, such as rings, crosses, stars, are
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not used. Hence, the idea of examining the influence of various shapes of pulse shapers on wave
pulses registered in SHPB experiments.
The article presents results of numerical analyses for 5 types of geometry of the pulse shapers

presented in Fig. 1.

Fig. 1. Geometry of the analyzed pulse shapers

2. Numerical modelling

The model contains all main components of the arrangement: a pulse shaper, slide bearings and
a barrel. In simulation, dimensions of all elements of SHPB are the same as in the experiments
(Panowicz et al., 2017).
The Johnson-Cook constitutive model with the Gruneisen hydrodynamic equation of state

has been used to describe the behavior of the copper shaper and a titanium specimen (Hallquist,
2006). The Ti6Al4V specimen (3.7mm length, 4mm diameter) and copper pulse shaper materials
constants have been taken from literature (Grazka and Janiszewski, 2012; Ozel and Sima, 2010).
The authors used the Finite Element Method with a central difference time integration

scheme implemented in explicit LS-Dyna to carry out numerical simulations (Hallquist, 2006).
In order to assess the correctness of the numerical model, validation with experimental

tests for two striker impact velocities (V = 15.3m/s and 11.8m/s) and two shaper thicknesses
(d = 0.101 and 0.201mm) has been carried out to obtain high compliance.

Fig. 2. Comparison of incident wave profiles obtained from numerical (FEM) and experimental (Exp.)
analyses, in which shapers with different thicknesses d were used; the striker hits the bar with velocity V

3. Results and discussion

Numerical analysis of the geometry influence of the pulse shaper with thickness of 0.1mm has
been carried out for frequently used striker impact velocities, i.e. 10 and 15m/s. The results are
presented in the form of incident and reflect waves pulses shown in Figs. 3 and 4, respectively.
Based on the obtained results, the influence of the pulse shapers geometry on waves pulses

profiles has been confirmed, however, it is little, especially in the test with velocity of 10m/s
(Figs. 3a,b and 4a,b). This effect is also manifested in the course of both the rising and falling
time of wave profiles. In relation to the standard geometry of the pulse shaper – the disk
(geometry A, Fig. 1), the profiles of the rising and falling time of the incident wave, for the
remaining types of pulse shapers, have a characteristic inflection occurring at about 2/3 of the
wave amplitude. The rise time of the wave profile to the point of inflection is shorter in relation
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Fig. 3. Incident pulses for different striker velocity: (a), (b) V = 10m/s, (c), (d) V = 15m/s,
(a) and (c) all signals, (b) and (d) zoom

Fig. 4. Reflected pulses for different striker velocity: (a), (b) V = 10m/s, (c), (d) V = 15m/s,
(a) and (c) all signals, (b) and (d) zoom

to the rise time when the classical shaper is used (geometry A, Fig. 1). This is due to a faster
process of deformation and work hardening of the pulse shapers.
Small differences can also be observed in the area of the occurrence of Pochhammer-Chree

high-frequency oscillations. The highest oscillation amplitude for the striker velocity of 10m/s
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was found for the square geometry, and the smallest for the ring geometry. In turn, for the striker
impact velocity equal to 15m/s, the largest oscillation amplitude occurs in the case when the
pulse shaper of the disk type is used, and the smallest for the ring type. Therefore, it can be
concluded that the pulse shaper with ring (Fig. 1c) geometry has the highest ability to suppress
high-frequency components of the pulses and, thus, to minimize dispersion of waves propagating
in the SHPB bar.
It should be noted that the effect of the pulse shaper geometry is revealed with an increase

of the striker impact velocity. At the striker velocity equal to 15m/s, the high damping ability is
demonstrated by pulse shapers with geometry different than the disk (Fig. 1a). It follows that,
especially for high striker velocities, the use of a classical pulse shaper with disk geometry is
not appropriate. It is also observed in the reflected wave profile (Fig. 4c,d) on which the largest
oscillations amplitudes are found for the disk pulse shaper (geometry A). Too large oscillation
amplitudes visible on the wave profile delay the attainment of the specimen dynamic stress
equilibrium state and, thus, make it impossible to meet the basic methodological requirement
of the SHPB technique.

4. Conclusion

A method frequently used in the SHPB technique for forming an incident wave propagating in
the input bar is the use of a pulse shaper with disk geometry. The numerical analysis presented in
the article shows, however, that it is advantageous to use pulse shapers with shapes different than
disks. It has been found that they have a high ability to minimize high-frequency Pochhammer-
-Chree oscillations and, thus, reduce dispersion of waves propagating in the bar. For example, a
ring pulse shaper has a greater ability to suppress oscillations than a disk pulse shaper at both
low and high striker impact velocities. The ring pulse shaper also allows reaching the equilibrium
stress state in the test specimen faster. This feature is really desirable, especially while testing
high-strength materials with low plastic properties.
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