Journal of Theoretical
and Applied Mechanics

0, 0, pp. , Warsaw 0

Matrix logarithmic wave equation and multi-channel systems in fluid mechanics

Konstantin G Zloshchastiev
We generalize quantum wave equations of a logarithmic type to matrix equations. We mapped the resulting equation to flow equations of the multi-channel or multi-component Korteweg-type materials including fluids with internal surface tension and capillary effects. For some special cases, we analytically derive a Gaussian-type matrix solutions and study them in a context of fluid mechanics.
Keywords: fluid mechanics; wave mechanics; nonlinear wave

References


Rosen G., 1968, Particlelike solutions to nonlinear complex scalar field theories with positive-denfiite energy densities, J. Math. Phys., 9, 996

Rosen G., 1969, Dilatation covariance and exact solutions in local relativistic field theories, Phys. Rev., 183, 1186

Bialynicki-Birula I., Mycielski J., 1975, Uncertainty relations for information entropy in wave mechanics, Commun. Math. Phys., 44, 129-132

Bialynicki-Birula I., Mycielski J., 1976, Nonlinear wave mechanics, Ann. Phys. (N. Y.), 100, 62

Bialynicki-Birula I., Mycielski J., 1979, Gaussons: Solitons of the logarithmic Schrodinger equation, Phys. Scr., 20, 539

Enqvist K., McDonald J., 1998, Q-Balls and Baryogenesis in the MSSM, Phys. Lett. B, 425, 309-321

Hiramatsu T, Kawasaki M., Takahashi F., 2010, Numerical study of Q-ball formation in gravity mediation, J. Cosmol. Astropart. Phys., 2010, 008

Zloshchastiev K G., 2010, Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences, Grav. Cosmol., 16, 288

Zloshchastiev K G., 2011, Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory, Acta Phys. Polon., 42, 261

Zloshchastiev K G., 2011, Vacuum Cherenkov effect in logarithmic nonlinear quantum theory, Phys. Lett. A, 375, 2305

Dzhunushaliev V., Zloshchastiev K G., 2013, Singularity-free model of electric charge in physical vacuum: Non-zero spatial extent and mass generation, Central Eur. J. Phys., 11, 325

Gulamov I E, Nugaev E Ya., Smolyakov M N., 2014, Theory of U(1) gauged Q-balls revisited, Phys. Rev. D, 89, 085006

Gulamov I E, Nugaev E Ya, Panin A G., Smolyakov M N., 2015, Some properties of U(1) gauged Q-balls, Phys. Rev. D, 92, 045011

Dzhunushaliev V, Makhmudov A., Zloshchastiev K G., 2016, Singularity-free model of electrically charged fermionic particles and gauged Q-balls, Phys. Rev. D, 94, 096012

Buljan H, Siber A, Soljacic M, Schwartz T, Segev M., Christodoulides D N., 2003, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E, 68, 036607

Hansson T, Anderson D., Lisak M., 2009, Propagation of partially coherent solitons in saturable logarithmic media: A comparative analysis, Phys. Rev. A, 80, 033819

Hefter E F., 1985, Application of the nonlinear Schrodinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev. A, 32, 1201

Kartavenko V G, Gridnev K A., Greiner W., 1998, Nonlinear effects in nuclear cluster problem, Int. J. Mod. Phys. E, 7, 287

Yasue K., 1978, Quantum mechanics of nonconservative systems, Ann. Phys. (N.Y.), 114, 479

Brasher J D., 1991, Nonlinear wave mechanics, information theory, and thermodynamics, Int. J. Theor. Phys., 30, 979

Schuch D., 1997, Nonunitary connection between explicitly time-dependent and nonlinear approaches for the description of dissipative quantum systems, Phys. Rev. A, 55, 935

Davidson M P., 2001, Comments on the nonlinear Schrodinger equation, Nuov. Cim. B, 116, 1291

