Journal of Theoretical
and Applied Mechanics

57, 1, pp. 207-219, Warsaw 2019
DOI: 10.15632/jtam-pl.57.1.207

Investigation of crack resistance in epoxy/boron nitride nanotube nanocomposites based on multi-scale method

Hossein Hemmatian, Mohammad Reza Zamani, Jafar Eskandari Jam
Boron nitride nanotubes (BNNTs) possess superior mechanical, thermal and electrical pro-
perties and are also suitable for biocomposites. These properties make them a favorable
reinforcement for nanocomposites. Since experimental studies on nanocomposites are time-
consuming, costly, and require accurate implementation, finite element analysis is used for
nanocomposite modeling. In this work, a representative volume element (RVE) of epo-
xy/BNNT nanocomposites based on multi-scale modeling is considered. The bonds of BNNT
are modeled by 3D beam elements. Also non-linear spring elements are employed to simu-
late the van der Waals bonds between the nanotube and matrix based on the Lennard-
-Jones potential. Young’s and shear modulus of BNNTs are in ranges of 1.039-1.041TPa and
0.44-0.52TPa, respectively. Three fracture modes (opening, shearing, and tearing) have been
simulated and stress intensity factors have been determined for a pure matrix and nanocom-
posite by J integral. Numerical results indicate that by incorporation of BNNT in the epoxy
matrix, stress intensity factors of three modes decrease. Also, by increasing the chirality
of BNNT, crack resistance of shearing and tearing modes are enhanced, and stress inten-
sity factor of opening mode reduced. BNNTs bridge the crack surface and prevent crack
propagation.
Keywords: boron nitride nanotube, epoxy, fracture modes, finite element model, multi-scale method

References


Akdim B., Achter R.P., Duan X.F., Adams W.W., 2003, Comparative theoretical study of

single-wall carbon and boron-nitride nanotubes, Physical Review B, 67, 245404

Ansari R., Rouhi S., Mirnezhad M., Aryayi M., 2015, Stability characteristics of single-walled

boron nitride nanotubes, Archives of Civil and Mechanical Engineering, 15, 162-170

Battezzatti L., Pisani C., Ricca F., 1975, Equilibrium conformation and surface motion of

hydrocarbon molecules physisorbed on graphite, Journal of the Chemical Society, 71, 1629-1639

Bettinger H.F., Dumitric T.T., Scuseria G.E., Yakobson B.I., 2002,Mechanically induced

defects and strength of BN nanotubes, Physical Review B, 65, 041406

Chang C.W., Han W.Q., Zettl A., 2005, Thermal conductivity of B-C-N and BN nanotubes,

Applied Physics Letters, 86, 173102

Chen X., Zhang L., Park C., Fay C.C., Wang X., Ke C., 2015, Mechanical strength of boron

nitride nanotube-polymer interfaces, Applied Physics Letters, 107, 253105

Chen Y., Zou J., Campbell S.J., Caer G.L., 2004, Boron nitride nanotubes: pronounced

resistance to oxidation, Applied Physics Letters, 84, 2430-2432

Chopra N.G., Luyken R.J., Cherrey K., Crespi V.H., Cohen M.L., Louie S.G., Zettl

A., 1995, Boron nitride nanotubes, Science, 269, 966-967

Chopra N.G., Zettl A., 1998, Measurement of the elastic modulus of a multi-wall boron nitride

nanotube, Solid State Communications, 105, 297-300

Chowdhury R., Wang C.Y., Adhikari S., Scarpa F., 2010, Vibration and symmetry-breaking

of boron nitride nanotubes, Nanotechnology, 21, 365702

Davar A., Sadri S., 2016, Finite element analysis of the effect of boron nitride nanotubes in

beta tricalcium phosphate and hydroxyapatite elastic modulus using the RVE model, Composites

Part B: Engineering, 90, 336-340

Davar A., Sadri S., 2017, Finite element analysis of boron nitride nanotubes’ shielding effect

on the stress intensity factor of semielliptical surface crack in a wide range of matrixes using RVE

model, Composites Part B: Engineering, 110, 351-360

Fakhrabad D.V., Shahtahmassebi N., 2013, First-principles calculations of the Young’s mo-

dulus of double wall boron-nitride nanotubes, Materials Chemistry and Physics, 138, 2, 963-966

Fereidoon A., Mostafaei M., Ganji M.D., Memarian F., 2015, Atomistic simulations on

the influence of diameter, number of walls, interlayer distance and temperature on the mechanical

properties of BNNTs, Superlattices and Microstructures, 86, 126-133

Fereidoon A., Rajabpour M., Hemmatian H., 2013, Fracture analysis of epoxy/SWCNT

nanocomposite based on global-local finite element model, Composites: Part B, 54, 400-408

Ghorbanpour Arani A., Haghshenas A., Amir S., Azami M., Khoddami Maraghi Z., 2012a, Electro-thermo-mechanical response of thick-walled piezoelectric cylinder reinforced by

