and Applied Mechanics
57, 1, pp. 235-248, Warsaw 2019
DOI: 10.15632/jtam-pl.57.1.235
Strength analysis of hip joint replacement revision implant
titanium or tantalum alloy, used during bone reconstruction of a hip joint while potentially
using additional stabilizing screws, necessary due to significant bone loss. The article provides
a preliminary strength analysis of implants, indispensable for further evaluation of strength
limitations due to the risk of implant damage depending on the structure and number of
additional screw holes. In the human locomotor system, the hip joint is the joint with the
most load, hence the main problem is to establish an adequate load model which ought to be
assumed for the needs of implant strength analysis. It is found necessary to perform a short,
analytical review of the existing hip joint load models from the point of view of choosing
the proper one, considering evaluation of implant strength by means of numerical studies
using FEM. Differences in the implant load distribution depending on the used material are
shown.
References
Benouis A., Boulenouar A., Serirer B., 2016, Finite element analysis of the behavior of a
crack in the orthopedic cement, Journal of Theoretical and Applied Mechanics, 54, 1, 277-284
Bergman G., Graichen F., Rohlmann A., 1993, Hip joint loading durnig walking and running,
measured in two patients, Journal Biomechanics, 26, 969-990.
Bergman G., Graichen F., Rohlmann A., 1995, Is stair case walking a risk for the fixation of
hip implants? Journal Biomechanics, 28, 532-533
Bergman G., Deuretzbaher G., Heller M., Graichen F., Rohlmann A., Strauss J.,
Duda G.N., 2001, Hip contact forces and gait patterns from routine activities, Journal of Biomechanics, 34, 859-871
Bernakiewicz M., 1999, Elaboration the strain-stresses criteria for the selection of hip joint
implants (in Polish), Ph.D. Thesis, Wroclaw University of Science and Technology, Wrocław
Bernakiewicz M., Będziński R., 1999, An analysis of the stress state of femur under extreme
load conditions (in Polish), Zeszyty Naukowe Konferencji Mechaniki Stosowanej, 9, 15-21
Bernakiewicz M., 1994, The concept of constructional solution of the prosthetic nail of hip joint
cementless endoprosthesis (in Polish), Biomechanika, 94 (Prace Naukowe Instytutu Konstrukcji
i Eksploatacji Politechniki Wrocławskiej, nr 75, Seria: Konferencje nr 21, Wrocław), 19-22
Będziński R., 1997, Engineering Biomechanics. Selected Issues (in Polish), Oficyna wydawnicza
Politechniki Wrocławskiej, Wrocław
Będziński R., Ścigała K., 2004, Biomechanics of the hip joint and knee joint (in Polish), [In:]
Biocybernetyka i Inżynieria Rehabilitacyjna, 5, Będziński R. (Edit.), Akademicka Oficyna Wydawnicza
Exit, Warszawa
Bobyn J.D., Stackpool G.J., Hacking S.A., Tanzer M., Krygier J.J., 1999, Characteristics
of bone ingrowth and interface mechanics of a new porous tantalum biomaterial, Journal of Bone
and Joint Surgery. British Volume, 81, 5, 907-914
Bombeli R., 1983, Structure and Function in Normal and Abnormal Hips, Springer-Verlag, Berlin
Dąbrowska-Tkaczyk A., 1999, Modeling stress and strain distribution in the pelvic bone during
quesi-static backward rotation, Proceedings Biomechanics 99, Acta of Bioengineering and Biomechanics
V, 1, 93-96
Dorman T., Kmieć K., Pogonowicz E., Sibiński M., Synder M., Kozłowski P., 2011,
Revision treatments in large acetabulum cavities using cup augment (in Polish), Chirurgia Narządu
Ruchu i Ortopedia Polska, 76, 1, 21-24
Dragan S., 1992, Studies on the influence of construction of the prosthetic nail of cementless
endoprosthesis and the distribution of forces in femur under the influence of loads on disturbances
of primary stability (in Polish), Ph.D. Thesis, Medical Academy, Wrocław
Dragan S., 2004, Clinical and biomechanical aspects of osteointegration course of hip joint endoprostheses
(in Polish), [In:] Biocybernetyka i Inżynieria Rehabilitacyjna, 5, Będziński R. (Edit.),
Akademicka Oficyna Wydawnicza Exit, Warszawa
Hacking S.A., Bobyn J.D., Toh K., T¨anzer M., Krygier J.J., 2000, Fibrous tissue ingrovrth
and attachment to porous tantalum, Journal of Biomedical Materials Research, 52, 4, 631-638
Harris W.H., 1992, The problem is osteolysis, Clinical Orthopaedics, 247, 6-11
Levine B.R., Sporer S., Poggie R.A., Delia Valle C.J., Jacobs J.J., 2006, Experimental
and clinical performance of porous tantalum in orthopedic surgery, Biomaterials, 27, 4671-4681
Li Y., Yang C., Zhao H., Qu S., Li X., Li Y., 2014, New developments of Ti-based alloys for
biomedical applications, Materials, 7, 1709-1800
Madej T., Ryniewicz A.M., 2007, Simulation of contact mechanics with a complex load condition
in the hip joint endoprosthesis (in Polish), Materiały konferencyjne, IV Krakowskie Warsztaty
Inżynierii Medycznej, Kraków
Madej T., 2008, Modeling the movement zone of the hip joint endoprosthesis in the aspect of
biomaterials (in Polish), Ph.D. Thesis, AGH University of Science and Technology, Kraków
Maquet P.G.J., 1985, Biomechanics of the Hip, Berlin
Medlin D.J., Charlebois S., Swarts D., Shetty R., Poggie R.A., 2004, Metallurgical
characterization of a porous Tantalum biomaterial (Trabecular metal) for orthopaedic implant
applications, Medical Device Materials: Proceedings of the Materials and Processes for Medical
Conference, S. Shrivastava (Edit.), 394-398
Meneghini R.M., Ford K.S., McCollough C.H., Hahssen A.D., Lewallen D.G., 2010,
Bone remodeling around porous metal cementless acetabular components, Journal Arthroplasty, 25, 5, 741-747
Meneghini R.M., Meyer C., Buckley C.A., Hanssen A.D., Lewallen D.G., 2010, Mechanical
stability of novel highly porous metal acetabular components in revision total hip arthroplasty,
Journal of Arthroplasty, 25, 3, 337-341
Pauwels F., 1976, Biomechanics of the Locomotor Apparatus, Berlin
Popovic M., Hofmann A., Herr H., 2004, Angular momentum regulation during human walking:
biomechanics and control, Proceedings – IEEE International Conference on Robotics and
Automation, ICRA 2004, New Orleans, LA, USA, 3, 3, 2405-2411
Ryniewicz A.M., Madej T., 2001, The influence technology parameters on tribology properties
films have been obtained by chemical vapour deposition, Proceedings of the 12th International
DAAAM Symposium Technical University of Vienna, 417-418
Ryniewicz A.M., Madej T., 2002, Analysis of stresses and displacements in the working zone of
the hip joint endoprosthesis (in Polish), Mechanika w Medycynie, 6, 127-134
Włodarski J., 2005, Stability of hip joint cement endoprostheses in the light of histological,
numerical and experimental studies (in Polish), Bio-Algorithms and Med-Systems, 1, 2, 197-204