and Applied Mechanics
57, 1, pp. 17-26, Warsaw 2019
DOI: 10.15632/jtam-pl.57.1.17
Mathematical modelling and simulation of delamination crack growth in Glass Fiber Reinforced Plastic (GFRP) composite laminates
and fatigue loading conditions. In the present study, damage mechanics based failure models
for both static and fatigue loadings are evaluated via UMAT subroutine to study the dela-
mination crack growth phenomenon in Glass Fiber Reinforced Plastic (GFRP) composite
laminates. A static local damage model proposed by Allix and Ladev`eze is modified to an
non-local damage model in order to simulate the crack growth behavior due to static loading.
Next, the same classical damage model is modified to simulate fatigue delamination crack
growth. The finite element analysis results obtained by the proposed models are successfully
compared with the available experimental data on the delamination crack growth for GFRP
composite laminates.
References
Alfano G., Crisfield M.A., 2001, Finite element interface models for the delamination analysis
of laminated composites: mechanical and computational issue, International Journal for Numerical
Methods in Engineering, 50, 1701-1736
Allix O., Ladevèze P., 1992, Interlaminar interface modelling for the prediction of delamination,
Composite Structures, 22, 235-242
Allix O., Ladevèze P., 1996, Damage mechanics of interfacial media: basic aspects, identification
and application to delamination, Studies in Applied Mechanics, 44, 167-188
Allix O., Ladevèze P., Corigliano A., 1995, Damage analysis of interlaminar fracture speci-
mens, Composite Structures, 31, 61-74
Allix O., Ladevèze P., Deu J.F., L´evˆeque D., 2000, A mesomodel for localization and damage
computation in laminates, Computer Methods in Applied Mechanics and Engineering, 183, 105-122
Allix O., Ladevèze P., Gornet L., Perret L., 1998, A computational damage mechanics
approach for laminates: identification and comparison with experimental result, Studies in Applied
Mechanics, 46, 481-500
Bažant Z.P., Pijaudier-Cabot G., 1988, Nonlocal continuum damage, localization instability
and convergence, Journal of Applied Mechanics, 55, 287-293
Bažant Z.P., Pijaudier-Cabot G., 1989, Measurement of characteristic length of nonlocal
continuum, Journal of Engineering Mechanics, 115, 755-767
Beer G., 1985, An isoparametric joint/interface element for finite element analysis, International
Journal for Numerical Methods in Engineering, 21, 585-600
Borino G., Failla B. Parrinello F., 2007, Nonlocal elastic damage interface mechanical model,
International Journal for Multiscale Computational Engineering, 5, 153-165
Chaboche J.L., Girard R., Levasseur P., 1997, On the interface debonding models, International
Journal of Damage Mechanics, 6, 220-257
Corigliano A., 1993, Formulation, identification and use of interface models in the numerical
analysis of composite delamination, International Journal Solids and Structures, 30, 2779-2811
Corigliano A., Allix O., 2000, Some aspects of interlaminar degradation in composites, Computer
Methods in Applied Mechanics and Engineering, 185, 203-224
Davidson P., Waas A.M., 2012, Non-smooth Mode I fracture of fibre-reinforced composites: an
experimental, numerical and analytical study, Philosophical Transactions of the Royal Society of
London, Series A, 370, 1942-1965
Davies P., Cantwell W., Moulin C., Kausch, H.H., 1989, A study of delamination resistance
of IM6/PEEK composites, Composites Science and Technology, 36, 153-166
Herakovich C.T., 1997, Mechanics of Fibrous Composites, 1st ed., John Wiley & Sons Ltd., New
York, U.S.
Ijaz H., Asad M., Gornet L., Alam S.Y., 2014, Prediction of delamination crack growth
in carbon/fiber epoxy composite laminates using non-local interface damage model, Mechanics &
Industry, 15, 293-300.
Ijaz H., Khan M.A., Saleem W., Chaudry S.R., 2011, Numerical modeling and simulation
of delamination crack growth in cf/epoxy composite laminates under cyclic loading using cohesive
zone model, Advanced Materials Research, 326, 37-52
Ijaz H., Zain-ul-Abdein M., Saleem W., Asad M., Mabrouki T., 2016, A numerical appro-
ach on parametric sensitivity analysis for an aeronautic aluminium alloy turning process,Mechanics, 2, 149-155
Jirasek M., 1998, Nonlocal models for damage and fracture: comparison of approaches, International
Journal of Solids and Structures, 35, 4133-4145
Marguet S., Rozycki P., Gornet L., 2007, A rate dependent constitutive model for carbon-
-fiber reinforced plastic woven fabric, Mechanics of Advanced Materials and Structures, 14, 619-631
Meng Q., Wang Z., 2014, Extended finite element method for power-law creep crack growth,
Engineering Fracture Mechanics, 127, 148-160
Peerlings R.H.J., Geers M.G.D., De Borst R., Brekelmans W.A.M., 2001, A critical
comparison of nonlocal and gradient enhanced softening continua, International Journal of Solids
Structures, 38, 7723-7746
Peng L., Xu J., 2013, Fatigue delamination growth of composite laminates with fiber bridging:
Theory and simulation, [In:] Proceeding of 13th International Conference on Fracture (ICF13), Yu
S. and Feng X.-Q. (Edit.), Beijing, China, 16-21
Verpeaux p., Charras T., Millard A., 1998, Castem 2000: Une Approche Moderne du Calcul
des Structures, Fouet J.M., Ladev`eze P., Ohayon R. (Edit.), 227-261
Williams J.G., 1988, On the calculation of energy release rates for cracked laminates, International
Journal of Fracture, 36, 101-119
Yao L., 2015, Mode I fatigue delamination growth in composite laminates with fibre bridging,
PhD Dissertation, Technische Universiteit Delft, Germany