Journal of Theoretical
and Applied Mechanics

50, 2, pp. 487-508, Warsaw 2012

New efficient approximation of weighting functions for simulations of unsteady friction losses in liquid pipe flow

Kamil Urbanowicz, Zbigniew Zarzycki
Most papers dealing with calculations and simulations of the unsteady liquid pipe flow are based on the assumption that the formula for quasi-steady friction (Darcy-Weisbach formula) can be applied. In the case of fast changes, like fast transients e.g. water hammer, it fails. In this work, the wall shear stress is presented as a sum of quasi-steady and unsteady component. The unsteady component of the wall shear stress is modeled as a convolution of local fluid acceleration and a weighting function. The original weighting function has usually a very complicated structure, and what is more, makes impossible to carry out an efficient simulation of dynamical runs. In this paper, in order to enable efficient calculation of the unsteady component of the wall shear stress, new weighting functions are presented as sums of exponential components.
Keywords: transient flow; weighting function; friction losses