Journal of Theoretical
and Applied Mechanics

57, 1, pp. 17-26, Warsaw 2019
DOI: 10.15632/jtam-pl.57.1.17

Mathematical modelling and simulation of delamination crack growth in Glass Fiber Reinforced Plastic (GFRP) composite laminates

Hassan Ijaz
Delamination crack growth is a major source of failure in composite laminates under static
and fatigue loading conditions. In the present study, damage mechanics based failure models
for both static and fatigue loadings are evaluated via UMAT subroutine to study the dela-
mination crack growth phenomenon in Glass Fiber Reinforced Plastic (GFRP) composite
laminates. A static local damage model proposed by Allix and Ladev`eze is modified to an
non-local damage model in order to simulate the crack growth behavior due to static loading.
Next, the same classical damage model is modified to simulate fatigue delamination crack
growth. The finite element analysis results obtained by the proposed models are successfully
compared with the available experimental data on the delamination crack growth for GFRP
composite laminates.
Keywords: finite element analysis, GFRP, damage mechanics, non-local, fatigue, delami- nation

References


Alfano G., Crisfield M.A., 2001, Finite element interface models for the delamination analysis

of laminated composites: mechanical and computational issue, International Journal for Numerical

Methods in Engineering, 50, 1701-1736

Allix O., Ladevèze P., 1992, Interlaminar interface modelling for the prediction of delamination,

Composite Structures, 22, 235-242

Allix O., Ladevèze P., 1996, Damage mechanics of interfacial media: basic aspects, identification

and application to delamination, Studies in Applied Mechanics, 44, 167-188

Allix O., Ladevèze P., Corigliano A., 1995, Damage analysis of interlaminar fracture speci-

mens, Composite Structures, 31, 61-74

Allix O., Ladevèze P., Deu J.F., L´evˆeque D., 2000, A mesomodel for localization and damage

computation in laminates, Computer Methods in Applied Mechanics and Engineering, 183, 105-122

Allix O., Ladevèze P., Gornet L., Perret L., 1998, A computational damage mechanics

approach for laminates: identification and comparison with experimental result, Studies in Applied

Mechanics, 46, 481-500

Bažant Z.P., Pijaudier-Cabot G., 1988, Nonlocal continuum damage, localization instability

and convergence, Journal of Applied Mechanics, 55, 287-293

Bažant Z.P., Pijaudier-Cabot G., 1989, Measurement of characteristic length of nonlocal

continuum, Journal of Engineering Mechanics, 115, 755-767

Beer G., 1985, An isoparametric joint/interface element for finite element analysis, International

Journal for Numerical Methods in Engineering, 21, 585-600

Borino G., Failla B. Parrinello F., 2007, Nonlocal elastic damage interface mechanical model,

International Journal for Multiscale Computational Engineering, 5, 153-165

Chaboche J.L., Girard R., Levasseur P., 1997, On the interface debonding models, International

Journal of Damage Mechanics, 6, 220-257

Corigliano A., 1993, Formulation, identification and use of interface models in the numerical

analysis of composite delamination, International Journal Solids and Structures, 30, 2779-2811

Corigliano A., Allix O., 2000, Some aspects of interlaminar degradation in composites, Computer

Methods in Applied Mechanics and Engineering, 185, 203-224

Davidson P., Waas A.M., 2012, Non-smooth Mode I fracture of fibre-reinforced composites: an

experimental, numerical and analytical study, Philosophical Transactions of the Royal Society of

London, Series A, 370, 1942-1965

Davies P., Cantwell W., Moulin C., Kausch, H.H., 1989, A study of delamination resistance

of IM6/PEEK composites, Composites Science and Technology, 36, 153-166

Herakovich C.T., 1997, Mechanics of Fibrous Composites, 1st ed., John Wiley & Sons Ltd., New

York, U.S.

Ijaz H., Asad M., Gornet L., Alam S.Y., 2014, Prediction of delamination crack growth

in carbon/fiber epoxy composite laminates using non-local interface damage model, Mechanics &

Industry, 15, 293-300.

Ijaz H., Khan M.A., Saleem W., Chaudry S.R., 2011, Numerical modeling and simulation

of delamination crack growth in cf/epoxy composite laminates under cyclic loading using cohesive

zone model, Advanced Materials Research, 326, 37-52

Ijaz H., Zain-ul-Abdein M., Saleem W., Asad M., Mabrouki T., 2016, A numerical appro-

ach on parametric sensitivity analysis for an aeronautic aluminium alloy turning process,Mechanics, 2, 149-155

Jirasek M., 1998, Nonlocal models for damage and fracture: comparison of approaches, International

Journal of Solids and Structures, 35, 4133-4145

Marguet S., Rozycki P., Gornet L., 2007, A rate dependent constitutive model for carbon-

-fiber reinforced plastic woven fabric, Mechanics of Advanced Materials and Structures, 14, 619-631

Meng Q., Wang Z., 2014, Extended finite element method for power-law creep crack growth,

Engineering Fracture Mechanics, 127, 148-160

Peerlings R.H.J., Geers M.G.D., De Borst R., Brekelmans W.A.M., 2001, A critical

comparison of nonlocal and gradient enhanced softening continua, International Journal of Solids

Structures, 38, 7723-7746

Peng L., Xu J., 2013, Fatigue delamination growth of composite laminates with fiber bridging:

Theory and simulation, [In:] Proceeding of 13th International Conference on Fracture (ICF13), Yu

S. and Feng X.-Q. (Edit.), Beijing, China, 16-21

Verpeaux p., Charras T., Millard A., 1998, Castem 2000: Une Approche Moderne du Calcul

des Structures, Fouet J.M., Ladev`eze P., Ohayon R. (Edit.), 227-261

Williams J.G., 1988, On the calculation of energy release rates for cracked laminates, International

Journal of Fracture, 36, 101-119

Yao L., 2015, Mode I fatigue delamination growth in composite laminates with fibre bridging,

PhD Dissertation, Technische Universiteit Delft, Germany