and Applied Mechanics
57, 1, pp. 207-219, Warsaw 2019
DOI: 10.15632/jtam-pl.57.1.207
Investigation of crack resistance in epoxy/boron nitride nanotube nanocomposites based on multi-scale method
perties and are also suitable for biocomposites. These properties make them a favorable
reinforcement for nanocomposites. Since experimental studies on nanocomposites are time-
consuming, costly, and require accurate implementation, finite element analysis is used for
nanocomposite modeling. In this work, a representative volume element (RVE) of epo-
xy/BNNT nanocomposites based on multi-scale modeling is considered. The bonds of BNNT
are modeled by 3D beam elements. Also non-linear spring elements are employed to simu-
late the van der Waals bonds between the nanotube and matrix based on the Lennard-
-Jones potential. Young’s and shear modulus of BNNTs are in ranges of 1.039-1.041TPa and
0.44-0.52TPa, respectively. Three fracture modes (opening, shearing, and tearing) have been
simulated and stress intensity factors have been determined for a pure matrix and nanocom-
posite by J integral. Numerical results indicate that by incorporation of BNNT in the epoxy
matrix, stress intensity factors of three modes decrease. Also, by increasing the chirality
of BNNT, crack resistance of shearing and tearing modes are enhanced, and stress inten-
sity factor of opening mode reduced. BNNTs bridge the crack surface and prevent crack
propagation.
References
Akdim B., Achter R.P., Duan X.F., Adams W.W., 2003, Comparative theoretical study of
single-wall carbon and boron-nitride nanotubes, Physical Review B, 67, 245404
Ansari R., Rouhi S., Mirnezhad M., Aryayi M., 2015, Stability characteristics of single-walled
boron nitride nanotubes, Archives of Civil and Mechanical Engineering, 15, 162-170
Battezzatti L., Pisani C., Ricca F., 1975, Equilibrium conformation and surface motion of
hydrocarbon molecules physisorbed on graphite, Journal of the Chemical Society, 71, 1629-1639
Bettinger H.F., Dumitric T.T., Scuseria G.E., Yakobson B.I., 2002,Mechanically induced
defects and strength of BN nanotubes, Physical Review B, 65, 041406
Chang C.W., Han W.Q., Zettl A., 2005, Thermal conductivity of B-C-N and BN nanotubes,
Applied Physics Letters, 86, 173102
Chen X., Zhang L., Park C., Fay C.C., Wang X., Ke C., 2015, Mechanical strength of boron
nitride nanotube-polymer interfaces, Applied Physics Letters, 107, 253105
Chen Y., Zou J., Campbell S.J., Caer G.L., 2004, Boron nitride nanotubes: pronounced
resistance to oxidation, Applied Physics Letters, 84, 2430-2432
Chopra N.G., Luyken R.J., Cherrey K., Crespi V.H., Cohen M.L., Louie S.G., Zettl
A., 1995, Boron nitride nanotubes, Science, 269, 966-967
Chopra N.G., Zettl A., 1998, Measurement of the elastic modulus of a multi-wall boron nitride
nanotube, Solid State Communications, 105, 297-300
Chowdhury R., Wang C.Y., Adhikari S., Scarpa F., 2010, Vibration and symmetry-breaking
of boron nitride nanotubes, Nanotechnology, 21, 365702
Davar A., Sadri S., 2016, Finite element analysis of the effect of boron nitride nanotubes in
beta tricalcium phosphate and hydroxyapatite elastic modulus using the RVE model, Composites
Part B: Engineering, 90, 336-340
Davar A., Sadri S., 2017, Finite element analysis of boron nitride nanotubes’ shielding effect
on the stress intensity factor of semielliptical surface crack in a wide range of matrixes using RVE
model, Composites Part B: Engineering, 110, 351-360
Fakhrabad D.V., Shahtahmassebi N., 2013, First-principles calculations of the Young’s mo-
dulus of double wall boron-nitride nanotubes, Materials Chemistry and Physics, 138, 2, 963-966
Fereidoon A., Mostafaei M., Ganji M.D., Memarian F., 2015, Atomistic simulations on
the influence of diameter, number of walls, interlayer distance and temperature on the mechanical
properties of BNNTs, Superlattices and Microstructures, 86, 126-133
Fereidoon A., Rajabpour M., Hemmatian H., 2013, Fracture analysis of epoxy/SWCNT
nanocomposite based on global-local finite element model, Composites: Part B, 54, 400-408
Ghorbanpour Arani A., Haghshenas A., Amir S., Azami M., Khoddami Maraghi Z., 2012a, Electro-thermo-mechanical response of thick-walled piezoelectric cylinder reinforced by