BNNTs, Journal of Nanostructures, 2, 113-124

Ghorbanpour Arani A., Shams S., Amir S., Khoddami Maraghi Z., 2012b, Effects of

electro-thermal fields on buckling of a piezoelectric polymeric shell reinforced with DWBNNTs,

Journal of Nanostructures, 2, 345-355

Gibson R., 2007, Principles of Composite Material Mechanics, CRC Press

Gojny F.H., Wichmann M.H.G., Fiedler B., Schulte K., 2005, Influence of different car-

bon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study,

Composites Science and Technology, 65, 2300-2313

Gou J., Minaei B., Wang B., Liang Z., Zhang C., 2004, Computational and experimental stu-

dy of interfacial bonding of single-walled nanotube reinforced composites, Computational Materials

Science, 31, 225-236

Griebel M., Hamaekers J., Heber F., 2009, A molecular dynamics study on the impact of

defects and functionalization on the Young modulus of boron-nitride nanotubes, Computational

Materials Science, 45, 4, 1097-1103

Hemmatian H., Fereidoon A., Rajabpour M., 2012, Investigation of crack resistance in single

walled carbon nanotube reinforced polymer composites based on FEM, Journal of Ultrafine Grained

and Nanostructured Materials, 45, 13-18

Jakubinek M.B., Martinez-Rubi Y., Ashrafi B., Yourdkhani M., Rahmat M., Djokic

D., Guan J., Su Kim K., Kingston C.T., Simard B., Johnston A., 2016, Nanoreinforced

epoxy composites based on boron nitride nanotubes and their application to adhesive joints and

composite laminates, Proceedings of 3rd Annual Composites and Advanced Materials Expo, CAMX 2016, Anaheim, United States

Khaleghian M., Azarakhshi F., 2016, Electronic properties studies of Benzene under boron

nitride nano ring field, International Journal of Nano Dimension, 7, 290-294

Lee D., Song S.H., Hwang J., Jin S.H., Park K.H., Kim B.H., Hong S.H., Jeon S., 2013,

Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized

boron nitride nanoflakes, Small, 9, 2602-2610

Mirjalili V., Hubert P., 2010, Modelling of the carbon nanotube bridging effect on the toughe-

ning of polymers and experimental verification, Composites Science and Technology, 70, 1537-1543

Mohammadimehr M., Mahmudian-Najafabadi M., 2013, Bending and free vibration analysis

of nonlocal functionally graded nanocomposite Timoshenko beam model reinforced by SWBNNT

based on modified coupled stress theory, Journal of Nanostructures, 3, 483-492

Molani F., 2017, The effect of C, Si, N, and P impurities on structural and electronic properties

of armchair boron nanotube, Journal of Nanostructure in Chemistry, 7, 243-248

Mortazavi B., Baniassadi M., Bardon J., Ahzi S., 2013, Modeling of two-phase random com-

posite materials by finite element, Mori-Tanaka and strong contrast methods, Composites Part B,

Engineering, 45, 1117-1125

Rozenberg B.A., Tenne R., 2008, Polymer-assisted fabrication of nanoparticles andnanocom-

posites, Progress in Polymer Science, 33, 40-112

Sun L., R. Gibson F., Gordaninejad F., Suhr J., 2009, Energy absorption capability of

nanocomposites: a review, Composites Science and Technology, 69, 2392-2409

Suryavanshi A.P., Yu M., Wen J., Tang C., Bando Y., 2004, Elastic modulus and resonance

behavior of boron nitride nanotubes, Applied Physics Letters, 84, 2527-2529

Tserpes K., Papanikos P., Labeas G., Pantelakis S., 2008, Multi-scale modeling of tensile

behavior of carbon nanotube-reinforced composites, Theoretical and Applied Fracture Mechanics, 49, 51-60

Ulus H., ¨Ust¨un T., Eskizeybek V., S¸ahin ¨ O.S., Avcı A., Ekrem M., 2014, Boron nitride-

-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical properties, Applied Surface

Science, 318, 37-42

Verma V., Jindal V., Dharamvir K., 2007, Elastic moduli of a boron nitride nanotube,

Nanotechnology, 18, 435711

Wei X., Wang M.S., Bando Y., Golberg D., 2010, Tensile tests on individual multi-walled

boron nitride nanotubes, Advanced Materials, 22, 43, 4895-4899

Yang S., Cui Z. Qu J., 2014, A coarse-grained model for epoxy molding compound, The Journal

of Physical Chemistry B, 118, 1660-1669

Zhang L., Wang X., 2016, DNA sequencing by hexagonal boron nitride nanopore: a computa-

tional study, Nanomaterials, 6, 111

Zhi C., Bando Y., Tang C., Golberg D., 2010, Boron nitride nanotubes, Materials Science

and Engineering: R, 70, 92-111