Lopez J L., 2004, Nonlinear Ginzburg-Landau-type approach to quantum dissipation, Phys. Rev. E, 69, 026110

Lopez J L., Montejo-Gamez J., 2013, On the derivation and mathematical analysis of some quantum-mechanical models accounting for Fokker-Planck type dissipation: Phase space, Schrodinger and

hydrodynamic descriptions, Nanoscale Syst. Math. Model. Theory Appl., 2, 49-80

Meyer D A., Wong T G., 2014, Quantum search with general nonlinearities, Phys. Rev. A, 89, 012312

Znojil M, Ruzicka F., Zloshchastiev K G., 2017, Schrodinger equations with logarithmic self-interactions: From antilinear PT-symmetry to the nonlinear coupling of channels, Symmetry, 9, 165

Zloshchastiev K G., 2018, On the dynamical nature of nonlinear coupling of logarithmic quantum wave equation, Everett-Hirschman entropy and temperature, Z. Naturforsch. A, 73, 619

Avdeenkov A V., Zloshchastiev K G., 2011, Quantum Bose liquids with logarithmic nonlinearity: Self-sustainability and emergence of spatial extent, J. Phys. B: At. Mol. Opt. Phys., 44, 195303

Zloshchastiev K G., 2012, Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation, Eur. Phys. J. B, 85, 273

Bouharia B., 2015, Stability of logarithmic Bose-Einstein condensate in harmonic trap, Mod. Phys. Lett. B, 29, 1450260

Zloshchastiev K G., 2017, Stability and metastability of trapless Bose-Einstein condensates and quantum liquids, Z. Naturforsch. A, 72, 677

Scott T C., Shertzer J., 2018, Solution of the logarithmic Schrodinger equation with a Coulomb potential, J. Phys. Commun., 2, 075014

Scott T C, Zhang X, Mann R B., Fee G J., 2016, Canonical reduction for dilatonic gravity in 3+1 dimensions, Phys. Rev. D, 93, 084017

De Martino S, Falanga M, Godano C., Lauro G., 2003, Logarithmic Schrodinger-like equation in magma, Europhys. Lett., 63, 472

Lauro G., 2008, A note on a Korteweg fluid and the hydrodynamic form of the logarithmic Schrodinger equation, Geophys. Astrophys. Fluid Dyn., 102, 373

Zloshchastiev K G., 2018, Nonlinear wave-mechanical effects in Korteweg fluid magma transport, Europhys. Lett. (EPL), 122, 39001

Dunn J E., Serrin J B., 1985, On the thermomechanics of interstitial working, Arch. Rat. Mech. Anal., 88, 95

Dell'Isola F., Kosinski W., 1993, Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layer, Arch. Mech., 45, 333

Anderson D. M., Mc Fadden G B., Wheeler A. A., 1998, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139

Antanovskii L K., 1996, Microscale theory of surface tension, Phys. Rev. E, 54, 6285

Rylov Yu A., 1999, Spin and wave function as attributes of ideal fluid, J. Math. Phys., 40, 256

Cizek J., 1966, On the correlation problem in atomic and molecular systems: Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods, J. Chem. Phys., 45, 4256

McClain J, Lischner J, Watson T, Matthews D A, Ronca E, Louie S G, Berkelbach T C., Chan G K L., 2016, Spectral functions of the uniform electron gas via coupled-cluster theory and comparison to the GW and

related approximations, Phys. Rev. B, 93, 235139

Hagen G, Hjorth-Jensen M, Jansen G R., Papenbrock T., 2016, Emergent properties of nuclei from ab initio coupled-cluster calculations, Phys. Scr., 91, 063006

Acton F. S., 1997, Numerical methods that work, Mathematical Association of America, Washington

Zloshchastiev K G., 2018, Applications of wave equations with logarithmic nonlinearity in fluid mechanics, J. Phys.: Conf. Ser., 1101, 012051