BNNTs, Journal of Nanostructures, 2, 113-124
Ghorbanpour Arani A., Shams S., Amir S., Khoddami Maraghi Z., 2012b, Effects of
electro-thermal fields on buckling of a piezoelectric polymeric shell reinforced with DWBNNTs,
Journal of Nanostructures, 2, 345-355
Gibson R., 2007, Principles of Composite Material Mechanics, CRC Press
Gojny F.H., Wichmann M.H.G., Fiedler B., Schulte K., 2005, Influence of different car-
bon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study,
Composites Science and Technology, 65, 2300-2313
Gou J., Minaei B., Wang B., Liang Z., Zhang C., 2004, Computational and experimental stu-
dy of interfacial bonding of single-walled nanotube reinforced composites, Computational Materials
Science, 31, 225-236
Griebel M., Hamaekers J., Heber F., 2009, A molecular dynamics study on the impact of
defects and functionalization on the Young modulus of boron-nitride nanotubes, Computational
Materials Science, 45, 4, 1097-1103
Hemmatian H., Fereidoon A., Rajabpour M., 2012, Investigation of crack resistance in single
walled carbon nanotube reinforced polymer composites based on FEM, Journal of Ultrafine Grained
and Nanostructured Materials, 45, 13-18
Jakubinek M.B., Martinez-Rubi Y., Ashrafi B., Yourdkhani M., Rahmat M., Djokic
D., Guan J., Su Kim K., Kingston C.T., Simard B., Johnston A., 2016, Nanoreinforced
epoxy composites based on boron nitride nanotubes and their application to adhesive joints and
composite laminates, Proceedings of 3rd Annual Composites and Advanced Materials Expo, CAMX 2016, Anaheim, United States
Khaleghian M., Azarakhshi F., 2016, Electronic properties studies of Benzene under boron
nitride nano ring field, International Journal of Nano Dimension, 7, 290-294
Lee D., Song S.H., Hwang J., Jin S.H., Park K.H., Kim B.H., Hong S.H., Jeon S., 2013,
Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized
boron nitride nanoflakes, Small, 9, 2602-2610
Mirjalili V., Hubert P., 2010, Modelling of the carbon nanotube bridging effect on the toughe-
ning of polymers and experimental verification, Composites Science and Technology, 70, 1537-1543
Mohammadimehr M., Mahmudian-Najafabadi M., 2013, Bending and free vibration analysis
of nonlocal functionally graded nanocomposite Timoshenko beam model reinforced by SWBNNT
based on modified coupled stress theory, Journal of Nanostructures, 3, 483-492
Molani F., 2017, The effect of C, Si, N, and P impurities on structural and electronic properties
of armchair boron nanotube, Journal of Nanostructure in Chemistry, 7, 243-248
Mortazavi B., Baniassadi M., Bardon J., Ahzi S., 2013, Modeling of two-phase random com-
posite materials by finite element, Mori-Tanaka and strong contrast methods, Composites Part B,
Engineering, 45, 1117-1125
Rozenberg B.A., Tenne R., 2008, Polymer-assisted fabrication of nanoparticles andnanocom-
posites, Progress in Polymer Science, 33, 40-112
Sun L., R. Gibson F., Gordaninejad F., Suhr J., 2009, Energy absorption capability of
nanocomposites: a review, Composites Science and Technology, 69, 2392-2409
Suryavanshi A.P., Yu M., Wen J., Tang C., Bando Y., 2004, Elastic modulus and resonance
behavior of boron nitride nanotubes, Applied Physics Letters, 84, 2527-2529
Tserpes K., Papanikos P., Labeas G., Pantelakis S., 2008, Multi-scale modeling of tensile
behavior of carbon nanotube-reinforced composites, Theoretical and Applied Fracture Mechanics, 49, 51-60
Ulus H., ¨Ust¨un T., Eskizeybek V., S¸ahin ¨ O.S., Avcı A., Ekrem M., 2014, Boron nitride-
-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical properties, Applied Surface
Science, 318, 37-42
Verma V., Jindal V., Dharamvir K., 2007, Elastic moduli of a boron nitride nanotube,
Nanotechnology, 18, 435711
Wei X., Wang M.S., Bando Y., Golberg D., 2010, Tensile tests on individual multi-walled
boron nitride nanotubes, Advanced Materials, 22, 43, 4895-4899
Yang S., Cui Z. Qu J., 2014, A coarse-grained model for epoxy molding compound, The Journal
of Physical Chemistry B, 118, 1660-1669
Zhang L., Wang X., 2016, DNA sequencing by hexagonal boron nitride nanopore: a computa-
tional study, Nanomaterials, 6, 111
Zhi C., Bando Y., Tang C., Golberg D., 2010, Boron nitride nanotubes, Materials Science
and Engineering: R, 70, 92-111