**Journal of Theoretical**

and Applied Mechanics

and Applied Mechanics

**0**, 0, pp. , Warsaw 0

### Multi-core and many-core SPMD parallel algorithms for construction of basins of attractions

*Keywords*: basins of attraction; MPI; CUDA; Duffing equation; Sommerfeld effect; immunodynamics

#### References

O P Agrawal, K J Danhof, and R Kumar. A superelement model based parallel algorithm for vehicle dynamics. Computers & Structures, 51:411–423, 1992. doi: 10.1016/0045-7949(94)90326-3.

H M Aktulga, J C Fogarty, S A Pandit, and A Y Grama. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Computing, 38:245–259, 2012. doi: 10.1016/j.parco.2011.08.005.

J M Balthazar, A M Tusset, R M L R F Brasil, J L P Felix, Rocha R T, F C Janzen, A Nabarrete, and C Oliveira. An overview on the appearance of the Sommerfeld effect and saturation phenomenon in non-ideal vibrating systems (NIS) in macro and MEMS scales. Nonlinear Dynamics, pages 1–22, 2018. doi:10.1007/s11071-018-4126-0.

T Belytschko, H J Yen, and R Mullen. Mixed methods for time integration. Computer Methods in Applied Mechanics and Engineering, 17–18:259–275, 1979. doi: 10.1016/0045-7825(79)90022-7.

C Bendtsn. Highly stable parallel Runge-Kutta methods. Applied Numerical Mathematics, 21:1–8, 1996. doi: 10.1016/0168-9274(96)00003-7.

K D Bhalerao, J Crithcley, and K Anderson. An efficient parallel dynamics algorithm for simulation of large articulated robotics system. Mechanism and Machine Theory, 53:86–98, 2012. doi: 10.1016/j.mechmachtheory.2012.03.001.

A R Brodtkorb, T R Hagen, and M L Sætra. Graphics processing unit GPU programming strategies and trends in GPU computing. Journal of Parallel and Distributed Computing, 73:4–13, 2013. doi:10.1016/j.jpdc.2012.04.003.

N H Cong. Explicit symmetric Runge-Kutta-Nyström methods for parallel computers. Computers & Mathematics with Applications, 31:111–121, 1996. doi: 10.1016/0898-1221(95)00198-0.

P J P Gonçalves, M Silveira, B R Pontes Jr, and J M Balthazar. Model analogy, numerical and experimental analysis of a cantilever beam with a coupled unbalanced non-ideal motor. Journal of Sound and Vibration, 333:5115–5129, 2014. doi: 10.1016/j.jsv.2014.05.039.

T Koziara and N Bićanić. A distributed memory parallel multibody contact dynamics code. International Journal for Numerical Methods in Engineering, 87:437–456, 2011. doi: 10.1002/nme.3158.

J Lang and M Y Li. Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection. Journal of Mathematical Biology, 65:181–199, 2012. doi: 10.1007/s00285-011-0455-z.

S Lenci, G Rega, and L Ruzziconi. The dynamical integrity concept for interpreting/prediction experimental behaviour: from macro- to nano-mechanics. Philosophical Transactions of the Royal Society A, 371, 2013. doi: 10.1098/rsta.2012.0423.

S W McDonald, C Grebogi, E Ott, and J A Yorke. Fractal basin boundaries. Physica D, 17:125–153, 1985. doi: 10.1016/0167-2789(85)90001-6.

P Michaels and B Zubik-Kowal. Parallel computations and numerical simulations for nonlinear systems of Volterra integro-differential equations. Communications in Nonlinear Science and Numerical Simulation, 17:3022–3030, 2012. doi: 10.1016/j.cnsns.2011.11.006.

S Modak and E D Sotelino. An object-oriented programming framework for the parallel dynamic analysis of structures. Computers & Structures, 80:77–84, 2002. doi: 10.1016/S0045-7949(01)00154-7.

R Murty and D Okunbor. Efficient parallel algorithms for molecular dynamics simulations. Parallel Computing, 25:217–230, 1999. doi: 10.1016/S0167-8191(98)00114-8.

A H Nayfeh and B Balachandran. Applied nonlinear dynamics. Wiley, 1995.

P Pacheco. An introduction to parallel programming. Morgan Kaufmann, 2011.

T S Parker and L O Chua. Practical numerical algorithms for chaotic systems. Springer–Verlag, 1992.

S Ramachandramurthi, T G Hallam, and J A Nichols. Parallel simulation of individual-based, physiologically structured population models. Mathematical and Computer Modelling, 25:55–70, 1997. doi: 10.1016/S0895-7177(97)00094-0.

A R M Rao. A parallel mixed time integration algorithm for nonlinear dynamic analysis. Advances in Engineering Software, 33:261–271, 2002. doi: 10.1016/S0965-9978(02)00021-2.

G Rega and S Lenci. Identifying, evaluating, and controlling dynamical integrity measures in non-linear mechanical oscillators. Numerical Analysis, 63:902–914, 2005. doi: 10.1016/j.na.2005.01.084.

M S Soliman and J M T Thompson. Integrity measures quantifying the erosion of smooth and fractal basins of attraction. Journal of Sound and Vibration, 135:453–475, 1989. doi: 10.1016/0022-460X(89)90699-8.

B P Sommeijer. Explicit, high-order Runge-Kutta-Nyström methods for parallel computers. Applied Numerical Mathematics, 13:221–240, 1993. doi: 10.1016/0168-9274(93)90145-H.

J M T Thompson and H B Stewart. Nonlinear dynamics and chaos. John Wiley & Sons, 2nd edition, 2002.

R Trobec, I Jerebic, and D Janežič. Parallel algorithm for molecular dynamics integration. Parallel Computing, 19:1029–1039, 1993. doi: 10.1016/0167-8191(93)90095-3.