Inverse method for a one-stage spur gear diagnosis
Ali Akrout, Dhouha Tounsi, Mohamed Taktak, Mohamed Slim Abbes, Mohamed Haddar
In this paper, a source separation approach based on the Blind Source Separation (BSS) is presented. In fact, the Independent Component Analysis (ICA), which is the main technique of BSS, consists in extracting different source signals from several observed mixtures. This inverse method is very useful in many fields such as telecommunication, signal processing and biomedicine. It is also very attractive for diagnosis of mechanical systems such as rotating machines. Generally, dynamic responses of a given mechanical system (displacements, accelerations and speeds) measured through sensors are used as inputs for the identification of internal defaults. In this study, the ICA concept is applied to the diagnosis of a one-stage gear mechanism in which two types of defects (the eccentricity error and the localized tooth defect)are introduced. The finite element method allows determination of the signals corresponding to the acceleration in some locations of the system, and those signals may be used also in the ICA algorithm. Hence, the vibratory signatures of each defect can be identified by the ICA concept. Thus, a good agreement is obtained by comparing the expected default signatures to those achieved by the developed inverse method.
Keywords: Independent Component Analysis (ICA), source identification, gear mechanism, geometrical defects